JPS60222580A - Scroll fluid machinery - Google Patents

Scroll fluid machinery

Info

Publication number
JPS60222580A
JPS60222580A JP59078418A JP7841884A JPS60222580A JP S60222580 A JPS60222580 A JP S60222580A JP 59078418 A JP59078418 A JP 59078418A JP 7841884 A JP7841884 A JP 7841884A JP S60222580 A JPS60222580 A JP S60222580A
Authority
JP
Japan
Prior art keywords
scroll
wrap
suction
fluid machine
lap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59078418A
Other languages
Japanese (ja)
Inventor
Masao Shiibayashi
正夫 椎林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59078418A priority Critical patent/JPS60222580A/en
Publication of JPS60222580A publication Critical patent/JPS60222580A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/501Inlet

Abstract

PURPOSE:To improve the efficiency of a scroll compressor by forming a concaved part on a mirror plate so as to be along the inside of a lap over the angle of about 180 deg. from the winding edge part of a swirl scroll lap and reducing the pressure loss in a suction passage. CONSTITUTION:A circular groove 25 is formed onto a mirror plate 4 engaged with the lap part in the part 24 inside by about 180 deg. from the lap winding edge surface 23 in the outer edge part 2 of the swirl scroll lap 6 of the captioned scroll compressor, and the outside diameter D0 has a center coinciding with the center On of the mirror plate. Therefore, a coolant passage communicating to the suction chamber is made wide by the groove 25, and the pressure loss in suction can be reduced, and the efficiency of the scroll compressor can be improved.

Description

【発明の詳細な説明】 この発明は、膨張機、或は、窒調機用圧縮機等に使用さ
れるスクロール流体機械に関する発明であり、特に、旋
回スクロールラップの外端部と係合する鏡板部に、吸入
通路を広くするための凹部を形成したスクロール流体機
械に係る発明である〈発明の背景〉 従来のスクロール流体機械例えば空調機用スクロール形
田縮機は第1図乃至第3図に示す様に、固定スクロール
1と旋回スクロール2とから成る王縮袈素部を備えてお
り、その両スクロール1.2はそれぞれの円形鏡板3.
4と、これらに直立し、かつインボリュート、或は、こ
れに近似した曲線に形成された渦巻状のスクロールラッ
プ5.6とからなり、この両ラップ5.6は互に内側に
してかみ合い状に対向されている。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a scroll fluid machine used in an expander or a compressor for a nitrogen conditioning machine, and particularly relates to an end plate that engages with an outer end of an orbiting scroll wrap. This invention relates to a scroll fluid machine in which a concave part is formed to widen the suction passage. <Background of the Invention> A conventional scroll fluid machine, for example, a scroll compactor for an air conditioner, is shown in FIGS. 1 to 3. As shown, it is equipped with a crown part consisting of a fixed scroll 1 and an orbiting scroll 2, both scrolls 1.2 having their respective circular mirror plates 3.
4, and a spiral scroll wrap 5.6 standing upright thereon and formed into an involute or a curve similar to this, and both wraps 5.6 are interlocked with each other inside. Being faced with.

上記固定スクロールラップ5の内壁面、旋回スクロール
ラップ6の外壁面、及び、両スクロール1.2の鏡板3
.4の壁面等により密閉空間が形成されると同時に、固
定スクロールラップ5の外壁面、旋回スクロールラップ
の内壁面、及び、両スクロール1.2の鏡板3.4の壁
面等によシ密閉空間例えば8.12が形成され、これら
により二つの対称な密閉空間を構成している。
The inner wall surface of the fixed scroll wrap 5, the outer wall surface of the orbiting scroll wrap 6, and the mirror plate 3 of both scrolls 1.2.
.. At the same time, a sealed space is formed by the wall surface of 4, etc., and at the same time, a closed space is formed by the outer wall surface of the fixed scroll wrap 5, the inner wall surface of the orbiting scroll wrap, and the wall surface of the mirror plate 3.4 of both scrolls 1.2. 8.12 are formed, and these constitute two symmetrical closed spaces.

したがって、スクロール圧縮機の吸入室13には、上記
最外側の密閉空間7.8に通ずる二岡所の吸入通路14
.+5が設けられている。
Therefore, the suction chamber 13 of the scroll compressor has two suction passages 14 communicating with the outermost sealed space 7.8.
.. +5 is provided.

