JPS60222731A - Colorimetry apparatus for ultraviolet fluorescent body - Google Patents

Colorimetry apparatus for ultraviolet fluorescent body

Info

Publication number
JPS60222731A
JPS60222731A JP59079031A JP7903184A JPS60222731A JP S60222731 A JPS60222731 A JP S60222731A JP 59079031 A JP59079031 A JP 59079031A JP 7903184 A JP7903184 A JP 7903184A JP S60222731 A JPS60222731 A JP S60222731A
Authority
JP
Japan
Prior art keywords
light
ultraviolet
integrating sphere
fluorescent object
ultraviolet fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59079031A
Other languages
Japanese (ja)
Inventor
Yukio Murata
村田 幸男
Kiyoharu Nakatsuka
中塚 木代春
Tetsuo Hamada
浜田 哲男
Shoichi Nakamura
彰一 中村
Yasuhiro Kubo
康弘 久保
Naoki Inamoto
直樹 稲本
Akihiko Shigemoto
明彦 重本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNION GIKEN KK
Sumitomo Chemical Co Ltd
Original Assignee
UNION GIKEN KK
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNION GIKEN KK, Sumitomo Chemical Co Ltd filed Critical UNION GIKEN KK
Priority to JP59079031A priority Critical patent/JPS60222731A/en
Publication of JPS60222731A publication Critical patent/JPS60222731A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0251Colorimeters making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J2003/468Measurement of colour; Colour measuring devices, e.g. colorimeters of objects containing fluorescent agent

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To perform colorimetry of a sample of an ultraviolet fluorescent body under the same state as the state of human observation under natural light, by utilizing a visible light emitting body, which emits visible light, and light from an ultraviolet-ray emitting body, which emits ultraviolet rays. CONSTITUTION:An ultraviolet-fluorescent-body colorimetry apparatus is composed of an integrating sphere 1, a visible light emitting body 2, an ultraviolet- ray emitting body 3 and a spectral light measuring device 4. A barium sulfate layer 11 is formed on the inner surface of the integrating sphere 1 so as to diffuse the incident light efficiently. A sample S is provided at a specified position. The visible light emitting body 2 is composed of an incandescent lamp and the like and attached to the central part of a light converging concave mirror 21. The ultraviolet-ray emitting body 3 is composed of a small ultraviolet-ray fluorescent lamp, a deuterium discharge tube or the like, which is attached to a specified position, which does not directly face a sample window 12 of said integrating sphere 1 so that the body 3 can be pushed forward and withdrawn.

Description

【発明の詳細な説明】 く技術分野〉 この発明は紫外螢光物体測色装置に関する。[Detailed description of the invention] Technical fields> The present invention relates to an ultraviolet fluorescent object colorimeter.

〈従来技術〉 従来から、試料の色彩を検出する測色装置は、種々提供
されており、大別すれば、■測光用光源からの光を試料
に照射させ、試料からの反射光を分光または色分解して
測光することにより試料の色彩を検出する方法、および
■測光用光源からの光を分光または色分解させた後、試
料に照射させ、試料からの反射光により試料の色彩を検
出する方法があるが、螢光物体測色にあたっては、上記
■の方法を適用した装置が適している。
<Prior Art> Conventionally, various colorimetric devices have been provided to detect the color of a sample. A method to detect the color of a sample by color separation and photometry; Although there are methods, an apparatus to which method (2) above is applied is suitable for measuring the color of a fluorescent object.

そして、上記■の方法による測色装置としては、原理的
にいえば、測色用発光体と、この発光体からの光を試料
に照射するための導光部材と、試料からの反射光を導出
する導出部材と、導出された反射光を分光測光する分光
測光部とを有しており、上記導光部材としては通常積分
球、光ファイバ、レンズ等が使用され、導出部材として
は、通常光ファイバ、レンズ等が使用され、更には測光
用発光体としては、単一の測光用発光体が使用される。
In principle, a colorimetric device using method (2) above includes a colorimetric light emitter, a light guiding member for irradiating the light from the light emitter onto the sample, and a light guide member for irradiating the light reflected from the sample. It has a derivation member for deriving the light, and a spectrophotometer for spectrophotometrically measuring the derived reflected light.As the light guide member, an integrating sphere, an optical fiber, a lens, etc. are usually used, and as the derivation member, Optical fibers, lenses, etc. are used, and furthermore, a single photometric light emitter is used as the photometric light emitter.

