JPS60222727A - Superconducting type liquid level sensor - Google Patents

Superconducting type liquid level sensor

Info

Publication number
JPS60222727A
JPS60222727A JP7754184A JP7754184A JPS60222727A JP S60222727 A JPS60222727 A JP S60222727A JP 7754184 A JP7754184 A JP 7754184A JP 7754184 A JP7754184 A JP 7754184A JP S60222727 A JPS60222727 A JP S60222727A
Authority
JP
Japan
Prior art keywords
superconducting
liquid level
lead wire
wire
level sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7754184A
Other languages
Japanese (ja)
Inventor
Akinori Ohara
尾原 昭徳
Toshiyuki Amano
天野 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7754184A priority Critical patent/JPS60222727A/en
Publication of JPS60222727A publication Critical patent/JPS60222727A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To obtain a superconducting liquid level sensor characterized by a small amount of evaporation of liquid helium, by shorting the lower connecting parts of two pieces of superconducting wires, which are provided in parallel in the inside of a protecting tube. CONSTITUTION:A returning superconducting wire 2A is provided in parallel with an incoming superconducting wire 2 in a superconducting type liquid level sensor 20. Lower connecting parts 2c and 2Ac of the respective wires are connected. An incoming current lead wire 5a and an incoming voltage lead wire 6a are extracted from an upper connecting part 2a of the incoming superconducting wire 2 and connected to one terminal of a DC power source 8 and one terminal of an indicator 7. A returning current lead wire 5Aa and a returning voltage lead wire 6Aa are extracted from an upper connecting part 2Aa of the returning superconducting wire 2A and connected to the other terminals of the DC power source 8 and the indicator 7, respectively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えばヘリウム液面計などに用いられる超
電導式液面センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting liquid level sensor used, for example, in a helium level gauge.

〔従来技術〕[Prior art]

第1図は従来の超電導式液面センサの断面構造を示し、
また第2図は第7図に示した超電導式液面センサを用い
て容器内の液体ヘリウムの液面高さを測定するヘリウム
液面計の電気等価回路を示す。第1図および第2図にお
いて、10は超電導式液面センサ、lは保護管、コは超
電導線、コaは超電導線コの上端接続部、コbは超電導
線コにおける液体ヘリウムl/の液面高さ位置、2Cは
超電導線コの下端接続部、3は通気孔、ダは端部固定板
、jaは上部電流リード線、3Cは下部電流リード線、
6aは上部電圧リード線、6Cは下部電圧リード線、り
は指示計、tは直流電源、tは容器、l/は液体ヘリウ
ムである。
Figure 1 shows the cross-sectional structure of a conventional superconducting liquid level sensor.
Further, FIG. 2 shows an electrical equivalent circuit of a helium level meter that measures the level of liquid helium in a container using the superconducting liquid level sensor shown in FIG. 7. In Figures 1 and 2, 10 is a superconducting liquid level sensor, l is a protection tube, C is a superconducting wire, C is an upper end connection of the superconducting wire, and C is a liquid helium l/L in the superconducting wire. Liquid level height position, 2C is the lower end connection of the superconducting wire, 3 is the ventilation hole, DA is the end fixing plate, ja is the upper current lead wire, 3C is the lower current lead wire,
6a is an upper voltage lead wire, 6C is a lower voltage lead wire, RI is an indicator, t is a DC power supply, t is a container, and 1/ is liquid helium.

次に動作について説明する。液面センサ10は容器デ内
に貯溜されている例えば液体ヘリウムl/の液面高さを
測定するためのもので、液体ヘリウムl/の沸点(IA
JK)よりもわずかに高い温度で超電導状態に転移する
金属によって作られた超電導線コの液体ヘリウムll中
での超電導現象を利用している。超電導線2は保護管/
の上下両端に取り付けられた電気絶縁性の端部固定板弘
の間に張り渡されており、上端接続部コaからは上部電
流リードtaおよび上部電圧リード6aが直接外部へ出
ており、また下端接続部コCからは下部電流リード線I
Cおよび下部電圧リード線6cが保護管lの内部を通り
かつ上部にある端部固定板弘を貫通して外部に取り出さ
れる。また通気孔3は保護管lの適当な位置に複数個あ
けられた穴で。
Next, the operation will be explained. The liquid level sensor 10 is for measuring the liquid level of, for example, liquid helium l/, which is stored in a container.
It utilizes the superconductivity phenomenon in liquid helium of a superconducting wire made of a metal that transitions to a superconducting state at a slightly higher temperature than JK). Superconducting wire 2 is a protective tube/
The upper current lead ta and the upper voltage lead 6a come out directly from the upper end connecting part core a, and From the lower end connection part C, connect the lower current lead wire I.
C and the lower voltage lead wire 6c pass through the inside of the protective tube 1, pass through the end fixing plate located at the upper part, and are taken out to the outside. Also, the ventilation holes 3 are multiple holes drilled at appropriate positions in the protective tube l.