又、固定スクロール1内で該吸入室13を形成する溝部
最外周壁面の形状は円弧に形成されているO このように構成されたスクロール形流体機械を冷凍装置
用の圧縮機として使用すれば、低湛、低圧の冷媒ガスは
固定スクロール1の鏡板外周部16に設けた吸入口18
を経て旋回スクロール2のラップ外周部の吸入室13に
吸入される。
Moreover, the shape of the outermost peripheral wall surface of the groove forming the suction chamber 13 in the fixed scroll 1 is formed into an arc. If the scroll-type fluid machine configured in this way is used as a compressor for a refrigeration system, The low-volume, low-pressure refrigerant gas is supplied through an inlet 18 provided on the outer periphery of the end plate 16 of the fixed scroll 1.
The air is sucked into the suction chamber 13 on the outer circumference of the orbiting scroll 2 through the air.

そして、吸入完了時における量スクロール1.2の作動
位置状態は第1図に示す通りである。
The operating position of the quantity scroll 1.2 at the time of completion of suction is as shown in FIG.

ついで図示しないオルダム機構を介して自転を防止され
ると共に、公転するように構成された旋回スクロール2
の旋回運動により、両スクロール1.2で形成された密
閉空間7〜12は漸次縮少されるため、密閉空間7.8
に吸い込まれた冷媒ガスは両スクロール1.2の中央部
に移送されると共に、温度と圧力が上昇して中央吐出孔
19より外部へ吐出されるようにされている。
Next, an orbiting scroll 2 is configured to rotate while being prevented from rotating via an Oldham mechanism (not shown).
Due to the rotating movement of the scrolls 1.2, the closed spaces 7 to 12 formed by the scrolls 1.2 are gradually reduced, so that the closed spaces 7.8
The refrigerant gas sucked into the scrolls 1.2 is transferred to the center of both scrolls 1.2, its temperature and pressure are increased, and the refrigerant gas is discharged to the outside from the central discharge hole 19.

而して、上記吸入通路14に至る通路は第1図に示すよ
うに常に比較的に広い状態保持されているが、他方の、
固定スクロールラップ5の外縁端部とこれにかみ合う旋
回スクロールラップ6の外縁端部20の部分に通じる吸
入通路15は旋回スクロール2の旋回運動に伴って拡大
と縮・少を繰り返す。
The passage leading to the suction passage 14 is always maintained in a relatively wide state as shown in FIG.
The suction passage 15 that communicates with the outer edge of the fixed scroll wrap 5 and the outer edge 20 of the orbiting scroll wrap 6 that engages therewith repeats expansion, contraction, and reduction as the orbiting scroll 2 rotates.

このため該吸入通路15に至る通路が第2図に示す様に
縮少されたときには、吸入圧力の圧力損失を生ずる。
Therefore, when the passage leading to the suction passage 15 is reduced as shown in FIG. 2, a pressure loss of suction pressure occurs.

そして、吸入通路14.15が縮少された場合、その間
隙はそれぞれ第1図及び第2図に示す様にF41.g2
で示される。
When the suction passages 14 and 15 are reduced, the gap between them is F41. as shown in FIGS. 1 and 2, respectively. g2
It is indicated by.

この場合、該吸入通路14.15を含む吸入室13を形
成する固定スクロール1、溝部最外周の壁面の形状は円
弧に形成され、該円弧゛の中心は、鏡板3の中心であシ
、該壁面14の円弧の中心は固定スクロールラップ50
基礎円の中心とも一致している。
In this case, the shape of the wall surface of the outermost periphery of the groove portion of the fixed scroll 1 forming the suction chamber 13 including the suction passages 14 and 15 is formed into a circular arc, and the center of the circular arc is the center of the head plate 3. The center of the arc of the wall surface 14 is the fixed scroll wrap 50
It also coincides with the center of the base circle.

このような構成において、吸入室13を形成する酌記溝
部最外周の壁面16の大きさく第1図に示すDSi1+
の寸法)は、次式で与えられる。
In such a configuration, the outermost wall surface 16 of the groove portion forming the suction chamber 13 has a size of DSi1+ shown in FIG.
) is given by the following equation:

Del=2(a%e+ε+92)・ (1)ここで D
siH吸入室13の内径 a =スクロールラップの基礎円半径 ン 入・ ・・り・−−ラ・プの巻終わり角度(イへポリュ
ートの伸開角) ε :旋回半径 g2 :円弧状壁面14と旋回スクロールラップ側壁と
の最少隙間 尚、第4図に、スクロールラップの巻き角度入 −(イ
ンボリュートの伸開角)と、基礎円半径a及びインボリ
ュート曲線Cとの位置関係を示す。
Del=2(a%e+ε+92)・(1) where D
Inner diameter a of the siH suction chamber 13 = base circle radius of the scroll wrap... ri... winding end angle of the wrap (expansion/opening angle of the heppolute) ε: turning radius g2: arc-shaped wall surface 14 and Minimum clearance between the orbiting scroll wrap and the side wall FIG. 4 shows the positional relationship between the scroll wrap winding angle (involute expansion/opening angle), the base circle radius a, and the involute curve C.