ここで測光用発光体としては、白熱電球等、少なくとも
可視波長領域において、はぼ自然光に近い照射光を得ら
れるものが特に選択される。
Here, as the photometric light emitter, one that can provide illumination light that is close to natural light at least in the visible wavelength region, such as an incandescent light bulb, is particularly selected.

しかし、現在得られる発光体は、可視光と紫外光との強
度比が、自然光と比較して異なりすぎる。
However, the intensity ratio of visible light and ultraviolet light in currently available light emitters is too different compared to natural light.

例えば、タングステンランプは可視光と比較して紫外光
が弱すぎ、クセノン放電管はタングステンランプと比較
して紫外光強度が強いが、可視光と紫外光との強度比が
個体によって大きくばらつく為1、紫外螢光物体の測色
用発光体としては不向きであった。即ち、単一の発光体
で自然光に近い照射光を得ることは不可能であった。
For example, tungsten lamps emit ultraviolet light that is too weak compared to visible light, and xenon discharge tubes emit ultraviolet light that is stronger than tungsten lamps, but the intensity ratio of visible light and ultraviolet light varies greatly depending on the individual. , it was unsuitable as a light emitter for colorimetry of ultraviolet fluorescent objects. That is, it has been impossible to obtain irradiation light close to natural light using a single light emitter.

かかる点に鑑み、2種類の発光体の照射光をハーフミラ
−で混合することが考えられるが、ハーフミラ−の特性
上、および経時劣化等によって混合が均一に行なわれず
、照射の均一性が得られないという致命的な問題点を有
していた。
In view of this, it is conceivable to mix the irradiated light from two types of light emitters with a half mirror, but due to the characteristics of the half mirror and due to deterioration over time, the mixing is not done uniformly, making it difficult to obtain uniform irradiation. It had the fatal problem of not having one.

〈目的〉 この発明は上記の問題点に鑑みてなされたものであり、
主として可視光を照射する可視発光体からの光と、主と
して紫外光を照射する紫外発光体からの光を用いて簡単
に自然光に酷似した測色用光源を得、自然光の下で人間
が観察したのと同じ状態で試料の紫外螢光物体の測色を
行ない得る紫外螢光物体測色装置を提供することを目的
とする。
<Purpose> This invention was made in view of the above problems,
By using light from a visible light emitter that mainly emits visible light and light from an ultraviolet light emitter that mainly emits ultraviolet light, we can easily obtain a light source for colorimetry that closely resembles natural light, so that it can be observed by humans under natural light. It is an object of the present invention to provide an ultraviolet fluorescent object colorimeter that can measure the color of an ultraviolet fluorescent object in a sample under the same conditions as described above.

く構成〉 以上の目的を達成するための、この発明の紫外螢光物体
測色装置の構成としては、積分球の内面で拡散された拡
散光を試料に照射し、試料からの反射光を受光すること
によって試料の測色を行なう装置において、可視波長領
域の照射光を積分球の内部に放射する可視発光体を設け
るとともに、少なくとも近紫外線を積分球の内部に放射
する紫外発光体を設け、更に紫外発光体による積分球内
部への放射近紫外線量を調整する調整装置を設けたこと
を特徴としている。
In order to achieve the above object, the ultraviolet fluorescent object colorimeter of the present invention has a configuration in which a sample is irradiated with diffused light diffused by the inner surface of an integrating sphere, and reflected light from the sample is received. In an apparatus that measures the color of a sample by Furthermore, it is characterized by the provision of an adjustment device for adjusting the amount of near ultraviolet radiation emitted into the integrating sphere by the ultraviolet emitter.

〈実施例〉 以下、実施例を示す添附図面によって詳細に説明する。<Example> Hereinafter, embodiments will be described in detail with reference to the accompanying drawings showing examples.

第1図は紫外螢光物体測色装置の一実施例を示す簡略図
であり、積分球(1)と、可視発光体(2)と、紫外発
光体(3)と、分光測光装置(4)とで構成されている
FIG. 1 is a simplified diagram showing an embodiment of the ultraviolet fluorescent object colorimeter, which includes an integrating sphere (1), a visible light emitter (2), an ultraviolet light emitter (3), and a spectrophotometer (4). ).

