JPS60223174A - Semiconductor photoelectronic compound element - Google Patents

Semiconductor photoelectronic compound element

Info

Publication number
JPS60223174A
JPS60223174A JP59078951A JP7895184A JPS60223174A JP S60223174 A JPS60223174 A JP S60223174A JP 59078951 A JP59078951 A JP 59078951A JP 7895184 A JP7895184 A JP 7895184A JP S60223174 A JPS60223174 A JP S60223174A
Authority
JP
Japan
Prior art keywords
semiconductor
type
inp
semiinsulating
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59078951A
Other languages
Japanese (ja)
Inventor
Junji Hayashi
純司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59078951A priority Critical patent/JPS60223174A/en
Publication of JPS60223174A publication Critical patent/JPS60223174A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To produce the titled semiconductor photoelectronic compound element with high performance and excellent yield by a method wherein at least one layer of multiple epitaxial semiconductor is made into a semiinsulating semiconductor layer to form an impurity introducing region reaching the depth at least exceeding the semiinsulating semiconductor layer. CONSTITUTION:A tin doped n type InP 12, an undoped InGaAsP 13, another tin doped n type InP 14, a cobalt doped semiinsulating InP 15 and the other InP 16 are successively liquid-epitaxially grown (LPE) on a (001) plane of tin doped n type InP substrate 11. Firstly a p type zinc diffused region 17 (oblique lined) is formed. Secondly another p type diffused region 18 is formed between a photodiode 27 and an FET26. This p type diffusion region 18 around 10-20mum wide and around 400mum long reaching the semiinsulating InP 15 but not penetrating the same fills the role of electrically separating the FET26 from the photodiode 27. Thirdly a gate groove 25 of FET26 is formed by etching process. Finally an SiO2 insulating film 19 may be formed by CVD process on the gate groove 25.

Description

【発明の詳細な説明】 (技術分野) 本発明は、半導体光素子及び半導体電子素子が1つの半
導体基板上に形成しである半導体光電子複合素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor opto-electronic composite device in which a semiconductor optical device and a semiconductor electronic device are formed on one semiconductor substrate.

(従来技術とその問題点) 光フアイバー通信に必要な発光素子、受光素子において
、高速化高信頼化のために半導体光素子と半導体電子素
子とをモノリシックに集積化することが重要である。
(Prior art and its problems) In light emitting elements and light receiving elements necessary for optical fiber communication, it is important to monolithically integrate semiconductor optical elements and semiconductor electronic elements in order to increase speed and reliability.

例えば、 Electronics Letters誌
(1983Vo119、NO,22) の905〜90
6ページにPINフォトダイオードとMISFETとを
集積化した半導体光電子複合素子が第1図の如く示され
ている。
For example, Electronics Letters magazine (1983 Vo119, NO, 22), 905-90
On page 6, a semiconductor opto-electronic composite device in which a PIN photodiode and a MISFET are integrated is shown as shown in FIG.

1はPINフォトダイオード、2はMISIT。1 is a PIN photodiode, 2 is a MISIT.

3はn型InP基板、4はn型InP、5はアンドープ
のInGaAsP、6はP型InP、7はn型InP(
又はn型InGaAsP)、8(斜線部)はP型不純物
拡散領域、9 Fin側電極、19は8 i 02絶縁
膜、20はP側電極、22はドレイン電極、23はソー
ス電極、24はゲート電極、30はM線である。第1図
は断面図であるが、P型不純物拡散領域8及び電極9.
20.22〜24にだけハツチングが施してあシ、他の
部分にはI・ツチングが省略しである。
3 is an n-type InP substrate, 4 is an n-type InP, 5 is an undoped InGaAsP, 6 is a P-type InP, 7 is an n-type InP (
or n-type InGaAsP), 8 (shaded area) is a P-type impurity diffusion region, 9 is a Fin side electrode, 19 is an 8 i 02 insulating film, 20 is a P-side electrode, 22 is a drain electrode, 23 is a source electrode, 24 is a gate The electrode 30 is an M line. FIG. 1 is a cross-sectional view of the P-type impurity diffusion region 8 and the electrode 9.
20. Hatching is applied only to 22 to 24, and I/hatching is omitted from other parts.

