JPS60223345A - Space light transmitting equipment - Google Patents

Space light transmitting equipment

Info

Publication number
JPS60223345A
JPS60223345A JP59078401A JP7840184A JPS60223345A JP S60223345 A JPS60223345 A JP S60223345A JP 59078401 A JP59078401 A JP 59078401A JP 7840184 A JP7840184 A JP 7840184A JP S60223345 A JPS60223345 A JP S60223345A
Authority
JP
Japan
Prior art keywords
signal
light
section
amount
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59078401A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshida
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59078401A priority Critical patent/JPS60223345A/en
Publication of JPS60223345A publication Critical patent/JPS60223345A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum

Abstract

PURPOSE:To attain stable signal transmission by providing a recursive reflecting member reflecting a transmitted optical signal to a reception side and providing a luminous amount adjusting section adjusting the amount of irradiated light in response to the luminous amount of a reflected signal to the transmission side. CONSTITUTION:An interface 11 outputs a signal (signal to be transmitted) to a light irradiating section 12, which generates and output a light signal in response to the former signal. That is, the signal is fed to a photocoupler 122 via an inverter 121, thereby flowing a current to a light emitting element 123, from which a light signal 51 is generated. The light signal 51 is received by a photodetector section 23 of a light transmission/reception section 20 of an opposite party, converted into an electric signal and amplified at the section 23 and transmitted to a controller 40 of the opposite party via an interface 21. In the transmission of light, the light signal 51 is fed also to the recursive reflecting member 24, and a reflected signal 52 is returned. The reflected signal 52 is inputted to the luminous amount adjusting section 15 so as to regulate the irradiated luminous amount of the light emitting section 12 in response to the received luminous amount.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、送信側と受信側の間を光を利用して信号を伝
送する空間光伝送装置に関するものである0 〔発明の背景〕 送信側に光信号を発生する発光部と、受信側にこの光信
号を受信する受光部とを設け、発光部で発生した光信号
を空間を介して受光部で受光することにより信号伝送を
行なう空間光伝送装置は、よく知られている。この種の
光伝送装置においては、光信号の受光レベル(受光量)
を一定にするために、受信側に信号レベル調整装置を備
えているのが普通である。実信側で信号レベルを調整す
る機能を有するものとしては、例えば、特開昭49−7
6404号公報、特開昭50−125605号公報、特
開昭51−136205号公報、特開昭51−1362
06号公報等多数のものが知られている。送信側と受信
側が固定されている場合、従来公知のもので十分対処可
能であり、安定した信号伝送が実現されている。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a spatial optical transmission device that uses light to transmit signals between a transmitting side and a receiving side.0 [Background of the Invention] Transmitting side Spatial optical Transmission devices are well known. In this type of optical transmission equipment, the reception level (amount of light received) of the optical signal is
In order to keep the signal level constant, a signal level adjustment device is usually provided on the receiving side. Examples of devices that have the function of adjusting the signal level on the actual transmission side include JP-A No. 49-7
6404, JP 50-125605, JP 51-136205, JP 51-1362
A large number of such methods are known, such as the publication No. 06. If the transmitting side and the receiving side are fixed, conventionally known methods can be used to achieve stable signal transmission.

ところで、最近、空間光伝送装置の送信部、あるいは受
信部、あるいは送受信部を移動体に取付け、移動体と地
上固定局との間を空間光伝送によるデータ伝送を行なう
二とが検討されている。例えば、特開昭56−8808
6号には、自動倉庫システムにおいて、地上の制御装置
から移動指令をスタッカクレーンに伝送するに際し、こ
の伝送を空間光伝送装置で行なうことが開示されている
By the way, recently, there has been consideration of attaching the transmitting section, receiving section, or transmitting/receiving section of a spatial optical transmission device to a mobile object, and transmitting data between the mobile object and a fixed terrestrial station by spatial optical transmission. . For example, JP-A-56-8808
No. 6 discloses that in an automated warehouse system, when a movement command is transmitted from a ground control device to a stacker crane, this transmission is performed by a space optical transmission device.

移動体と固定側との間の空間光伝送を行なう場合におい
て、一番問題となるのは受信側に設けられる受信部の光
信号の受光レベルが非常に大幅に変動することである。
When performing spatial optical transmission between a moving body and a fixed side, the biggest problem is that the reception level of an optical signal at a receiving section provided on the receiving side fluctuates significantly.