更に詳細に説明すれば、積分球(1)は、入射光を効率
良く拡散させるべく内面に硫酸バリウム層(11)を形
成してあり、所定位置に試料(S)を積分球(1)内部
に臨ませるサンプル窓(12)を形成しであるとともに
、サンプル窓(12)と正対しない所定位置に可視発光
体(2)からの照射光を導入する可視光導入窓(13)
を形成してあり、更に上記サンプル窓(12)とほぼ正
対させて試料(S)からの反射光を効率良く受光する測
色用の受光ファイバ(14)を取付けであるとともに、
サンプル窓(12)と正対しない所定位置に補償用の受
光ファイバ(15)を取付けである。
More specifically, the integrating sphere (1) has a barium sulfate layer (11) formed on its inner surface in order to efficiently diffuse incident light, and the sample (S) is placed at a predetermined position inside the integrating sphere (1). A visible light introduction window (13) that forms a sample window (12) facing the sample window (12) and introduces the irradiated light from the visible light emitter (2) to a predetermined position not directly facing the sample window (12).
A light-receiving fiber (14) for colorimetry is installed to face the sample window (12) almost directly to efficiently receive reflected light from the sample (S).
A compensation light-receiving fiber (15) is attached to a predetermined position that does not directly face the sample window (12).

可視発光体(2)は、白熱電球等で構成されるものであ
り、集光用の凹面鏡(21)の中央部に取付けられてい
る。そして、可視発光体(2)と可視光導入窓(13)
との間に分光分布調整用フィルタ(22)を設けるとと
もに、可視発光体(2)からの光を可視光導入窓(13
)に導びくミラー(23)を設りている。
The visible light emitter (2) is composed of an incandescent light bulb or the like, and is attached to the center of the concave mirror (21) for condensing light. And a visible light emitter (2) and a visible light introducing window (13)
A spectral distribution adjustment filter (22) is provided between the visible light emitter (2) and the visible light introduction window (13).
) is provided with a mirror (23) that leads to the

紫外発光体(3)は、上記積分球(1)のサンプル窓(
12)と正対しない所定位置に進退可能に取付けた小型
紫外線蛍光灯又は重水素放電管等で構成されるものであ
り、モータ等で構成される駆動装置(31)と連結する
ことにより、積分球(1)内への突出量を調整可能とし
ている。
The ultraviolet emitter (3) is located in the sample window (
It is composed of a small ultraviolet fluorescent lamp or deuterium discharge tube, etc., which is installed in a predetermined position that does not directly face the The amount of protrusion into the ball (1) can be adjusted.

分光測光装置(4)は受光ファイバ(14) (15)
によって受光された光を選択的に分光光学系に導びき、
波長毎の光強度分布を得ることかできるものである。
The spectrophotometer (4) is connected to the receiving fiber (14) (15)
selectively guides the light received by the spectroscopic optical system,
It is possible to obtain the light intensity distribution for each wavelength.

以上の構成の紫外螢光物体測色装置であれば、積分球(
1)のサンプル窓(12)に測色用の試料(S)をセッ
トした後、可視発光体(2)および紫外発光体(3)に
電圧を印加することにより、試料(S)の測色を行なう
ことができる。
If the ultraviolet fluorescent object colorimeter with the above configuration is used, the integrating sphere (
After setting the sample (S) for color measurement in the sample window (12) of 1), the color measurement of the sample (S) is performed by applying voltage to the visible light emitter (2) and the ultraviolet light emitter (3). can be done.

更に詳細に説明すれば、単純に可視発光体(2)および
紫外発光体(3)に電圧を印加することにより、可視光
と紫外光とを積分球(1)内に導入して混合しただけで
は、分光分布が自然光に酷似する状態となっているかど
うか不明である。
To explain in more detail, visible light and ultraviolet light are introduced into the integrating sphere (1) and mixed by simply applying voltage to the visible light emitter (2) and the ultraviolet light emitter (3). Therefore, it is unclear whether the spectral distribution closely resembles natural light.

