JPS6022306B2 - Complex permittivity measurement device - Google Patents

Complex permittivity measurement device

Info

Publication number
JPS6022306B2
JPS6022306B2 JP1263476A JP1263476A JPS6022306B2 JP S6022306 B2 JPS6022306 B2 JP S6022306B2 JP 1263476 A JP1263476 A JP 1263476A JP 1263476 A JP1263476 A JP 1263476A JP S6022306 B2 JPS6022306 B2 JP S6022306B2
Authority
JP
Japan
Prior art keywords
dielectric
coupling
resonator
antenna
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1263476A
Other languages
Japanese (ja)
Other versions
JPS5296072A (en
Inventor
長司 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1263476A priority Critical patent/JPS6022306B2/en
Publication of JPS5296072A publication Critical patent/JPS5296072A/en
Publication of JPS6022306B2 publication Critical patent/JPS6022306B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 本発明はマイクロ波周波数帯での円筒譲蚤体共振器の円
筒TEo,.モードを利用し誘電率および誘電体損失を
求めるために使用する測定装置に関すZるものある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cylindrical compact resonator with a cylindrical TEo, . There are some related to measurement devices used to determine dielectric constant and dielectric loss using modes.

ここでいう複索誘電率とは誘電率ごをご=ご′+jご^
と複素表示したものである。誘電体共振器とは円筒形状
の誘電体ブロックであって、軸方向の長さが電磁波の周
波数の半波長の整数倍に等しい長さであって、かつ誘電
体円筒2の軸方向の両端を金属で短絡したものであり、
誘電体ブロックの内部に電磁波を伝播させるために通常
磁界結合により結合したものである。磁界結合により結
合された誘電体部の電磁波は、誘電体フロックの固有の
誘電率ごと誘電体ブロックの贋2かれた、例えば空気中
のどに大きな差があれば、電磁波がその境界面で反射を
起こし共振器となるものであり、結合状態によって多く
の共振モードが成立する。この中で、円筒TEo,.モ
ードが電界成分として円周方向成分だけをもち試料の上
下面で軸方向成分が零と成ることを利用すれば誘電率お
よび誘電率体損失が簡単かつ精度よく測定されることは
既にハッキとコールマン氏により発表され、〔アィ.ト
リプル.ィー。
The compound dielectric constant here refers to the dielectric constant.
This is the complex representation. A dielectric resonator is a cylindrical dielectric block whose axial length is equal to an integral multiple of a half wavelength of the frequency of electromagnetic waves, and which extends from both axial ends of the dielectric cylinder 2. It is a metal short circuit,
In order to propagate electromagnetic waves inside a dielectric block, they are usually coupled by magnetic field coupling. The electromagnetic waves in the dielectric part that are coupled by magnetic field coupling will be affected by the inherent permittivity of the dielectric flock.If the dielectric block is forged, for example, there is a large gap in the air, the electromagnetic waves will be reflected at the interface. It becomes a resonator, and many resonance modes are established depending on the coupling state. Among them, the cylinders TEo, . Coleman has already made it clear that permittivity and dielectric loss can be easily and accurately measured by utilizing the fact that the mode has only a circumferential component as an electric field component and the axial component is zero at the top and bottom surfaces of the sample. It was announced by Mr. triple. I.

ェム.テーテー8巻P402(1962)〕円筒試料内
外の電磁界方程式に対し、厳密解が簡単に得られること
、試料の充填率が1に近く感度がよいことおよび誘電材
料と短絡導体のエアーギャップによって生じる測定誤差
がない点で現在複素誘電率測定法として確固なる位置を
占めている。然しながらこの種の既成の測定装置は入出
力結合部を固定した構造を有しており結合度を自由に変
え誘電体共振器の入出力電力を適当な大きさに調整する
ことが不可能で測定の容易さおよび信来性に欠く所があ
った。本発明はかかる欠点をとり除くべく結合部を第1
図に示す構造にすることにより結合アンテナを可動にし
これにより測定を著しく容易にした榎素誘電率測定装置
を提供するものである。
Em. T. Vol. 8, P402 (1962)] Exact solutions can be easily obtained for the electromagnetic field equations inside and outside the cylindrical sample, the filling factor of the sample is close to 1 and the sensitivity is good, and this is caused by the air gap between the dielectric material and the shorting conductor. It currently holds a firm position as a method for measuring complex permittivity because there is no measurement error. However, this type of existing measuring device has a structure in which the input/output coupling part is fixed, making it impossible to freely change the degree of coupling and adjust the input/output power of the dielectric resonator to an appropriate level. There was a lack of ease and credibility. In order to eliminate such drawbacks, the present invention provides a first connecting portion.
The present invention provides an Enomoto dielectric constant measuring device in which the structure shown in the figure makes the coupling antenna movable, thereby making measurement extremely easy.