第1図の従来の半導体光電子複合素子において、FET
2を形成するためのフォトレジスト工程を高精度に行う
には、FET2の半導体層の上面(n型InP7の上面
)とフォトダイオード1の半導体層の上面(n型InP
7の上面)とは基板3の底面からの高さが揃っているこ
とが必要である。
In the conventional semiconductor optoelectronic composite device shown in FIG.
In order to carry out the photoresist process for forming FET 2 with high precision, it is necessary to make a
It is necessary that the heights from the bottom surface of the substrate 3 are the same as the top surface of the substrate 7).

そこでi本図の従来素子では半導体光素子であるフォト
ダイオード1と半導体電子素子であるFET2との素子
の高さの相異を補償するために、半導体基板3に段差が
設けである。しかし、このように段差を設ける方式では
、エツチングの深さの制御性及びエピタキシャル成長の
制御性には制限があるから、素子の高さの相異を心電な
範囲にまで補償することが困難であシ、細かいパターン
、例えばFh:T 2の1μm以下の長さのゲートが高
精度に再現性よく形成できない。従って、従来の半導体
複合素子は製造歩留りが悪かった。更に、従来の構造で
は相異する高さの素子の数が増すとその数だけ異なる段
差を基板に作らなければならないから、製造工程が複雑
で工程数も多く、この面からも製造歩留が低くかった。
Therefore, in the conventional device shown in this figure, a step is provided on the semiconductor substrate 3 in order to compensate for the difference in height between the photodiode 1, which is a semiconductor optical device, and the FET 2, which is a semiconductor electronic device. However, with this method of providing steps, there are limits to the controllability of etching depth and epitaxial growth, making it difficult to compensate for differences in device height to the electrocardiographic range. Reeds and fine patterns, such as Fh:T2 gates with a length of 1 μm or less, cannot be formed with high precision and good reproducibility. Therefore, conventional semiconductor composite devices have poor manufacturing yields. Furthermore, in the conventional structure, as the number of elements with different heights increases, different steps must be created on the board by that number, making the manufacturing process complicated and requiring a large number of steps, which also reduces the manufacturing yield. It was low.

以上のように、従来の構造の半導体光電子複合素子は、
歩留り良く高性能に製造することが困難であった。
As mentioned above, the semiconductor optoelectronic composite device with the conventional structure is
It has been difficult to manufacture with high yield and high performance.

(発明の目的) 本発明の目的は、高性能で製造歩留シの良い半導体光電
子複合素子の提供にある。
(Object of the Invention) An object of the present invention is to provide a semiconductor optoelectronic composite device with high performance and good manufacturing yield.

(発明の構成) 本発明の構成は、同一半導体基板上に形成された半導体
光素子及び半導体電子素子を含む半導体光電子複合素子
において、前記半導体基板が導電型であシ、前記半導体
光素子及び前記半導体電子素子の半導体要素を含む多層
のエピタキシャル半導体が前記半導体基板上に形成して
あシ、前記多層エピタキシャル半導体中の少なくとも一
つの層は半絶縁性半導体層であり、前記多層エピタキシ
ャル半導体表面からほぼ直角方向に伸び前記半絶縁性半
導体層を少なくとも越える深さまで到る不純物導入領域
が形成してあり、その不純物導入領域は前記半導体光素
子に対する電流通路となっていることを特徴とする。
(Structure of the Invention) The structure of the present invention is that in a semiconductor opto-electronic composite device including a semiconductor optical device and a semiconductor electronic device formed on the same semiconductor substrate, the semiconductor substrate is of a conductive type, the semiconductor optical device and the A multilayer epitaxial semiconductor including a semiconductor element of a semiconductor electronic device is formed on the semiconductor substrate, at least one layer in the multilayer epitaxial semiconductor is a semi-insulating semiconductor layer, and the multilayer epitaxial semiconductor layer is substantially parallel to the surface of the multilayer epitaxial semiconductor. An impurity-introduced region extending in a perpendicular direction to a depth exceeding at least the semi-insulating semiconductor layer is formed, and the impurity-introduced region serves as a current path for the semiconductor optical device.