したがって、まず、サンプル窓(12)における光の分
光分布を測定し、CIE (国際照明委員会)の方法に
よって標準光D65に近似する分光分布となるように紫
外発光体(3)を積分球(1)に対してスライドさせ、
或は染色物、プラスチック板等、適宜選択された標準螢
光物体の分光反射率、CIEの三刺激値等の測色値が標
準値となるように、紫外発光体(3)をスライドさせ、
或は測色装置自体を、サンプル窓(12)における光の
分光分布又は未較正の相対値を測定可能に構成し、この
測定値が標準値となるよう紫外発光体(3)をスライド
させ、或はサンプル窓(12)における光の波長帯を少
なくとも可視領域と紫外領域とにわけ、それぞれの波長
帯における光の強度が標準値となるよう紫外発光体(3
)をスライドさせ、以て光の分光分布を自然光に酷似し
た状態とすることができる。
Therefore, first, the spectral distribution of light in the sample window (12) is measured, and the ultraviolet emitter (3) is placed on an integrating sphere ( 1) Slide it against
Alternatively, slide the ultraviolet light emitter (3) so that the colorimetric values such as the spectral reflectance and CIE tristimulus values of an appropriately selected standard fluorescent object such as a dyed material or a plastic plate become the standard value,
Alternatively, the colorimeter itself is configured to be able to measure the spectral distribution of light in the sample window (12) or an uncalibrated relative value, and the ultraviolet light emitter (3) is slid so that this measured value becomes the standard value, Alternatively, the wavelength band of light in the sample window (12) is divided into at least the visible region and the ultraviolet region, and the ultraviolet light emitter (3
), the spectral distribution of light can be made to closely resemble natural light.

以上のように、光の分光分布を設定した後は、サンプル
窓(12)に試料(S)をセットすればよく、可視光と
紫外光との混合光を試料(S)に照射し、試料(S)か
らの反射光を受光ファイバ(14)で受光し、分光測光
装置(4)によって、各波長に対する反射光強度を検知
することができる。
As described above, after setting the spectral distribution of light, it is only necessary to set the sample (S) in the sample window (12), and then irradiate the sample (S) with a mixture of visible light and ultraviolet light. The reflected light from (S) is received by the light receiving fiber (14), and the intensity of the reflected light for each wavelength can be detected by the spectrophotometer (4).

即ち、自然光の下で人間が観察したのと同じ状態で紫外
螢光物体の測色を行なうことができる。
That is, it is possible to measure the color of an ultraviolet fluorescent object under natural light under the same conditions as observed by a human.

第2図および第3図は、共にJ l5LO8061”G
スケールの1号を試料(S)として用いl〔場合の測色
データを示しており、第2図は可視発光体(2)として
ハロゲンランプを用い、かつ紫外発光体(3)として紫
外線ランプを用いた場合における試料(S)からの各波
長毎の反射率を示し、第3図は紫外発光体(2)を全く
使用しない場合における試料(S)からの各波長毎の反
射率を夫々示している。
Figures 2 and 3 are both J l5LO8061"G
Figure 2 shows the colorimetric data when a scale No. 1 is used as the sample (S). Fig. 3 shows the reflectance for each wavelength from the sample (S) when the ultraviolet emitter (2) is not used at all. ing.

この図から明らかなように、紫外発光体(3)を全く使
用しない場合には、紫外螢光物体が余り認められないが
、紫外発光体(3)を使用することにより紫外螢光物体
を、自然光の下における人間の観察と同じように認める
ことができ、自然な状態での測色を行ない得ることにな
る。
As is clear from this figure, when no ultraviolet emitter (3) is used, very few ultraviolet fluorescent objects are observed, but by using the ultraviolet emitter (3), ultraviolet fluorescent objects can be It can be recognized in the same way as human observation under natural light, and color measurement can be performed under natural conditions.

第4図は他の実施例における紫外発光体(3)と積分球
(1)との関係を示す図であり、紫外発光体(3)から
の紫外光を効率良く積分球(1)内部に照射する凹面鏡
(33) 、および積分球(1)内部に照射される紫外
光量を調節する絞り板、スリット等で構成される光量調
節部材(34)を設けである。そして、上記紫外発光体
(3)、凹面鏡(33)、および光量調節部材(34)
はそれぞれモータおよび減速構成等で構成される駆動装
置と連結され、単独で積分球(1)に対して接離可能で
ある。
FIG. 4 is a diagram showing the relationship between the ultraviolet light emitter (3) and the integrating sphere (1) in another embodiment, and the ultraviolet light from the ultraviolet light emitter (3) is efficiently transferred into the integrating sphere (1). A concave mirror (33) for irradiation and a light amount adjustment member (34) composed of a diaphragm plate, slit, etc. for adjusting the amount of ultraviolet light irradiated inside the integrating sphere (1) are provided. The ultraviolet light emitter (3), the concave mirror (33), and the light amount adjustment member (34)
are each connected to a drive device composed of a motor and a deceleration structure, etc., and can independently move toward and away from the integrating sphere (1).