以下図面によって本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は移動結合アンテナを含む結合部の断面図であり
、1は結合アンテナで、一端は2で示す同軸ケーブルの
内部導体と、他端は4で示す外部導体と接続されている
FIG. 1 is a cross-sectional view of a coupling section including a moving coupling antenna. 1 is a coupling antenna, one end of which is connected to the inner conductor of a coaxial cable indicated by 2, and the other end thereof to an outer conductor indicated by 4.

外部導体4の外径は5で示す部分で他の部分より太くな
り、溝6、ストッパー7によりアンテナ1および同軸ケ
ーブル〔内部導体2、外部導体4およびテフロン3で構
成される。〕の回転を防いでいる。アンテナ1を図面の
左右方向に移動するには外部導体4の外側に刻んだねじ
部8とかみ合って接続する回転部9を回転させることに
よりなされる。10は、第2図に示す誘電体共振器を形
造る金属板端子(第2図の14,16)に接続され9が
回転するためのガイドとなる。
The outer diameter of the outer conductor 4 is thicker at a portion indicated by 5 than at other portions, and a groove 6 and a stopper 7 form an antenna 1 and a coaxial cable [consisting of an inner conductor 2, an outer conductor 4, and a Teflon 3]. ] is prevented from rotating. The antenna 1 can be moved in the horizontal direction in the drawing by rotating a rotary part 9 that engages and connects a threaded part 8 cut on the outside of the outer conductor 4. 10 is connected to metal plate terminals (14, 16 in FIG. 2) forming the dielectric resonator shown in FIG. 2, and serves as a guide for rotation of 9.

第2図は本発明による複素誘電率測定装置を示したもの
である。
FIG. 2 shows a complex dielectric constant measuring device according to the present invention.

即ちこの装置は平行金属板12,13によってはさまれ
た誘電体円筒11(誘電体円筒の寸法を決める場合次の
条件が必要となる。軸方向の長さはTE皿モードがカッ
トオフとするための空間鰍のヂ下とする必鮒机また試料
挿入時にTEo,.モード共振が起こるために譲露体試
料中波長の芸より大とする必要がある。)で形造られた
譲蟹体共振器と金属板端子14,15と、第1図に示し
た入出力結合部〔可動部分16,17および結合アンテ
ナ16′,】7′(これは0.5での銅線を使用してお
り長さは平行金属板12,13の横の長さ季で先端のル
ープは内蓬は4.80にした。)〕で構成される。12
および13は理論上は無限大の広さを持つべきであるが
、実際には14および15により有限の大きさに限定さ
れる。
That is, this device consists of a dielectric cylinder 11 sandwiched between parallel metal plates 12 and 13 (the following conditions are required when determining the dimensions of the dielectric cylinder: the length in the axial direction is cut off by the TE dish mode). The space under the shell must be larger than the medium wavelength of the sample (because TEo mode resonance occurs when the sample is inserted, the space must be larger than the medium wavelength of the sample). The resonator, the metal plate terminals 14, 15, and the input/output coupling part [movable parts 16, 17 and coupling antennas 16', 16'] 7' shown in FIG. The cage length is the horizontal length of the parallel metal plates 12 and 13, and the inner loop of the tip is 4.80. 12
and 13 should theoretically have infinite width, but in reality they are limited to a finite size by 14 and 15.