(実施例) 以下に実施例を挙げ本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to Examples.

第2図は本発明の一実施例を示す断面図で、11は(0
01)面の錫ドープのn型InP基板、12は厚さ1/
jmの錫(8n)ドープのn型InP。
FIG. 2 is a sectional view showing an embodiment of the present invention, and 11 is (0
01) tin-doped n-type InP substrate, 12 has a thickness of 1/
jm tin (8n) doped n-type InP.

13は厚さ1.5μmのアンドープのInGaAsP(
バンドギャップに相当する波長1.5μm)、14は厚
さ1μmの錫(8n)ドープのn型InP。
13 is undoped InGaAsP with a thickness of 1.5 μm (
14 is a tin (8n)-doped n-type InP with a thickness of 1 μm.

15は厚さ1μmのコバル)(Co)ドープの半絶縁性
InP116は厚さ1μmの錫(Sn)ドープのn型I
nPである。第2図は断面図であるが、P型Zn拡散領
域及び電極だけにハツチングを施し、他の部分にはハツ
チングが省略しである。
15 is a 1 μm thick cobal (Co) doped semi-insulating InP116 is a 1 μm thick tin (Sn) doped n-type I
It is nP. Although FIG. 2 is a cross-sectional view, only the P-type Zn diffusion region and the electrode are hatched, and the hatching is omitted in other parts.

この実施例を製造するには、まず平坦な表面の(001
)面の錫ドープのn型InP基板11上に錫ドープのn
型InP12、アンドープのIn−GaAsPl 3、
錫ドーグのn型I n P l 4 、コバルトドープ
の半絶縁性I n P 15 、錫ドープのn型InP
16を順次液相エピタキシャル成長(LPE)により形
成する。次に、絶縁膜をマスクとする通常の選択拡散に
よりp型亜鉛拡散領域17(斜線部分)を形成する。こ
のP型拡散領域17は、直径100μmで深さはn型I
nP14に達している。次に、2回目のP型亜鉛拡散を
行ないフォトダイオード27とFET26との間にP型
亜鉛拡散領域18を形成する。このP型拡散領域18は
、巾10〜20μm程度で長さ400 μm程度で、拡
散の深さは半絶縁性InP15に達しているが貫通して
はいない。P型拡散領域18はFET26とフォトダイ
オード27を電気的に分離する役目をする。次にFET
26のゲート溝25をエツチングにより形成する。ゲー
ト溝25の方向は(110)方向で、ゲート長は1μm
1ゲ一ト幅は400μmである。次に、グー)#125
上に8 i 0 !絶縁膜19をCVD法によシ形成す
る。
To fabricate this example, first a flat surface (001
) on the tin-doped n-type InP substrate 11.
type InP12, undoped In-GaAsPl3,
Tin-dawg n-type I n P l 4 , cobalt-doped semi-insulating I n P 15 , tin-doped n-type InP
16 are sequentially formed by liquid phase epitaxial growth (LPE). Next, a p-type zinc diffusion region 17 (shaded area) is formed by ordinary selective diffusion using the insulating film as a mask. This P type diffusion region 17 has a diameter of 100 μm and a depth of n type I.
It has reached nP14. Next, a second P-type zinc diffusion is performed to form a P-type zinc diffusion region 18 between the photodiode 27 and the FET 26. This P-type diffusion region 18 has a width of about 10 to 20 μm and a length of about 400 μm, and the diffusion depth reaches the semi-insulating InP 15 but does not penetrate through it. P-type diffusion region 18 serves to electrically isolate FET 26 and photodiode 27. Next, FET
26 gate grooves 25 are formed by etching. The direction of the gate groove 25 is the (110) direction, and the gate length is 1 μm.
The width of one gate is 400 μm. Next, goo) #125
8 i 0 on top! An insulating film 19 is formed by the CVD method.