例えば、自動倉庫システムにおいて、スタッカクレーン
は、通常20〜30m、長距離のものになると200m
程度ある立体棚間な移動する。一般に、受光器に入力さ
れる光のパワーPは、投光器より照射される光が平行光
であるとすると、伝送路長さく空間距離)lの2乗に反
比例する。したがって、移動体の移動に応じた受信電圧
レベルの調整が必須となる。この調整のためには、増幅
器を複数段設け、受光レベルに応じた電圧増幅をすれば
良いが、設備が大がかりになること、微少レベルの信号
を増幅するためS/N比が悪化することなどの問題を残
している。
For example, in an automated warehouse system, stacker cranes are usually 20 to 30 m long, and 200 m long for long-distance cranes.
Move between three-dimensional shelves to some extent. Generally, the power P of the light input to the light receiver is inversely proportional to the square of the transmission path length (spatial distance) l, assuming that the light emitted from the light emitter is parallel light. Therefore, it is essential to adjust the received voltage level according to the movement of the mobile object. To make this adjustment, it is possible to install multiple stages of amplifiers and amplify the voltage according to the received light level, but this requires large-scale equipment and deteriorates the S/N ratio due to the amplification of minute level signals. The problem remains.

〔発明の目的〕 本発明の目的は、簡単な構成で、安定して信号伝送を行
なうことのできる空間光伝送装置を提供することである
[Object of the Invention] An object of the present invention is to provide a spatial optical transmission device that has a simple configuration and can perform stable signal transmission.

〔発明の概要〕[Summary of the invention]

本発明は、受信側に、送信された光信号を反射する回帰
性反射部材を設け、送信側にはこの反射された反射信号
の光量に応じて発光部を調整する光量調整部を設けたこ
とを特徴とする。
The present invention provides a recursive reflecting member that reflects a transmitted optical signal on the receiving side, and a light amount adjustment section that adjusts the light emitting section according to the amount of light of this reflected signal on the transmitting side. It is characterized by

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を具体的実施例に基づき詳細に説明する。 Hereinafter, the present invention will be explained in detail based on specific examples.

第1図は本発明の一実施例を示す図である。また第2図
は第1図における一部分を詳細に示した図である。第1
図および第2図において、10と加は空間光伝送装置を
構成する光送受信部を示す。(資)と伯はそれぞれ制御
装置である。11と21はインターフェース、12とn
はインターフェース11を介して送られてきた信号に対
応した光信号を発生ずる発光部である。13と田は相手
側の光送受信部から送られてきた光信号を受光し、これ
を電気(fi号に変換して出力する受光部である。14
と冴は相手側から送られてきた光信号を反射する回帰性
反射部材である。15と6は回帰性反射部材によって反
射された反射信号に応じて発光部の発光光量を調節する
光量調整部である。51と61は、それぞれの光送受信
部における発光部が発生した光信号を示す。52と62
は、それぞれの反射信号を示す。
FIG. 1 is a diagram showing an embodiment of the present invention. Moreover, FIG. 2 is a diagram showing a part of FIG. 1 in detail. 1st
In the figure and FIG. 2, numerals 10 and 2 indicate optical transmitting and receiving sections constituting the spatial optical transmission device. (capital) and bar are each control devices. 11 and 21 are interfaces, 12 and n
is a light emitting unit that generates an optical signal corresponding to a signal sent via the interface 11. 13 and 2 are light receiving units that receive the optical signal sent from the optical transmitter/receiver on the other side, convert it into electricity (fi), and output it. 14
and Sae are recursive reflective members that reflect optical signals sent from the other party. Reference numerals 15 and 6 are light amount adjusting sections that adjust the amount of light emitted from the light emitting section according to the reflected signal reflected by the recurrent reflecting member. Reference numerals 51 and 61 indicate optical signals generated by the light emitting sections in the respective optical transmitting/receiving sections. 52 and 62
indicate the respective reflected signals.

121はインバータ、122はフォトカプラ、123は
発光素子、124はトランジスタである。RL + R
O*R2はそれぞれ抵抗、ICは発光素子123を流れ
る電流を示す。31と41は中央処理装置、32と42
はメモリを示す。なお、この実施例における光量調整部
15(あるいは25)としてはフォトトランジスタを用
いているが、これに限られるものではなく、発光素子1
23の発光光量を調整できる構成であれば何でも良い。
121 is an inverter, 122 is a photocoupler, 123 is a light emitting element, and 124 is a transistor. RL+R
O*R2 represents a resistance, and IC represents a current flowing through the light emitting element 123. 31 and 41 are central processing units, 32 and 42
indicates memory. Note that although a phototransistor is used as the light amount adjustment section 15 (or 25) in this embodiment, it is not limited to this, and the light emitting element 1
Any configuration may be used as long as the amount of light emitted by the light source 23 can be adjusted.