したがって、紫外発光体(3)、凹面Vi(33)又は
光量調節部材(34)の何れか1つの位置を調節するだ
けで積分球(1)内部に照射される紫外光量を変化させ
、試料(S)に照射される光の分光分布を自然光に酷似
させることができる。
Therefore, by simply adjusting the position of any one of the ultraviolet emitter (3), the concave surface Vi (33), or the light intensity adjustment member (34), the amount of ultraviolet light irradiated inside the integrating sphere (1) can be changed, and the sample ( The spectral distribution of the light irradiated to S) can be made to closely resemble natural light.

但し、この実施例の場合には、例えば紫外発光体(3)
と凹面鏡(33)とを一体向に移動させることができる
他、積分球(1)の紫外光照射開口によって光量調節部
材(34)を兼用させることもできる。
However, in the case of this example, for example, the ultraviolet light emitter (3)
In addition to being able to move the concave mirror (33) and the concave mirror (33) in one direction, the ultraviolet light irradiation aperture of the integrating sphere (1) can also be used as a light amount adjusting member (34).

第5図は更に他の実施例を示す紫外発光体(3)と積分
球(1)との関係を示す図であり、第4図の実施例と異
なる点は、四面II(33)に代えてレンズ(35)を
用いるとともに、積分球(1)の紫外光照射開口によっ
て光量調節部材(34)を兼用させた点のみである。
FIG. 5 is a diagram showing the relationship between the ultraviolet light emitting body (3) and the integrating sphere (1) showing still another embodiment, and the difference from the embodiment in FIG. The only difference is that a lens (35) is used, and the ultraviolet light irradiation aperture of the integrating sphere (1) also serves as a light amount adjustment member (34).

したがって、この実施例においても、紫外発光体(3)
又はレンズ(35)の少なくとも一方の位置を調節する
ことによって、上記実施例と同様に、試料(S)に照射
される光の分光分布を自然光に酷似させることができる
Therefore, in this example as well, the ultraviolet light emitter (3)
Alternatively, by adjusting the position of at least one of the lenses (35), the spectral distribution of the light irradiated onto the sample (S) can be made to closely resemble natural light, similarly to the above embodiment.

尚、この発明は以上の実施例に限定されるものではなく
、例えば、紫外発光体(3)、凹面鏡(33)光量調節
部材(34)、レンズ(35)を手動にて移動させるこ
と、光量調節部材(34)としてアイリス絞り、幅可変
スリット等を用いること、さらにフィルターを用いて分
光分布を調整することが可能であり、その他この発明の
要旨を変更しない範囲内において種々の設計変更を施す
ことができる。
Note that the present invention is not limited to the above embodiments, and for example, it is possible to manually move the ultraviolet light emitter (3), the concave mirror (33), the light amount adjustment member (34), and the lens (35), and to adjust the amount of light. It is possible to use an iris diaphragm, a variable width slit, etc. as the adjustment member (34), and further to adjust the spectral distribution using a filter, and various other design changes may be made within the scope of the invention. be able to.