その層厚は0.08〜0.1μmである。次に、フォト
ダイオード27の受光開口径80μmのP側電極(Au
Zn/Au)20を形成する。次に、フォトダイオード
27のn側電極(Au G e N i /Au )2
1とFET26のソース電極(AuGeNi/Au)2
3とドレイン電極(AuGeNi/Au)22とを形成
し、次にゲート電極(Al)24を形成する。
Its layer thickness is 0.08-0.1 μm. Next, the P-side electrode (Au
Zn/Au) 20 is formed. Next, the n-side electrode (Au G e N i /Au) 2 of the photodiode 27
1 and the source electrode of FET 26 (AuGeNi/Au) 2
3 and a drain electrode (AuGeNi/Au) 22 are formed, and then a gate electrode (Al) 24 is formed.

フォトダイオード27のn側電極21とゲート電極24
をA!配線でつなぐ(この実施例は、フォトダイオード
27の出力t−FET26で増幅する回路である)。
N-side electrode 21 and gate electrode 24 of photodiode 27
A! (This embodiment is a circuit that amplifies the output of the photodiode 27 using a t-FET 26.)

以上に、本実施例を詳細に説明した。本実施例の製造方
法では液相エピタキシャル成長法を説明したが、本実施
例は気相成長法でも製造できる。
This embodiment has been described in detail above. Although the liquid phase epitaxial growth method has been described in the manufacturing method of this example, this example can also be manufactured using a vapor phase growth method.

この実施例を次のように変形しても、本発明は実現でき
る。例えば錫ドープのn型InP12.14゜16はテ
ルル(Te )ドープのn型InPに代えてもよい。ま
た、P型亜鉛拡散領域17.18はP型カドミウム(C
d )拡散領域に代えてもよい。
The present invention can also be realized by modifying this embodiment as follows. For example, tin-doped n-type InP 12.14°16 may be replaced with tellurium (Te)-doped n-type InP. In addition, the P-type zinc diffusion regions 17 and 18 are made of P-type cadmium (C
d) It may be replaced by a diffusion region.

また、ゴパルトドープ半絶縁性InP15は、鉄(Fe
)ドープ半絶縁性InPまたはクロム(Cr)ドープ半
絶縁性InPに代えてもよい。また、エピタキシャル層
中のn型InP16に代えてP型InPとし、P型拡散
領域18に代えてn型領域にしても同様の効果がある。
In addition, Gopalt-doped semi-insulating InP15 is made of iron (Fe).
) Doped semi-insulating InP or chromium (Cr)-doped semi-insulating InP may be substituted. Further, the same effect can be obtained even if the n-type InP 16 in the epitaxial layer is replaced with P-type InP, and the P-type diffusion region 18 is replaced with an n-type region.

このP型拡散領域18は、フォトダイオード27とFE
T26を電気的に分離することを目的とする。そこで、
P型拡散領域18の部分をエツチングにより除去して溝
をつくった構造にしても本発明は実施例と同様の効果が
ある。前述の実施例の製造方法では、P型拡散領域17
.18は、通常の熱拡散法で形成したが、本実施例はイ
オン注入で領域17.18を形成しても同様の効果があ
る。
This P-type diffusion region 18 is connected to the photodiode 27 and the FE.
The purpose is to electrically isolate T26. Therefore,
Even if the structure is such that a groove is formed by removing the P-type diffusion region 18 by etching, the present invention has the same effect as the embodiment. In the manufacturing method of the above-described embodiment, the P-type diffusion region 17
.. Although the regions 17 and 18 were formed by a normal thermal diffusion method, in this embodiment, the same effect can be obtained even if the regions 17 and 18 are formed by ion implantation.

