JPS6022343A - Multilayer interconnection structure of semiconductor integrated circuit device - Google Patents
Multilayer interconnection structure of semiconductor integrated circuit deviceInfo
- Publication number
- JPS6022343A JPS6022343A JP13140783A JP13140783A JPS6022343A JP S6022343 A JPS6022343 A JP S6022343A JP 13140783 A JP13140783 A JP 13140783A JP 13140783 A JP13140783 A JP 13140783A JP S6022343 A JPS6022343 A JP S6022343A
- Authority
- JP
- Japan
- Prior art keywords
- film
- insulating film
- layer
- nitride film
- interconnection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Local Oxidation Of Silicon (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は半導体集積回路装置の多層配線構造に関する。[Detailed description of the invention] The present invention relates to a multilayer wiring structure of a semiconductor integrated circuit device.
従来、金属多層配線は、高速演算を特徴とするバイポー
2・デバイスに於いて主として使用されてきたが、近年
MIIIJIIデバイスに於いても、短チヤネル化によ
る高速動作と、配線密度の高いデバイスの大規模化を進
めるため、二層金属配線が実用化され始めた。Traditionally, metal multilayer wiring has been mainly used in bipolar 2 devices, which are characterized by high-speed calculations, but in recent years, MIIIJII devices have also been used to achieve high-speed operation through short channels and large-scale devices with high wiring density. In order to increase the scale, double-layer metal wiring began to be put into practical use.
多層配線を行うに当シ、特に第一層配線がアルミニウム
(以下Atと略す)系の場合、第一層配線上の層間絶縁
膜の選択が重要である。通常は、成長温度が約400℃
の多相成長法によるシリコン酸化膜が使用される。この
層間絶縁膜成長時に。When performing multilayer wiring, especially when the first layer wiring is made of aluminum (hereinafter abbreviated as At), selection of the interlayer insulating film on the first layer wiring is important. Usually the growth temperature is about 400℃
A silicon oxide film produced by the multi-phase growth method is used. During the growth of this interlayer insulating film.
Ar1.系第一層配線にヒロックが成長する。このヒロ
ックは、−8二層配線間耐圧の低下1層間リークの増加
による歩留低下の原因とな為ため、ヒロック防止の各種
検討がなされている。ヒロック防止の有力な手段として
、低温成長のプラズマ窒化膜が研究されているが、静電
気等の高い電圧が印加された時、プラズマ窒化膜とシリ
コン酸化膜の界面が滞電し、寄生MIS型FETによる
リーク電流が発生する等の欠点があシ、MIS型デバイ
スには殆んど使用されていない。Ar1. Hillocks grow on the first layer wiring of the system. Since this hillock causes a decrease in yield due to a decrease in breakdown voltage between -8 and two-layer wiring and an increase in leakage between one layer, various studies have been made to prevent hillocks. Low-temperature-grown plasma nitride films are being researched as an effective means of preventing hillocks, but when a high voltage such as static electricity is applied, electricity accumulates at the interface between the plasma nitride film and the silicon oxide film, causing parasitic MIS FETs. It has drawbacks such as the generation of leakage current, so it is hardly used in MIS type devices.
本発明は、MIS型デバイスに適用しても電気的に安定
で、且つ、ピロツクの発生がない改良された多層配線構
造を提供する事にある。SUMMARY OF THE INVENTION An object of the present invention is to provide an improved multilayer wiring structure that is electrically stable and free from pillock even when applied to MIS type devices.
本発明によると第一層配線上の層間絶縁膜が低温成長の
シリコン窒化膜とシリコン酸化膜系絶鍬とから成ること
を特徴とする半導体集積回路装置の多層配線構造が得ら
れる。According to the present invention, there is obtained a multilayer wiring structure for a semiconductor integrated circuit device, characterized in that the interlayer insulating film on the first layer wiring is composed of a silicon nitride film grown at a low temperature and a silicon oxide film-based insulating film.