く効果〉 以上のようにこの発明は、可視光と紫外光とを積分球内
に照射することにより均一に混合し、しかも紫外光量を
変化させることにより試、料を照射する光の分光分布を
自然光に酷似させるようにしているので、自然光の下で
人間が観察したのと同じ状態での紫外螢光物体の測色を
行なうことができ、更には試料を照射する光の分光分布
を任意に設定することにより、種々の条件下における紫
外螢光物体の測色を行なうことができるという持重の効
果を秦する。
Effect> As described above, this invention uniformly mixes visible light and ultraviolet light by irradiating them into an integrating sphere, and also changes the spectral distribution of the light irradiating the sample by changing the amount of ultraviolet light. Since it closely resembles natural light, it is possible to measure the color of ultraviolet fluorescent objects under the same conditions as observed by humans under natural light, and it is also possible to arbitrarily adjust the spectral distribution of the light irradiating the sample. By setting this value, it is possible to carry out colorimetry of ultraviolet fluorescent objects under various conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は紫外螢光物体測色装置を示す概略図、第2図及
び第3図は紫外螢光物体の測色データを示す図、第4図
および第5図は紫外発光体と積分球の関係の他の実施例
を示す概略図である。 (1)・・・積分球、(a・・・可視発光体、(3)・
・・紫外発光体、(S)・・・試料。 特許出願人 住友化学工業株式会社 特許出願人 株式会社 ユニオン技研 第1図
Figure 1 is a schematic diagram showing an ultraviolet fluorescent object colorimeter, Figures 2 and 3 are diagrams showing colorimetric data of an ultraviolet fluorescent object, and Figures 4 and 5 are an ultraviolet emitter and an integrating sphere. FIG. 2 is a schematic diagram showing another example of the relationship between (1)... Integrating sphere, (a... Visible light emitter, (3)...
...Ultraviolet emitter, (S)...sample. Patent applicant: Sumitomo Chemical Industries, Ltd. Patent applicant: Union Giken Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 1、 積分球の内面で拡散された拡散光を試料に照射し
、試料からの反射光を受光することによって試料の測色
を行なう装置において、可視波長領域の照射光を積分球
の内部に放射する可視発光体を設けるとともに、少なく
とも近紫外線を積分球の内部に放射する紫外発光体を設
け、更に紫外発光体による積分球内部への放射近紫外線
量を調整する調整装置を設けたことを特徴とする紫外螢
光物体測色装置。 2、 紫外光源が、直接積分球内部へ導入される発光体
である上記特許請求の範囲第1項記載の紫外螢光物体測
色装置。 3、 調整装置が、紫外光源を積分球に対して進退させ
るものである上記特許請求の範囲第2項記載の紫外螢光
物体測色装置。 4、 紫外光源が、積分球から離隔して設けられた発光
体と、集光体と透過光量調節体から構成されている上記
特許請求の範囲第1項記載の紫外螢光物体測色装置。 5、 調整装置が、発光体、集光体、又は透過光量調節
体の少なくとも一種を積分球に対して進退させるもので
ある上記特許請求の範囲第4項記載の紫外螢光物体測色
装置。 6、 調整装置が、発光体と集光体とを一体的に、積分
球に対して進退させるものである上記特許請求の範囲第
4項記載の紫外螢光物体測色装置。 7、 集光体が凹面鏡である上記特許請求の範囲!¥4
項記載の紫外螢光物体測色装置。 8、 集光体が凸レンズである上記特許請求の範囲第4
項記載の紫外螢光物体測色装置。 9、 透過光量調節体が積分球の紫外光導入用開口で兼
用されている上記特許請求の範囲第6項乃至第8項の何
れかに記載の紫外螢光物体測色装置。 10、透過光量調節体が、絞り輯又はスリットである上
記特許請求の範囲第4項記載の紫外螢光物体測色装置。 11、発光体が紫外螢光物体は重水素放電管である上記
特許請求の範囲第2項又は第4項記載の紫外螢光物体測
色装置。
[Claims] 1. In an apparatus that measures the color of a sample by irradiating the sample with diffused light diffused by the inner surface of an integrating sphere and receiving reflected light from the sample, the irradiated light in the visible wavelength range is used. A visible light emitter that emits light inside the integrating sphere is provided, an ultraviolet light emitter that emits at least near ultraviolet rays is provided inside the integrating sphere, and an adjustment device that adjusts the amount of near ultraviolet light emitted by the ultraviolet light emitter into the inside of the integrating sphere. An ultraviolet fluorescent object colorimeter comprising: 2. The ultraviolet fluorescent object colorimeter according to claim 1, wherein the ultraviolet light source is a light emitter that is directly introduced into the integrating sphere. 3. The ultraviolet fluorescent object colorimeter according to claim 2, wherein the adjustment device moves the ultraviolet light source forward and backward with respect to the integrating sphere. 4. The ultraviolet fluorescent object colorimeter according to claim 1, wherein the ultraviolet light source comprises a light emitting body provided apart from the integrating sphere, a light condensing body, and a transmitted light amount adjusting body. 5. The ultraviolet fluorescent object colorimeter according to claim 4, wherein the adjustment device moves at least one of a light emitting body, a condenser, and a transmitted light amount adjusting body forward and backward with respect to an integrating sphere. 6. The ultraviolet fluorescent object colorimeter according to claim 4, wherein the adjustment device moves the light emitting body and the light condensing body integrally forward and backward with respect to the integrating sphere. 7. The scope of the above claims in which the condenser is a concave mirror! ¥4
The ultraviolet fluorescent object colorimeter described in Section 1. 8. Claim 4 above, in which the condenser is a convex lens
The ultraviolet fluorescent object colorimeter described in Section 1. 9. The ultraviolet fluorescent object colorimeter according to any one of claims 6 to 8, wherein the transmitted light amount adjusting body is also used as an ultraviolet light introducing opening of an integrating sphere. 10. The ultraviolet fluorescent object colorimeter according to claim 4, wherein the transmitted light amount adjusting body is an aperture or a slit. 11. The ultraviolet fluorescent object colorimeter as claimed in claim 2 or 4, wherein the ultraviolet fluorescent object is a deuterium discharge tube.
JP59079031A 1984-04-18 1984-04-18 Colorimetry apparatus for ultraviolet fluorescent body Pending JPS60222731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079031A JPS60222731A (en) 1984-04-18 1984-04-18 Colorimetry apparatus for ultraviolet fluorescent body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079031A JPS60222731A (en) 1984-04-18 1984-04-18 Colorimetry apparatus for ultraviolet fluorescent body