上述の実施例は、InP基板11に異なる高さの素子に
応じた段差を必要としないから、製造において、InP
基板11に対するフォトレジスト工程、エツチング工程
がなくなシ、第1図の従来の複合素子よシ少ない工数で
製造できる。さらに、平坦なInP基板ll上にエピタ
キシャル成長を行なうので再現性、制御性もよく成長面
内での成長層厚のばらつきも少なく、また成長層厚の所
定の値からの誤差が素子特性に影響することもない。
In the above embodiment, since the InP substrate 11 does not require a level difference corresponding to the elements of different heights, the InP substrate 11 is
Since there is no photoresist process or etching process for the substrate 11, it can be manufactured with fewer man-hours than the conventional composite element shown in FIG. Furthermore, since epitaxial growth is performed on a flat InP substrate, reproducibility and controllability are good, and there is little variation in the growth layer thickness within the growth plane, and errors in the growth layer thickness from a predetermined value affect device characteristics. Not at all.

これらの利点により製造歩留りが大幅に向とし、従来の
2倍になった。
These advantages have greatly improved manufacturing yields, which are twice as high as conventional methods.

更に、第2図の実施例のFET26とフォトダイオード
27との半導体層は全く同じ高さなので、ゲート溝25
の形成及びゲート電極24の形成のためのフォトレジス
ト工程においてフォトレジスト用マスクと半導体層(I
nP16)とを完全に密着できる。従って、ゲート長が
1μmのFETでもそのゲート長が±0.1μmの誤差
内で再現性良く形成でき、従来のものよ92倍以上の精
度が可能となった。このように、ゲート長が短いから高
感度であシ、再現性がよいから歩留、りがよい。
Furthermore, since the semiconductor layers of the FET 26 and the photodiode 27 in the embodiment shown in FIG.
In the photoresist process for forming the gate electrode 24 and the gate electrode 24, a photoresist mask and a semiconductor layer (I
nP16) can be completely adhered to. Therefore, even an FET with a gate length of 1 μm can be formed with good reproducibility within an error of ±0.1 μm, making it possible to achieve an accuracy 92 times higher than that of the conventional method. In this way, the short gate length provides high sensitivity, and the good reproducibility leads to high yield.

また、面内でのパターンのばらつきも少ないから、この
点からも歩留シがよい。更に、フォトレジストが高精度
に行えるから、ゲート電極24をゲート溝25の底部だ
けにつけることができるようになり、ゲートソース間の
寄生容量を従来よ!D 0.1PF少なくo、spF’
まで低減できた。これによシ受信感度が向上した。
Further, since there is little variation in the pattern within the plane, the yield is also good from this point of view as well. Furthermore, since photoresist can be formed with high precision, it is now possible to attach the gate electrode 24 only to the bottom of the gate trench 25, reducing the parasitic capacitance between the gate and source much more than before. D 0.1PF less o, spF'
We were able to reduce it to This improved reception sensitivity.

以上のように、実施例によるFETとフォトダイオード
との複合素子は、製造歩留りが良く高性能である。
As described above, the composite element of the FET and photodiode according to the embodiment has a high manufacturing yield and high performance.

本実施例では1個のFETと1個のフォトダイオードの
複合素子を示したが、本発明は多数個の半導体光素子と
半導体電子素子との複合素子にも適用できる。また、本
実施例ではFETとフォトダイオードの複合素子を示し
たが、本発明の構造は発光ダイオードや半導体レーザ等
の半導体光素子とFET等の半導体電子素子との複合素
子にも利用できる。また、本実施例ではInGaAsP
/InP系の材料を用いたが、他の材料例えばAlGa
As/GaAsを用いても同様の効果がある。
Although this embodiment shows a composite element of one FET and one photodiode, the present invention can also be applied to a composite element of a large number of semiconductor optical devices and semiconductor electronic devices. Further, although this embodiment shows a composite element of an FET and a photodiode, the structure of the present invention can also be used for a composite element of a semiconductor optical element such as a light emitting diode or a semiconductor laser, and a semiconductor electronic element such as an FET. In addition, in this example, InGaAsP
/InP-based material was used, but other materials such as AlGa
A similar effect can be obtained using As/GaAs.