以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図〜第4図は本発明多層配線構造を得る工程順の断
面図で、第1図に示すようにシリコン基板1上に第一層
絶縁膜として熱酸化法又は多相成長法による厚い8i0
2膜2を形成し、その上に第一層配線として100OO
X程度のAt膜3を付着し、続いて低温成長のプラズマ
窒化膜4を1oooX程度付着する。次いで第2図に示
すよう平行平板型プラズマ・エツチングや、リアクティ
ブ・イオン・エツチング等の異方性エツチング技術によ
シ。1 to 4 are cross-sectional views showing the steps of obtaining the multilayer wiring structure of the present invention. As shown in FIG. 8i0
2 film 2 is formed, and 100OOO as the first layer wiring is formed on it.
An At film 3 with a thickness of about Next, as shown in FIG. 2, anisotropic etching techniques such as parallel plate plasma etching and reactive ion etching are used.
プラズマ窒化膜4.At膜3をエツチングして、第一層
配線を形成する。その後、第3図の如く、眉間絶縁膜と
して、多相成長法やプラズマ法等により、100OOA
程度の8i02膜又はリンガラス膜5(8i02膜又は
り/ガラス膜をシリコン酸化膜系絶縁膜と称す)を全面
に付着した後、第一層配lfM3と第二層配線との接続
孔6を開孔する。接続孔6を形成する時、プラズマ窒化
膜4は、サイド・エツチングのない異方性エツチングに
よる方法が望ましい。次いで第4図の如く、第二層配線
7を付着形成する。Plasma nitride film 4. The At film 3 is etched to form a first layer wiring. Thereafter, as shown in Figure 3, a 100OOA insulating film was formed using a multiphase growth method, plasma method, etc.
After depositing an 8i02 film or phosphor glass film 5 (the 8i02 film or phosphor glass film is referred to as a silicon oxide film insulating film) on the entire surface, a connection hole 6 between the first layer wiring lfM3 and the second layer wiring is formed. Open a hole. When forming the connection hole 6, it is preferable that the plasma nitride film 4 be etched by anisotropic etching without side etching. Next, as shown in FIG. 4, a second layer wiring 7 is deposited.
上記実施例で明らかな如く、第一層配線のヒロックは、
直上のプラズマ窒化膜4によシ抑制されて発生しないだ
けでなく、プラズマ窒化膜4とその上の8i02膜又l
はリンガラス膜5との界面で万一滞電現象が発生しても
下部第一層配線のシールド効果にさえぎられて、寄生M
IS型FET効果による拡散層間リーク電流は発生せず
%電気的不安定性の問題はない。As is clear from the above example, the hillock of the first layer wiring is
Not only is it suppressed by the plasma nitride film 4 directly above it and does not occur, but it is also suppressed by the plasma nitride film 4 and the 8i02 film or l layer above it.
Even if a static electricity phenomenon occurs at the interface with the phosphor glass film 5, it will be blocked by the shielding effect of the lower first layer wiring, and the parasitic M
No leakage current between diffusion layers occurs due to the IS type FET effect, and there is no problem of electrical instability.
本発明の実施例に於いては、配線導体としてAt膜を使
用したが、8i、Cu、Fe等の不純物を含むAt合金
膜でもよいことはいうまでもない。In the embodiment of the present invention, an At film was used as the wiring conductor, but it goes without saying that an At alloy film containing impurities such as 8i, Cu, and Fe may also be used.
又、眉間絶縁膜として用いられるシリコン酸化膜又は、
リンガラス膜は1表面平坦化の為、塗布法によるシリコ
ン酸化膜又は、リンガラス膜との組合せで使用される事
があるが、その様な複合シリコン酸化膜父性、リンガラ
ス膜をも包含する。Also, a silicon oxide film used as an insulating film between the eyebrows or
A phosphorus glass film is sometimes used in combination with a silicon oxide film by coating or a phosphorus glass film for flattening one surface, but it also includes such composite silicon oxide films and phosphorus glass films. .
本発明によるとMI8Wデバイスに適用しても電気的に
安定で、且つヒロックの発生のない多層配線構造が得ら
れる。According to the present invention, it is possible to obtain a multilayer wiring structure that is electrically stable and free from hillocks even when applied to MI8W devices.