これらの穴を通して液体ヘリウムllやガスヘリウムが
出入りする。
Liquid helium and gas helium enter and exit through these holes.

この液面センサ10を第2図のように容器?の内部に固
定し、上部電流リード線jaおよび下部電流リード線3
cを直流電源ざに接続して一定の電流を流す。また上部
電圧リード線6aおよび下部電圧リード線6cは指示計
7に接続する。このように構成されたヘリウム液面計で
液体ヘリウム//の高さが超電導線λの中程の位置2b
にある場合、上端接続部2aと中程の位置コbとの間の
ヘリウムはガス状態で冷却が悪く、一定電流の流れてい
る超電導線コは超電導状態が破れて常電導状態となり電
気抵抗を生じている。また中程の位置ユbと下端接続部
2cとの間のヘリウムは液体状態で冷却が良好なために
超電導状態となり、その電気抵抗が零である。つまり一
定電流の流れにいる超電導線λの両端に発生する電圧を
指示計7で読むことKよって液体ヘリウム//の液面高
さを計測することができる。
Is this liquid level sensor 10 in a container as shown in Fig. 2? The upper current lead wire ja and the lower current lead wire 3 are fixed inside the
Connect c to a DC power supply and let a constant current flow through it. Further, the upper voltage lead wire 6a and the lower voltage lead wire 6c are connected to an indicator 7. In the helium level gauge constructed in this way, the height of liquid helium // is at position 2b, which is in the middle of superconducting wire λ.
In this case, the helium between the upper end connection part 2a and the middle position B is in a gas state and is poorly cooled, and the superconducting wire through which a constant current is flowing breaks the superconducting state and enters the normal conductive state, decreasing electrical resistance. It is occurring. Further, since the helium between the middle position b and the lower end connection part 2c is in a liquid state and well cooled, it becomes a superconductor and its electrical resistance is zero. That is, by reading the voltage generated at both ends of the superconducting wire λ through which a constant current is flowing with the indicator 7, the level of the liquid helium can be measured.

なお通常使用されている超電導式液面センサにおいて超
電導線2に流す電流値は200rlLk程度であり、常
電導部分で発生する電圧は超電導線λの長さ10va当
り約/Svで、この部分で発生するジュール発熱1は1
0cm当り約03−Wである。
In addition, in a normally used superconducting liquid level sensor, the current value flowing through the superconducting wire 2 is about 200 rlLk, and the voltage generated in the normal conducting part is approximately /Sv per 10 va of the length of the superconducting wire λ, which is generated in this part. Joule heat generation 1 is 1
It is about 03-W per 0 cm.

このため周囲のヘリウムガスの棉度が上昇する。 ・ま
たこの液面センサでは保護管/の内部に超電導線λと下
部電流リード線左Cおよび下部電圧IJ−ド鞄6Cとが
同居した構造であり、またこれらのリード線はテフロン
等で被覆された直径0.3 ms程度の銅線である。
Therefore, the degree of helium gas in the surrounding area increases.・In addition, this liquid level sensor has a structure in which the superconducting wire λ, the lower current lead wire left C, and the lower voltage IJ-dead bag 6C coexist inside the protection tube, and these lead wires are coated with Teflon or the like. It is a copper wire with a diameter of about 0.3 ms.

以上のような構造では、保護管/内の常電、導部分で発
生するジュール発熱量の大部分は周囲のへリウムガスと
2本の銅製のリード線との熱伝導により下部の液体ヘリ
ウムl/の方へ移動する。この時の伝熱tQは、λを物
質の熱伝導率、Sを伝導断面積、tを伝導長さ、TIを
高部側の温度、TJを低温側の温度とすれば、次式でま
る。
In the structure described above, most of the Joule heat generated in the normal current inside the protection tube and the conductive part is transferred to the liquid helium at the bottom due to heat conduction between the surrounding helium gas and the two copper lead wires. move towards. The heat transfer tQ at this time can be calculated using the following formula, where λ is the thermal conductivity of the material, S is the conduction cross section, t is the conduction length, TI is the temperature on the high side, and TJ is the temperature on the low temperature side. .