この第1図に示す空間光伝送装置は、1対をなしており
、双方向半2重通信が可能なものとする。すなわち、片
方が送信を行なっているとき、他方は受信側となり、相
手局の送信完了で自局の送信開始に移る。いま、制御装
置間からFS変調したパルス列の信号を光送受信部10
に出力する。これにより、インターフェース11は、信
号(伝送すべき信号)を発光部臆に出力する。
The spatial optical transmission devices shown in FIG. 1 form a pair and are capable of bidirectional half-duplex communication. That is, when one station is transmitting, the other station becomes the receiving side, and when the other station completes transmission, its own station starts transmitting. Now, the optical transceiver unit 10 transmits the FS modulated pulse train signal from between the control devices.
Output to. Thereby, the interface 11 outputs a signal (signal to be transmitted) to the light emitting section.

発光部νでは、その信号に応じた光信号を発生し出力す
る。すなわち、第2図に示すように、信号をインバータ
121を介してフォトカプラ122に供給し、これによ
って発光素子123に電流が流され、光信号51が発生
される。この光信号51は、相手側の光送受信部加の受
光部器によって受光され、ここで電気信号に変換され、
増幅されてインターフェース21を介して相手側の制御
装置伯に伝送される。この光伝送時において、光信号5
1は、回帰性反射部材々にも供給され、反射信号52が
戻って炙る。この反射信号52は、光量調整部15に入
力され、□その受光した光量に応じて発光部12の発光
光量を調節する。具体的には、第2図に示すように、フ
ォトトランジスタ15が反射信号52を受光し、この受
光量によりインピーダンスRAが変化することにより、
発光素子123を流れる電流ICが変わり、発光光量が
変化する。このフォトトランジスタ15のインピーダン
スRAは、入射光量に対応して変化する。すなわち、入
射光量が多いとインピーダンスRAが低く、反対に入射
光量が少ないとインピーダンスRdrS高くなる。した
がって、発光素子123を流れる電流ICは、反射信号
52の光量が少ないと多(流れることになり、発光光量
を調節できる。このように、発光部側において、発光光
量を調節し、受光部側での受光レベルを一定に制御する
ことができる。
The light emitting unit ν generates and outputs an optical signal according to the signal. That is, as shown in FIG. 2, a signal is supplied to a photocoupler 122 via an inverter 121, thereby causing a current to flow through a light emitting element 123, and an optical signal 51 is generated. This optical signal 51 is received by the light receiving unit of the optical transmitting/receiving unit on the other side, where it is converted into an electrical signal,
The signal is amplified and transmitted to the other party's control device via the interface 21. During this optical transmission, the optical signal 5
1 is also supplied to the retroreflective members, and the reflected signal 52 returns and burns. This reflected signal 52 is input to the light amount adjusting section 15, and the amount of light emitted from the light emitting section 12 is adjusted according to the amount of light received. Specifically, as shown in FIG. 2, the phototransistor 15 receives the reflected signal 52, and the impedance RA changes depending on the amount of received light.
The current IC flowing through the light emitting element 123 changes, and the amount of light emitted changes. The impedance RA of this phototransistor 15 changes depending on the amount of incident light. That is, when the amount of incident light is large, the impedance RA is low, and conversely, when the amount of incident light is small, the impedance RdrS is high. Therefore, the current IC flowing through the light emitting element 123 increases when the amount of light of the reflected signal 52 is small, and the amount of emitted light can be adjusted. It is possible to control the light reception level at a constant level.

なお、上述した実施例においては、光量調整部15とし
てフォトトランジスタを用いたものを示したが、この光
量調整部としては反射信号の光量を測定し、この測定さ
れた信号量と予め設定された量とを比較し、この差をな
くすように発光素子の発光光量を調節する光量制御系を
構成しても良い。
In the above-described embodiment, a phototransistor is used as the light amount adjustment section 15, but this light amount adjustment section measures the light amount of the reflected signal and compares this measured signal amount with a preset value. A light amount control system may be configured to compare the amount of light and adjust the amount of light emitted from the light emitting element so as to eliminate this difference.