第1図乃至第4図は、本発明の一実施例を説明する為の
製造工程順の断面図である。尚、図において
1・・・・・・シリコン基板、2・・・・・・シリコン
酸化膜、3・・・・・・第一層配線のA/=膜、4・・
・・・・プラズマ成長法によるシリコン窒化膜、5・・
・・・・多相成長法によるシリコン酸化膜又は、リンガ
2ス膜、6・・・・・・第一層配線と第二層配線間をつ
なぐ接続孔、7・・・・・・第二層配線のA/、膜。
iL/−:’、’:+−1’
代理人 弁理士 内 原 “j、゛す
?イ呵・ 1 N〉?1
第 Z 図
に
第 3 図
め 4 日1 to 4 are cross-sectional views showing the order of manufacturing steps for explaining one embodiment of the present invention. In the figure, 1... silicon substrate, 2... silicon oxide film, 3... A/= film of first layer wiring, 4...
...Silicon nitride film by plasma growth method, 5...
...Silicon oxide film or ringer 2 film by multi-phase growth method, 6...Connection hole connecting between first layer wiring and second layer wiring, 7...Second layer wiring Layer wiring A/, membrane. iL/-:',':+-1' Agent Patent Attorney Uchihara “j,゛su?I 㑵・1 N〉?1 Figure Z to Figure 3 4th
Claims (1)
とシリコン酸化膜系絶縁膜とから成ることを特徴とする
半導体集積回路装置の多層配線構造0Multilayer wiring structure 0 for a semiconductor integrated circuit device characterized in that the glabellar insulating film on the first layer wiring is composed of a low-temperature grown silicon nitride film and a silicon oxide film-based insulating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13140783A JPS6022343A (en) | 1983-07-19 | 1983-07-19 | Multilayer interconnection structure of semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13140783A JPS6022343A (en) | 1983-07-19 | 1983-07-19 | Multilayer interconnection structure of semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6022343A true JPS6022343A (en) | 1985-02-04 |
Family
ID=15057247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13140783A Pending JPS6022343A (en) | 1983-07-19 | 1983-07-19 | Multilayer interconnection structure of semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6022343A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006026091A1 (en) * | 2004-08-27 | 2006-03-09 | Spancion Llc | Deposition of hard-mask with minimized hillocks and bubbles |
-
1983
- 1983-07-19 JP JP13140783A patent/JPS6022343A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006026091A1 (en) * | 2004-08-27 | 2006-03-09 | Spancion Llc | Deposition of hard-mask with minimized hillocks and bubbles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6709978B2 (en) | Method for forming integrated circuits using high aspect ratio vias through a semiconductor wafer | |
US3944447A (en) | Method for fabrication of integrated circuit structure with full dielectric isolation utilizing selective oxidation | |
JPS59205717A (en) | Low resistance contact generating method of semiconductror integrated circuit | |
EP0013508A1 (en) | Semiconductor device and a method of producing the same | |
US3865624A (en) | Interconnection of electrical devices | |
US3849270A (en) | Process of manufacturing semiconductor devices | |
US4261003A (en) | Integrated circuit structures with full dielectric isolation and a novel method for fabrication thereof | |
JPS6022343A (en) | Multilayer interconnection structure of semiconductor integrated circuit device | |
JPS59175153A (en) | Semiconductor integrated circuit | |
JPS5890755A (en) | Semiconductor device | |
KR100256271B1 (en) | Metal wiring method of semiconductor device | |
JP2754693B2 (en) | Manufacturing method of plated electrode | |
JPS59217341A (en) | Manufacture of semiconductor integrated circuit device | |
JPS6125217B2 (en) | ||
KR930002057B1 (en) | Metal wiring method | |
JPS5851523A (en) | Semiconductor device | |
KR920007360B1 (en) | Manufacturing method of semiconductor device having multi-layer | |
JPS61102754A (en) | Semiconductor device | |
JPS5914650A (en) | Semiconductor integrated circuit device | |
GB1593737A (en) | Process for producing semi-conductor devices passivated by an integrated heat sink | |
JPS63160365A (en) | Insulating substrate for semiconductor device | |
JPS5954243A (en) | Semiconductor integrated circuit device | |
JPS6047445A (en) | Manufacture of semiconductor device | |
JPS6132541A (en) | Manufacture of dielectric isolated substrate | |
Thornton | New trends in microelectronics fabrication technology-1965 |