(発明の効果) 本発明によれば、以上に詳しく述べたように、高性能で
製造歩留シのよい半導体光電子複合素子が提供できる。
(Effects of the Invention) According to the present invention, as described in detail above, a semiconductor opto-electronic composite device with high performance and good manufacturing yield can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体光電子複合素子の断面図、第2図
は本発明の一実施例の断面図である。 l・・・・・・フォトダイオード、2・・・・・・FE
T、3・・・・・・半導体基板、4・・・・・・n型I
nP、5・・・・・・アンドープInGaA’sP、5
−=−・−P型InP、7・・−・−n型InP、8・
・・・・・P型不純物拡散領域、9・・・・・・n型電
極、11・・・・・・n型InP基板、12・・・・・
・n型I n P。 13・・・・・・アンドープInGaABP、14・・
・・・・n型InF%15・・・・・・半絶縁性InP
、16・・・・・・n型InP。 17.1B・・・・・・P型拡散領域、19・・・・・
・S ioz絶縁膜、20・・・・・・P側電極(Au
Zn/Au)、21 ・・・・・・n側電極(AuGe
Ni/Au)% 22・・・・・・ドレイン電極(Au
GeNi/Au)、 23・・・・・・ソース電極(A
uGeNi/Au)、24−−−−−−ゲート電極(1
)。 25・・・・・・ゲ−)溝、26・・・・・・F’ET
、27・・・・・・フォトダイオード。 ′V−1箇 ン 2/ ))ζし 2 1シとI
FIG. 1 is a sectional view of a conventional semiconductor optoelectronic composite device, and FIG. 2 is a sectional view of an embodiment of the present invention. l...Photodiode, 2...FE
T, 3... Semiconductor substrate, 4... N-type I
nP, 5...Undoped InGaA'sP, 5
-=-・-P type InP, 7・・−・−n type InP, 8・
...P type impurity diffusion region, 9...n type electrode, 11...n type InP substrate, 12...
・N-type I n P. 13... Undoped InGaABP, 14...
...N-type InF%15...Semi-insulating InP
, 16... n-type InP. 17.1B...P-type diffusion region, 19...
・Sioz insulating film, 20...P side electrode (Au
Zn/Au), 21... n-side electrode (AuGe
Ni/Au)% 22...Drain electrode (Au
GeNi/Au), 23... Source electrode (A
uGeNi/Au), 24-------gate electrode (1
). 25...Ge-) Groove, 26...F'ET
, 27...Photodiode. 'V-1 clause 2/ )) ζshi 2 1shi and I

Claims (1)

【特許請求の範囲】[Claims] 同一半導体基板上に形成された半導体光素子及び半導体
電子素子を含む半導体光電子複合素子において、前記半
導体基板が導電型であり、前記半導体光素子及び前記半
導体電子素子の半導体要素を含む多層のエピタキシャル
半導体が前記半導体基板上に形成してあシ、前記多層エ
ピタキシャル半導体中の少なくとも一つの層は半絶縁性
半導体層であシ、前記多層エピタキシャル半導体表面か
らほぼ直角方向に伸び前記半絶縁性半導体層を少なくと
も越える深さまで到る不純物導入領域が形成してあシ、
その不純物導入領域は前記半導体光素子に対する電流通
路となっていることを特徴とする半導体光電子複合素子
A semiconductor opto-electronic composite device including a semiconductor optical device and a semiconductor electronic device formed on the same semiconductor substrate, wherein the semiconductor substrate is of a conductive type, and a multilayer epitaxial semiconductor including the semiconductor elements of the semiconductor optical device and the semiconductor electronic device. is formed on the semiconductor substrate, at least one layer in the multilayer epitaxial semiconductor is a semi-insulating semiconductor layer, and the semi-insulating semiconductor layer extends substantially perpendicularly from the surface of the multi-layer epitaxial semiconductor. An impurity-introduced region is formed to a depth at least exceeding
A semiconductor optoelectronic composite device characterized in that the impurity-introduced region serves as a current path for the semiconductor optical device.
JP59078951A 1984-04-19 1984-04-19 Semiconductor photoelectronic compound element Pending JPS60223174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078951A JPS60223174A (en) 1984-04-19 1984-04-19 Semiconductor photoelectronic compound element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078951A JPS60223174A (en) 1984-04-19 1984-04-19 Semiconductor photoelectronic compound element