然しながら11と14(または15)の距離の円筒譲電
体11の軸方向の長さの2倍以上にすることにより、1
2および13が有限の大きさを持つための誤差は解消さ
れる。以下第2図によって本発明の実施例を説明する。
測定試料はチタン酸バリウム系の焼結体で外径10.7
1柳軸方向長さ5.23肌の円筒上(第3図の軍8に相
当)のものを用いる。
However, by making the distance between 11 and 14 (or 15) more than twice the axial length of the cylindrical power transfer body 11, 1
The error due to 2 and 13 having finite sizes is eliminated. An embodiment of the present invention will be described below with reference to FIG.
The measurement sample is a barium titanate-based sintered body with an outer diameter of 10.7
1. A cylindrical piece with a length of 5.23 mm in the axial direction (corresponding to army 8 in Fig. 3) is used.

この材料を第2図の平行金属板12,j3間の中心にし
かも結合アンテナ16′,17′のほぼ中央に置き平行
金属板12,亀3で押え可動部分16,亀7を左右同様
に回転すると結合アンテナ翼6′,17′は平行金属板
12,13に対して平行移動しそのことにより外部導波
路と共振器の電磁界の結合をとる。結合は結合の度合を
示す挿入損失(IL)として測定する。その結果、IL
(dB)と結合アンテナ16′,17′から材料までの
距離との関係は大略つぎの通りであった。すなわち、距
離がi。0、1.3 1.7、2.0および2.2脇の
ときILはそれぞれ5、1止 2Q 30 および4の
旧であった。
This material is placed in the center between the parallel metal plates 12 and j3 in FIG. Then, the coupling antenna wings 6', 17' move parallel to the parallel metal plates 12, 13, thereby coupling the electromagnetic fields of the external waveguide and the resonator. Coupling is measured as insertion loss (IL), which indicates the degree of coupling. As a result, IL
The relationship between (dB) and the distance from the coupling antennas 16', 17' to the material was approximately as follows. That is, the distance is i. 0, 1.3 1.7, 2.0 and 2.2 aside IL was 5, 1 stop 2Q 30 and 4 old respectively.

第3図は本発明による複素誘電率測定装置により結合度
を変化させて測定した場合の結果の度合を示すILとQ
(QL)の実施例を示す。実際に測定される負荷Q(Q
L)と無負荷Q(Q。
Figure 3 shows the degree of IL and Q when the degree of coupling is varied and measured by the complex dielectric constant measuring device according to the present invention.
An example of (QL) is shown below. Actual measured load Q (Q
L) and no-load Q (Q.

)の関係は本装置を透過型共振器として測定し「そのと
き入力電力と共振時の出力電力の比の常用対数の1戊音
をILと表わせばとなることはよく知られている。
) is measured using this device as a transmission type resonator, and it is well known that ``At that time, if one half of the common logarithm of the ratio of the input power to the output power at resonance is expressed as IL.

第3図にはIL=2は旧の時のQLの測定値よりQ。In Figure 3, IL=2 is Q from the measured value of QL in the old time.

求めそのQ。を用いてm式を計算した曲線と、ILが5
〜4のBの種々の値に対するQLの実測値を示した。実
測値と‘1}式の計算曲線はよく一致しておりこれによ
り本発明による測定装置を用いれば測定に便利な出力電
力を得るよう最適な結合度にして測定でき測定は著しく
容易になり測定制度よく測定された。第3図18‘まご
′=38.ふ÷=1.6xlo‐4の材料、19‘まご
′=4o.&÷=1.5x岬の材料、2此ご′=46.
7、÷=4.肌o‐3の材料‘こ小ての測定結果を示す
Seek that Q. The curve calculated using m formula and IL is 5
The actual measured values of QL for various values of B of ~4 are shown. The actual measured values and the calculated curve of equation '1' are in good agreement, and this shows that using the measuring device according to the present invention allows measurements to be made with the optimum degree of coupling to obtain output power convenient for measurement, making the measurement extremely easy. Systemically well measured. Figure 3 18'Mago' = 38. Fu÷=1.6xlo-4 material, 19'mago'=4o. &÷=1.5x cape material, 2 this amount'=46.
7,÷=4. The measurement results for the material of skin o-3 are shown.