Q= λ ・ −(TI −TJ ) ここで、ヘリウムガスの熱伝導率 λHe == 0.000/<W/cm@K)ヘリウム
ガスの伝導断面積 SHθ =0./コロ (d) ヘリウムガスの伝導長さ tHe = t (ロ) リード線の熱伝導率 λcu = to (’W/cIrL*K)リード線の
伝導断面積 S(u = o、ootp(ctl) 高部側の温度 TI = to (K) 低温側の温度 TJ = 久コ (K) を用いて、それぞれヘリウムガス、リード線を経由する
伝熱量をめると、ヘリウムガスを経由した伝熱量QHe
= 7.3×10 ’ (W)、 IJ−ド線を経由し
た伝熱量Qcu=l/xiO”(5)となり、リード線
を経由した伝熱量の方がi、ooo倍以上も多いことが
分る。またこれらの伝熱量は液体ヘリウムllの蒸発の
要因である。
Q=λ・−(TI−TJ) Here, the thermal conductivity of helium gas λHe == 0.000/<W/cm@K) The conduction cross section of helium gas SHθ =0. /coro (d) Helium gas conduction length tHe = t (b) Lead wire thermal conductivity λcu = to ('W/cIrL*K) Lead wire conduction cross section S (u = o, ootp(ctl) Using the temperature on the high side TI = to (K) and the temperature on the low temperature side TJ = Kuko (K), and calculating the amount of heat transferred via helium gas and the lead wire, the amount of heat transferred via helium gas QHe
= 7.3 x 10' (W), the amount of heat transferred via the IJ lead wire Qcu = l/xiO'' (5), and the amount of heat transferred via the lead wire is more than i,ooo times larger. Also, these amounts of heat transfer are a factor in the evaporation of liquid helium.

最近NMR(核磁気共鳴)イメージング装置、NMR分
析装置などの萬均−磁界超電導マグネットが計画されて
いる。これらの超電導マグネット用低占容器は長時間液
体ヘリウムを補光しない、いわゆる低熱損失のものであ
る。しかしン′ヨがら、従来の液面センサは上記のよう
な構造であるために、これを用い℃ヘリウムの液面高さ
を測定すると、2本のリード線を経由した伝熱量が多い
。つまり液体ヘリウムの蒸発が多く、不経済な装置とな
る欠点があった。
Recently, Mankyun magnetic field superconducting magnets such as NMR (nuclear magnetic resonance) imaging devices and NMR analyzers are being planned. These low-occupancy containers for superconducting magnets do not supplement liquid helium for a long time, and have so-called low heat loss. However, since the conventional liquid level sensor has the above-mentioned structure, when it is used to measure the liquid level height of °C helium, a large amount of heat is transferred via the two lead wires. In other words, there was a drawback that a large amount of liquid helium evaporated, making the device uneconomical.

〔・発明の概要〕[・Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めKなされたもので、保護管の内部に2本の超電導線を
並列に張り、これら−軍の超電導線の各上端接続部から
は従来と同様((上部電流リード線および上部電圧リー
ド線を引き出し、2本の超電導線の下端接続部同士を短
絡することによつて保護管の内部から従来の下部電流リ
ード線および下部電圧リード線を接続を上部で行なう構
造として、除去し、これらの下部リード線を経由してい
た伝熱量を無くしひいては液体ヘリウムの蒸発の少ない
超電導式液面センサを提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. Two superconducting wires are stretched in parallel inside a protective tube, and each upper end connection of these military superconducting wires is connected to the conventional one. Similarly to The purpose of the present invention is to provide a superconducting liquid level sensor in which the connection is made at the upper part, and the amount of heat transferred through these lower lead wires is eliminated, thereby reducing the evaporation of liquid helium.

〔発明の実施例〕[Embodiments of the invention]

すなわち第3図はこの発明に係る超電導式液面センサの
一実施例の断面構造を示し、また第弘図は第3図に示し
た液面センサを用いて容器内の液体ヘリウムの液面高さ
を測定するヘリウム液面計の電気回路を示す。第3図に
示した超電導式液面センサ20では、従来の超電導線に
相当する往路超電導線λと並列に復路超電導線λAを張
り、それぞれの下端接続部2cと2kcを接続する。ま
た、往路超電導線コの上端接続部、2aから従来の上部
電流リード線、上部電圧リード線にそれぞれ相当する往
路電流リード線(ra )−往路電圧リード線Aaを引
き出してそれぞれ直流電源ざ、指示計7の一端に接続す
るとともに、復路超電導線2人の上端接続部コAaから
復路電流リード線5Aa、復路電圧リード線AAaを引
き出してそれぞれ直流電源ざ、指示計7の他端に接続す
る。
That is, FIG. 3 shows a cross-sectional structure of an embodiment of the superconducting liquid level sensor according to the present invention, and FIG. This figure shows the electrical circuit of a helium level gauge that measures the level of water. In the superconducting liquid level sensor 20 shown in FIG. 3, an incoming superconducting wire λA is stretched in parallel with an outgoing superconducting wire λ, which corresponds to a conventional superconducting wire, and the lower end connecting portions 2c and 2kc of each are connected. In addition, from the upper end connection part 2a of the outgoing superconducting wire, pull out the outgoing current lead wire (ra) and the outgoing voltage lead wire Aa, which correspond to the conventional upper current lead wire and upper voltage lead wire, respectively, and connect them to the DC power source. At the same time, a return current lead wire 5Aa and a return voltage lead wire AAa are drawn out from the upper end connection core Aa of the two return superconducting wires and connected to the DC power source and the other end of the indicator 7, respectively.