この実施例の如き空間光伝送装置は、第3図に示す自動
倉庫システム等に応用することができる。
A spatial optical transmission device such as this embodiment can be applied to an automatic warehouse system shown in FIG. 3, etc.

第3図において、10.20.30.40は第1図に示
したものと同一のものである。lはスタッカクレーンで
あり、荷物を入庫したり出庫したりするだめのものであ
る。旬と切はスタッカクレーン1上に搭載されている。
In FIG. 3, 10.20.30.40 are the same as shown in FIG. 1 is a stacker crane, which is used for loading and unloading cargo. Shun and Kiri are mounted on stacker crane 1.

4は棚であり、5は走行用のレールである。制御装置型
からの信号は、光送受信部10.20を介して制御装置
切に伝送され、この信号に基づきスタッカクレーンlは
荷物を入庫あるいは出庫するため走行を開始する。スタ
ッカクレーンlの位置により、光送受信部10と加との
間の距離は大幅に異なるが、光量調節がなされるので受
信側の受光部での受光レベルはほぼ一定に保たれる。し
たがって、安定した空間光伝送を実現できる。
4 is a shelf, and 5 is a running rail. A signal from the control device type is transmitted to the control device via the optical transmitting/receiving section 10.20, and based on this signal, the stacker crane I starts traveling to store or unload cargo. Although the distance between the optical transmitter/receiver 10 and the receiver varies greatly depending on the position of the stacker crane 1, the light level at the receiver's light receiver is kept almost constant since the light amount is adjusted. Therefore, stable spatial optical transmission can be achieved.

第4図には、光送受信部lOの外観を示す。110はレ
ンズであり、このレンズの下面に回帰性反射部材14が
設置されている。この光送受信部10内における発光素
子123.フォトトランジスタ15.受光部13の受光
素子131は、第5図に示すように、レンズ110の焦
点位置よりやや内側に設置されている。このように、焦
点より内側に設置されていれば、発光素子の発光した光
は平行光とならず、若干波がる光となる。これにより、
回帰性反射部材が光信号を受け、それを反射することが
できる。
FIG. 4 shows the appearance of the optical transmitter/receiver section IO. 110 is a lens, and a recursive reflection member 14 is installed on the lower surface of this lens. The light emitting element 123 in this optical transmitting/receiving section 10. Phototransistor 15. The light-receiving element 131 of the light-receiving section 13 is installed slightly inside the focal position of the lens 110, as shown in FIG. In this way, if the light emitting element is placed inside the focal point, the light emitted by the light emitting element will not be parallel light, but will be slightly wavy light. This results in
A retroreflective member is capable of receiving and reflecting the optical signal.

回帰性反射部材の大きさと、発光素子の位置を調整する
ことにより、第3図に示した如き光送受信部lOと蜀と
の間の距離が変化する場合、より安定した空間光伝送が
実現できる。
By adjusting the size of the recurrent reflection member and the position of the light emitting element, more stable spatial light transmission can be achieved when the distance between the optical transmitter/receiver lO and Shu changes as shown in Figure 3. .