Publications (1)

Publication Number Publication Date
JPS60223174A true JPS60223174A (en) 1985-11-07

Family

ID=13676192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078951A Pending JPS60223174A (en) 1984-04-19 1984-04-19 Semiconductor photoelectronic compound element

Country Status (1)

Country Link
JP (1) JPS60223174A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169169A (en) * 1984-09-13 1986-04-09 Agency Of Ind Science & Technol Semiconductor light-receiving element
EP0286348A2 (en) * 1987-04-10 1988-10-12 AT&T Corp. Vertically integrated photodetector-amplifier
EP0304335A2 (en) * 1987-08-20 1989-02-22 Canon Kabushiki Kaisha Photosensor device
US5239193A (en) * 1990-04-02 1993-08-24 At&T Bell Laboratories Silicon photodiode for monolithic integrated circuits

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169169A (en) * 1984-09-13 1986-04-09 Agency Of Ind Science & Technol Semiconductor light-receiving element
EP0286348A2 (en) * 1987-04-10 1988-10-12 AT&T Corp. Vertically integrated photodetector-amplifier
EP0286348A3 (en) * 1987-04-10 1991-12-11 AT&T Corp. Vertically integrated photodetector-amplifier
EP0304335A2 (en) * 1987-08-20 1989-02-22 Canon Kabushiki Kaisha Photosensor device
US5043785A (en) * 1987-08-20 1991-08-27 Canon Kabushiki Kaisha Photosensor device photodiode and switch
US5239193A (en) * 1990-04-02 1993-08-24 At&T Bell Laboratories Silicon photodiode for monolithic integrated circuits

Similar Documents

Publication Publication Date Title
DE69927447T2 (en) Device with an optical function and special connection electrodes
US6458620B1 (en) Semiconductor device and method for producing the same
US5242839A (en) Method of manufacturing an integrated photoelectric receiving device
US4309667A (en) Multiple laser having a distributed resonator
KR19980063584A (en) Photodetector
US5357127A (en) Pin heterojunction photo diode with undercut gate jifet
DE3586196T2 (en) LIGHT-EMITTING DIODE ARRANGEMENT.
EP0293185B1 (en) Semiconductor laser device and method for manufacturing the same
US4745446A (en) Photodetector and amplifier integration
JPS60223174A (en) Semiconductor photoelectronic compound element
US4911765A (en) Method for fabricating a monolithic integration of a laser diode and a wide aperture photo diode
US5275968A (en) Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5100833A (en) Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5115283A (en) Optoelectronic device on semi-insulator substrate and methods for making such a device
US5194399A (en) Method of producing a semiconductor light emitting device disposed in an insulating substrate
US20050051784A1 (en) Semiconductor light-receiving device
US6031857A (en) Semiconductor device having a current-constricting spaces and method of manufacturing the device
DE69013190T2 (en) Semiconductor device with pin photodiode.
EP0272372B1 (en) Method of making a monolithic integrated photodetector
US5214661A (en) Optoelectric device on semi-insulator substrate and methods for making such a device
JPS59202676A (en) Planar type light-emitting element
CN114497244B (en) Infrared detector chip and manufacturing method and application thereof
JP2645460B2 (en) Manufacturing method of light receiving element
KR960015270B1 (en) Single chip optoelectronic integrated circuit and manufacturing method thereof
KR0179012B1 (en) Method of manufacturing semiconductor laser diode