上記の材料について本発明装置による方法で測定した場
合と本発明装置を使用したアンテナを固定した場合につ
いて各々の試料を5の副測定をし比較した場合本発明に
よる方法では18の材料はIL:20(紐)土0%、s
′=38,5±0.3%、ご′‐1.6×10‐4±5
%、測定所要時間=5.1日、19の材料はIL=20
(船)±0%、ご′=4.08土0.4%、÷=1.5
xlo‐4±6%、測定所要時間田、20の材料はIL
=20(船)士0%、ご′=46.7十o.5%、÷=
4.5xlo‐3士3%、測定所要時間5.19日であ
る。
When the above materials were measured using the method using the device of the present invention and when the antenna using the device of the present invention was fixed, each sample was subjected to 5 sub-measurements and compared. 20 (string) soil 0%, s
'=38.5±0.3%, please'-1.6×10-4±5
%, measurement time = 5.1 days, 19 materials IL = 20
(Ship) ±0%, 0.4%, ÷=1.5
xlo-4±6%, measurement time required, 20 materials are IL
= 20 (ship) officer 0%, 0% = 46.70 o. 5%, ÷=
4.5xlo-3%, measurement time required 5.19 days.

アンテナを固定した方法では18の材料はIL=20船
)士1%、ご′=総±〇.35%、÷=1.6±10%
、測定所要時間母日、19の材料は1し;20細)土1
,2%、ご′=側印.42%、÷−1.5×10‐4×
12%、測定所要時間6.1日、20の材料はIL=2
0(凪)土1.5%、ご′=46.7±0.53%、ヱ
÷=4.5xlo‐3±8%、測定所要時間6がである
In the method of fixing the antenna, the material of 18 is IL = 20 ships) 1%, total ±〇. 35%, ÷=1.6±10%
, Measurement time required Mother's day, 19 materials are 1; 20 details) Soil 1
, 2%, go' = side seal. 42%, ÷-1.5×10-4×
12%, measurement time 6.1 days, 20 materials IL = 2
0 (calm) soil 1.5%, 0 = 46.7 ± 0.53%, ヱ ÷ = 4.5 x lo - 3 ± 8%, and the required time for measurement is 6.

上記の結果から本発明装置による測定方法は測定誤差が
少なく、また作業時間の節減も大きく、工業的メリット
が大と言える。
From the above results, it can be said that the measuring method using the apparatus of the present invention has a small measurement error, a large saving in working time, and has great industrial merits.

以上の実施例の構造によらず、アンテナの形状が変って
もアンテナの面を、誘電体円筒の軸に対して垂直に保つ
たまま、誘電体円筒の経万向に蓬競的に移動されること
を可能にし、それにより誘電体共振器の励振蟹磁波強度
を所望の強度にすることが可能となる機構であれば本発
明は有効であることは容易に考えられる。
Regardless of the structure of the above embodiments, even if the shape of the antenna changes, the plane of the antenna is kept perpendicular to the axis of the dielectric cylinder and is moved in the longitudinal direction of the dielectric cylinder. It is easy to think that the present invention is effective as long as it is a mechanism that makes it possible to make the excitation magnetic wave intensity of the dielectric resonator a desired intensity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は移動アンテナ部を有する結合部の断面図、第2
図は本発明による複秦誘電率測定装置の一実施例を示す
斜視図、第3図は結合度を変えた場合の測定が正しく行
なわれていることを示す図である。 1・・・・・・結合アンテナ、2…・・・内部導体、3
・・・・・・テフロン、4・・・・・・外部導体、6・
・・・・・溝、7…・・・ストッパー、8・・…・ねじ
部、9・・・…回転部、11・・・…誘電体円筒、12
7 13・・・・・・金属板、14,15・・・…金属
板端子、16,17……入出力結合部、16′,17′
・・・・・・結合アンテナ。 オー図才2図 オ3図
Figure 1 is a cross-sectional view of a coupling part with a moving antenna part;
The figure is a perspective view showing an embodiment of the Double Hata dielectric constant measuring device according to the present invention, and FIG. 3 is a diagram showing that measurements are performed correctly when the degree of coupling is changed. 1... Coupled antenna, 2... Internal conductor, 3
...Teflon, 4...External conductor, 6.
...Groove, 7...Stopper, 8...Screw part, 9...Rotating part, 11...Dielectric cylinder, 12
7 13... Metal plate, 14, 15... Metal plate terminal, 16, 17... Input/output coupling part, 16', 17'
・・・・・・Coupled antenna. O figure 2 figure O 3 figure