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、簡単な構成
で、安定した信号伝送が実現できる。
As described above in detail, according to the present invention, stable signal transmission can be achieved with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は第1図の
一部分を詳細に示した図、第3図は本発明の一実施例を
適用した例を示す図、第4図は光送受信部の外観を示す
図、第5図は部品の配置例を示す図である。 10.20・・・・・・光送受信部、11.21・・・
・・・インターフェース、認、22・・・・・・発光部
、13.Z3・・・・・・受光部、14.24・・・・
・・回帰性反射部材、巧、25・・・・・・光量調整部
、加・・・・・・制御装置、31・・・・・・中央処理
装置、羽・・・メモリ、荀・・・・・・制御装置、41
・・・・・・中央処理装置、42・・・・・・メモリ、
51.61・・・・・・光信号、52.62・・・・・
・反射信号 代理人 弁理士 高 橋 明 夫
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a part of FIG. 1 in detail, FIG. 3 is a diagram showing an example to which the embodiment of the present invention is applied, and FIG. The figure shows the appearance of the optical transmitter/receiver section, and FIG. 5 is a diagram showing an example of the arrangement of parts. 10.20... Optical transmitter/receiver section, 11.21...
. . . Interface, recognition, 22 . . . Light emitting section, 13. Z3... Light receiving section, 14.24...
...Recurrence reflective member, Takumi, 25...Light amount adjustment section, Adjustment...Control device, 31...Central processing unit, Wings...Memory, Xun... ...control device, 41
... central processing unit, 42 ... memory,
51.61... Optical signal, 52.62...
・Reflection Signal Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】[Claims] 1、送信側に光信号を発生する発光部と、受信側に該光
信号を受信する受光部とを設け、該発光部の発生した光
信号を該受光部で受光することによって信号伝送を行な
う空間光伝送装置において、該受信側に回帰性反射部材
を設け、該送信側に該光信号が該回帰性反射部材に当っ
て戻ってきた反射信号の光量に応じて前記発光部を調整
する光量調整部を設けたことを特徴とする空間光伝送装
置。
1. A light emitting section that generates an optical signal on the transmitting side and a light receiving section that receives the optical signal on the receiving side are provided, and signal transmission is performed by receiving the optical signal generated by the light emitting section at the light receiving section. In the spatial light transmission device, a recurrent reflecting member is provided on the receiving side, and the light amount of the light emitting unit is adjusted in accordance with the light amount of the reflected signal that the optical signal hits the recurrent reflecting member and returns to the transmitting side. A spatial optical transmission device characterized by being provided with an adjustment section.
JP59078401A 1984-04-20 1984-04-20 Space light transmitting equipment Pending JPS60223345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078401A JPS60223345A (en) 1984-04-20 1984-04-20 Space light transmitting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078401A JPS60223345A (en) 1984-04-20 1984-04-20 Space light transmitting equipment

Publications (1)

Publication Number Publication Date
JPS60223345A true JPS60223345A (en) 1985-11-07

Family

ID=13660999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078401A Pending JPS60223345A (en) 1984-04-20 1984-04-20 Space light transmitting equipment

Country Status (1)

Country Link
JP (1) JPS60223345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280543A (en) * 1989-04-21 1990-11-16 Matsushita Electric Ind Co Ltd Optical space transmitter
EP0749219A2 (en) * 1995-06-14 1996-12-18 Nec Corporation Infrared spatial communication system capable of reducing a processing amount of data communication devices during communication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280543A (en) * 1989-04-21 1990-11-16 Matsushita Electric Ind Co Ltd Optical space transmitter
EP0749219A2 (en) * 1995-06-14 1996-12-18 Nec Corporation Infrared spatial communication system capable of reducing a processing amount of data communication devices during communication
EP0749219A3 (en) * 1995-06-14 1999-10-27 Nec Corporation Infrared spatial communication system capable of reducing a processing amount of data communication devices during communication

Similar Documents

Publication Publication Date Title
US4234968A (en) Optical coupler module in a distributed processing system
US20030090765A1 (en) Free-space optical communication system
CN107566037A (en) Duplexing reverse modulation MRR free space laser communication FSO systems
US3770966A (en) Light amplifier for use in optical communication system
EP0297601A3 (en) Self leveling transmitter for laser alignment systems
CN104765128A (en) Environment defocusing self-adaptation compensation method for airborne laser communication system
CN205809293U (en) Unmanned plane, unmanned vehicle and walking robot infrared distance measurement and fault avoidnig device
US4993798A (en) Laser arrangement in optical communication system
KR950014620B1 (en) Optical communication system
US7277173B1 (en) Active optical alignment using MEMS mirrors
JPH1041896A (en) Device and method for transmission/reception
US4688260A (en) High-reliability fiber optic repeater
CN107947852B (en) Energy and information composite transmission system for realizing full duplex communication based on vibrating mirror
JPS60223345A (en) Space light transmitting equipment
JPS6198033A (en) Optical radio device for moving body
CN100446442C (en) Laser receiving and echo device
CN209281011U (en) Multichannel light R-T unit
CN107682079B (en) Method for controlling optical adjustment in automatic tracking FSO (frequency selective offset) equipment
CN109104241B (en) All-optical bidirectional relay device and method capable of being mounted on aircraft in laser communication
JPH04150324A (en) Optical reception circuit
JPH04248727A (en) Transmission output level control circuit
JPS5826705B2 (en) optical transmitter
JPH10336114A (en) Light receiving circuit
CN116224351A (en) Laser radar and driving method thereof
JPH0382909A (en) Optical reflector detecting apparatus