この発明の超電導式液面センサは上述したように構成さ
れているので、指示計7に表示される出力電圧および常
電導部分で発生するジュール発熱量は従来の液面センサ
の約−倍である。しかし保護管lの内部には銅などの熱
伝導率の大きいものが存在しないため、常電、導部分の
熱量は下部の液体ヘリウムllには伝わり難く、上部の
通気孔3を通して自然対流により保護管lの外部上方に
発散することになる。
Since the superconducting liquid level sensor of the present invention is configured as described above, the output voltage displayed on the indicator 7 and the Joule heat value generated in the normal conducting part are approximately - times that of conventional liquid level sensors. . However, since there is no material with high thermal conductivity such as copper inside the protective tube 1, the amount of heat in the normal current and conductive part is difficult to transfer to the liquid helium at the bottom, and it is protected by natural convection through the ventilation hole 3 at the top. It will diverge upwards outside the tube l.

〔発明の効果〕〔Effect of the invention〕

上述したように、この発明によれば、保護管の内部にコ
本の超電導線を並列に張り、それらの下端接続部を相互
に接続し、各上端接続部から従来と同様にそれぞれ電流
リード線および電圧リード線を引き出す構造としたので
、保護管の内部からリード線を除去でき、このリード線
を経由していた伝熱量を無くして液体ヘリウムの蒸発が
少なく経済的な超電導式液面センサを提供できる効果が
ある。
As described above, according to the present invention, multiple superconducting wires are stretched in parallel inside the protective tube, their lower end connections are connected to each other, and current lead wires are connected from each upper end connection point as in the conventional case. The structure allows the lead wire to be pulled out from the inside of the protection tube, eliminating the amount of heat transferred through the lead wire and creating an economical superconducting liquid level sensor with less evaporation of liquid helium. There is an effect that can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導式液面センサの断面構造図、第2
図は従来の超電導式液面センサを用いたヘリウム液面計
の電気回路図、第製図はこの発明の一実施例を示す断面
構造図、第4図はこの発明の一実施例を用いたヘリウム
液面計の電気回路図である。 /・・保護管、コ・・往路超電導線1.2人・・復路超
電導線1.2aと、2Aa・・上端接続部、2cと2k
c・・下端接続部、5a・・往路電流リード線、左Aa
・・復路電流リード線、6a・・往路電圧リード線、6
Aa・・復路電圧リード線、7拳・なお、図中、同一符
号は同−又は相当部分を示す・ 代理人 曽 我 道 照 手続補正書「自発」 昭和59年60月15 日 特許庁長官殿 1、事件の表示 昭和!デ年特許願第7?!f417 号2、発明の名称 超電導式液面センナ 3、補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内二丁目2番3号名 称 
(601)三菱電機株式会社 代表者片山仁八部 4、代理人 住 所 東京都千代田区丸の内二丁目4番1号丸の内ビ
ルディング4階 (1)明細書の発明の詳細な説明9貫 ム 補正の内容 明細書をつぎのとおり訂正する。
Figure 1 is a cross-sectional structural diagram of a conventional superconducting liquid level sensor, Figure 2
The figure is an electrical circuit diagram of a helium level gauge using a conventional superconducting liquid level sensor, the second drawing is a cross-sectional structural diagram showing an embodiment of the present invention, and the fourth figure is a helium level gauge using an embodiment of the present invention. It is an electric circuit diagram of a liquid level gauge. /...Protective tube, Co...Outbound superconducting wire 1.2 people...Return superconducting wire 1.2a, 2Aa...Top end connection part, 2c and 2k
c...Lower end connection part, 5a...Outgoing current lead wire, left Aa
...Return current lead wire, 6a...Outbound voltage lead wire, 6
Aa...Return voltage lead wire, 7 pairs.In addition, in the diagram, the same reference numerals indicate the same or equivalent parts.Agent: Dosho Soga Proceedings Amendment "Voluntary" June 15, 1980 To the Commissioner of the Patent Office 1.Display of the incident Showa era! Patent application No. 7 in 2017? ! f417 No. 2, Name of the invention Superconducting liquid level sensor 3, Relationship to the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name Name
(601) Mitsubishi Electric Co., Ltd. Representative Jin Katayama Hachibu 4, Agent address 4th floor, Marunouchi Building, 2-4-1 Marunouchi, Chiyoda-ku, Tokyo (1) Detailed explanation of the invention in the specification 9 Sections of amendments The statement of contents is amended as follows.