Claims (1)

【特許請求の範囲】[Claims] 1 円筒誘電体共振器の共振周波数およびQ値の測定よ
り誘電体共振器の材質の複素誘電率を測定する装置にお
いて、外部測定回路との結合部は回転機構を備え、その
回転機構は結合部を構成するループ状のアンテナの面を
誘電体円筒の軸に対して垂直に保つたまま誘電体円筒の
径方向に連続的に移動させることを可能にし、それによ
り誘電体共振器の励振電磁波強度を所望の強度にするこ
とを可能ならしめたことを特徴とする複素誘電率測定装
置。
1. In an apparatus for measuring the complex dielectric constant of the material of a dielectric resonator by measuring the resonant frequency and Q value of a cylindrical dielectric resonator, the coupling part with the external measurement circuit is equipped with a rotation mechanism, and the rotation mechanism is connected to the coupling part. It is possible to continuously move the surface of the loop-shaped antenna constituting the dielectric cylinder in the radial direction of the dielectric cylinder while keeping it perpendicular to the axis of the dielectric cylinder, thereby reducing the excitation electromagnetic wave intensity of the dielectric resonator. A complex dielectric constant measuring device characterized in that it is possible to obtain a desired intensity.
JP1263476A 1976-02-06 1976-02-06 Complex permittivity measurement device Expired JPS6022306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263476A JPS6022306B2 (en) 1976-02-06 1976-02-06 Complex permittivity measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263476A JPS6022306B2 (en) 1976-02-06 1976-02-06 Complex permittivity measurement device

Publications (2)

Publication Number Publication Date
JPS5296072A JPS5296072A (en) 1977-08-12
JPS6022306B2 true JPS6022306B2 (en) 1985-06-01

Family

ID=11810801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263476A Expired JPS6022306B2 (en) 1976-02-06 1976-02-06 Complex permittivity measurement device

Country Status (1)

Country Link
JP (1) JPS6022306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128584U (en) * 1980-02-29 1981-09-30

Also Published As

Publication number Publication date
JPS5296072A (en) 1977-08-12

Similar Documents

Publication Publication Date Title
US5227730A (en) Microwave needle dielectric sensors
Das et al. Impedance of a radiating slot in the ground plane of a microstripline
US5334941A (en) Microwave reflection resonator sensors
US7216054B1 (en) Electromagnetic method and apparatus for the measurement of linear position
Works Resonant cavities for dielectric measurements
Culshaw et al. Measurement of permittivity and dielectric loss with a millimetre-wave fabry-perot interferometer
Kobayashi et al. A low-loss bandpass filter using electrically coupled high-Q TM/sub 01 delta/dielectric rod resonators
US3460031A (en) Microwave waveguide moisture measurement
GB2248726A (en) Waveguide-to-stripline directional coupler
US2692977A (en) Resonant cavity wavemeter for microwave energy
JPS6022306B2 (en) Complex permittivity measurement device
US4751480A (en) One port magnetostatic wave resonator
JP3532069B2 (en) How to measure surface resistance
US6172497B1 (en) High-frequency wave measurement substrate
JP3210769B2 (en) Apparatus and method for measuring dielectric constant
Pospieszalski On the theory and application of the dielectric post resonator (Short Papers)
US5923175A (en) Apparatus for contactless measurement of the electrical resistance of a conductor
JP2001083102A (en) Electromagnetic-wave type concentration measuring instrument
US3417350A (en) Variable impedance coaxial device with relative rotation between conductors
TAMURA et al. Improvement of the relative permittivity evaluation with a Whispering-Gallery mode dielectric resonator method
Augustine et al. The design and measurement of two broad-band coaxial phase shifters
Collier et al. Phase shifters for dielectric guides
Haas et al. 22-GHz Measurements of Dielectric Constants and Loss Tangents of Castable Dielectrics at Room and Cryogenic Temperatures (Short Papers)
SU1720032A1 (en) Liquid permittivity sensing cell
JPH01244343A (en) Broad-band measuring cell