Publications (1)

Publication Number Publication Date
JPS60222731A true JPS60222731A (en) 1985-11-07

Family

ID=13678558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079031A Pending JPS60222731A (en) 1984-04-18 1984-04-18 Colorimetry apparatus for ultraviolet fluorescent body

Country Status (1)

Country Link
JP (1) JPS60222731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077868A2 (en) * 2007-10-09 2009-06-25 Datacolor Holding Ag Method and apparatus for cleaning an integrating sphere
CN103557942A (en) * 2013-10-12 2014-02-05 杭州彩谱科技有限公司 Double-light-source color photometer with SCI/SCE test conditions compatible and implementation method
WO2022050055A1 (en) * 2020-09-04 2022-03-10 大日精化工業株式会社 Mask member for color measurement device, color measurement device, and color measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077868A2 (en) * 2007-10-09 2009-06-25 Datacolor Holding Ag Method and apparatus for cleaning an integrating sphere
WO2009077868A3 (en) * 2007-10-09 2009-08-13 Datacolor Holding Ag Method and apparatus for cleaning an integrating sphere
CN103557942A (en) * 2013-10-12 2014-02-05 杭州彩谱科技有限公司 Double-light-source color photometer with SCI/SCE test conditions compatible and implementation method
WO2022050055A1 (en) * 2020-09-04 2022-03-10 大日精化工業株式会社 Mask member for color measurement device, color measurement device, and color measurement method
JP2022043634A (en) * 2020-09-04 2022-03-16 大日精化工業株式会社 Mask member for color measuring device, color measuring device, and color measuring method

Similar Documents

Publication Publication Date Title
US5268749A (en) Apparatus and method for providing uniform illumination of a sample plane
US4171909A (en) Apparatus for measuring light intensities
US6535278B1 (en) Apparatus and method for measuring spectral property of fluorescent sample
US5859435A (en) Content measuring apparatus for plant leaf
US4995727A (en) Compact diffusion light mixing box and colorimeter
CN106644989B (en) Absorbance detection system
JP2003523513A (en) System, apparatus and method for measuring and analyzing diamond color
CN105938016A (en) Color measurement apparatus
KR100521616B1 (en) Spectral reflectance measuring apparatus and spectral reflectance measuring method
JPH0650817A (en) Measuring device for optical characteristic of sample
CN209117182U (en) A kind of color measuring device
CN117516888B (en) Integrating sphere digital simulation system and imaging evaluation method
JPS60222731A (en) Colorimetry apparatus for ultraviolet fluorescent body
JP3464824B2 (en) Optical measuring device
US6791682B2 (en) Apparatus for inspecting display panel and method for inspecting the same
CN208537405U (en) A kind of spectral photometric colour measuring device
JPH02114151A (en) Refractometer having aperture distribution depending upon refractive index
EP0283802B1 (en) Vertical beam spectrophotometer
CN205537961U (en) Beam split colour photometer
CN114252157A (en) Spectrum colorimeter and method for improving difference between fluorescence color measurement stations
CN105509889B (en) A kind of spectrophotometric color measurement instrument
ATE226721T1 (en) METHOD FOR DETERMINING EXTINCTION OR TRANSMISSION AND PHOTOMETER
CN205748642U (en) A kind of color measuring device
CN216349110U (en) Uniform area light source
JPH0316058Y2 (en)