Claims (1)

【特許請求の範囲】[Claims] 保護管、この保護管の内部に並列に張り渡されたコ本の
超電導線、並びにこれら2本の超電導線の各上端接続部
にそれぞれ接続された電流供給用および電圧測定用のリ
ード線を備え、前記一本の超電導線の下端接続部同士を
短絡したことを特徴とする超電導式液面センサ。
A protective tube, two superconducting wires stretched in parallel inside the protective tube, and lead wires for current supply and voltage measurement connected to the upper end connections of these two superconducting wires, respectively. , A superconducting liquid level sensor characterized in that the lower end connecting portions of the single superconducting wire are short-circuited.
JP7754184A 1984-04-19 1984-04-19 Superconducting type liquid level sensor Pending JPS60222727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7754184A JPS60222727A (en) 1984-04-19 1984-04-19 Superconducting type liquid level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7754184A JPS60222727A (en) 1984-04-19 1984-04-19 Superconducting type liquid level sensor

Publications (1)

Publication Number Publication Date
JPS60222727A true JPS60222727A (en) 1985-11-07

Family

ID=13636858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7754184A Pending JPS60222727A (en) 1984-04-19 1984-04-19 Superconducting type liquid level sensor

Country Status (1)

Country Link
JP (1) JPS60222727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008518A1 (en) * 1995-08-30 1997-03-06 Hitachi, Ltd. Level gauge using superconductive sensor wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516758A (en) * 1974-07-08 1976-01-20 Kobe Steel Ltd RENZOKUGATAEKITAIHERIUMUEKIMENKEI
JPS567863U (en) * 1979-06-30 1981-01-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516758A (en) * 1974-07-08 1976-01-20 Kobe Steel Ltd RENZOKUGATAEKITAIHERIUMUEKIMENKEI
JPS567863U (en) * 1979-06-30 1981-01-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008518A1 (en) * 1995-08-30 1997-03-06 Hitachi, Ltd. Level gauge using superconductive sensor wire

Similar Documents

Publication Publication Date Title
US5030614A (en) Superconductor sensors
Christian et al. Thermo-electricity at low temperatures. VI. A redetermination of the absolute scale of thermo-electric power of lead
PT83926B (en) TRANSFORMER OF MEASUREMENT FOR MEDICATION OF A CURRENT IN AN ELECTRICAL CONDUCTOR
US5298679A (en) Current lead for cryostat using composite high temperature superconductors
US3579035A (en) System for detection of transition between superconductive and resistant state in superconductive coils
US4655079A (en) Level gauge for liquid helium
JPS60222727A (en) Superconducting type liquid level sensor
US3678748A (en) Electrical sensing device for measurement of liquid metal
Herrmann et al. Test results of a 1 kA (2 kA)-20 kV HTSC current lead model
Sullivan et al. A low-temperature direct-current comparator bridge
US4745806A (en) Level gauge for liquid helium
US4566323A (en) Liquid helium level indicating gauge
Maeno et al. Simple differential thermometer for low temperatures using a thermocouple with a SQUID detector
EP0630059A2 (en) Superconducting apparatus having dew-preventable peltier-effect element integrated therewith
Gallop et al. Operational experience with a cryogenic volt monitoring system
JPS6133367B2 (en)
CN212622682U (en) Low-heat electromotive force wiring module for measuring direct-current small voltage
Berg et al. Measurement of microkelvin temperature differences in a critical-point thermostat
JP2658140B2 (en) Liquid level measurement method and apparatus
Park et al. Construction and commissioning of the KSTAR current feeder system
JPS60222726A (en) Helium liquid level meter
Gallop Teddington, Middlesex, TW11 OLW
CN111537768A (en) Low-heat electromotive force wiring module for measuring direct-current small voltage
JPH1082807A (en) Superconductor and measuring method for its alternating current loss
Jüngst et al. Superconducting helium level sensor