そこで、上記(1)式を基にして、固定スクロール1の
吸入室13の形状、或いは、固定スクロール1の外形D
foがまる。
Therefore, based on the above formula (1), the shape of the suction chamber 13 of the fixed scroll 1 or the outer shape D of the fixed scroll 1 is determined.
fo is round.

したがって、スクロールラップの歯形形状(例えば、(
1)式のa、−λe1εという諸元)が決まっていくる
と固定スクロール全体の大きさく第3図のDfoという
寸法)を小さくしたい場合。
Therefore, the tooth profile shape of the scroll wrap (for example, (
1) When it is desired to reduce the size of the entire fixed scroll (dimension Dfo in FIG. 3) as the dimensions a and -λe1ε of the equation are determined.

ざI・ 前記(1)式の62寸法を減少せ;るをえない。The I・ It is impossible to reduce the dimension 62 in the above formula (1).

よって、該62寸法を小さくすると、前述の吸人通路1
5での子方損失の増加等の性能上の問題が生まれる。
Therefore, if the dimension 62 is reduced, the above-mentioned suction passage 1
This creates performance problems such as an increase in child losses in the case of 5.

第3図は該吸入通路15の部分の拡大断面を示した′も
ので、旋回スクロールラップ6の外縁部21の側壁面2
2と、この側壁面に対向する固定スクロール1の鏡板3
の外周部の側壁面16との間の隙間は、@述した如く旋
回スクロール2の旋回運動に伴って変化する。
FIG. 3 shows an enlarged cross section of the suction passage 15, showing the side wall surface 2 of the outer edge 21 of the orbiting scroll wrap 6.
2, and a mirror plate 3 of the fixed scroll 1 facing this side wall surface.
The gap between the outer periphery of the scroll and the side wall surface 16 changes with the orbiting movement of the orbiting scroll 2, as described above.

そして、隙間の上記最少隙間g2によって最大隙間lは
下記(2)式によりめられる。
Then, the maximum gap l can be determined from the above-mentioned minimum gap g2 using the following equation (2).

1=g2+2ε・・・(2) したがって、吸入通路の面積は上記隙間とスクロールラ
ップの高さhとの積によりめられ、吸入通路の間隙に於
ける通路面積も前記隙間と同様に旋回スクロール2の旋
回運動に伴って変化する一力、吸込部14では、吸入通
路15を形成する隙間B1が前記旋回運動に拘わらず常
に拡大状態に保持され、吸入通路15及び旋回スクロー
ル2の鏡板3.4の中心とスクロールラップ5.6の基
礎円の各中心がそれぞれ一致している。
1=g2+2ε...(2) Therefore, the area of the suction passage is determined by the product of the above-mentioned gap and the height h of the scroll wrap, and the passage area of the suction passage is also the same as the above-mentioned gap. In the suction section 14, the gap B1 forming the suction passage 15 is always maintained in an enlarged state regardless of the rotation movement, and the suction passage 15 and the end plate 3.4 of the orbiting scroll 2 The center of the scroll wrap 5.6 coincides with each center of the base circle of the scroll wrap 5.6.

このような圧縮機構造では、上記二つの吸入通路14.
15に形成されるgl、glが異なる構造となるため吸
入通路14.15に至る冷媒ガスの流れに伴って、冷媒
ガスと通路壁面との摩擦損失に他に、旋回スクロールの
旋回運動に伴う通路面積の変化及び曲折等の形広変化に
よる圧力損失と圧力変動を生ずる。
In such a compressor structure, the two suction passages 14.
Since the GL and GL formed in 15 have different structures, as the refrigerant gas flows to the suction passage 14.15, in addition to the friction loss between the refrigerant gas and the passage wall surface, the passage due to the orbiting movement of the orbiting scroll. Pressure loss and pressure fluctuation occur due to changes in area and wide changes in shape such as bending.

即ち、第5図に示すグラフは先述第1〜3図に示す従来
態様のスクロール圧縮機の指圧線であり、縦軸に圧力(
P)を横軸に体積(V)をとると、第5図に示すように
従来態様では吸入通路14.15の通路面積の相違によ
り、該吸入通路′14.15での圧力損失が異なり、圧
縮直前の圧力はP s (11+、P s 02となり
、この王カから圧縮が開始1毫箪 されるので、実蕪と破線とで密閉空間9.1o内の圧力
上昇を示す様に指圧線図が2本描がれる〇このよりな状
況においては、圧縮室を成す密閉空間9.10間に於そ
体積Vlで圧力差(例えばΔP)が生じてそれらの間で
漏洩が生じ、全体的に圧縮機の動力が増加するという欠
点があった。
That is, the graph shown in FIG. 5 is the acupressure line of the conventional scroll compressor shown in FIGS. 1 to 3, and the vertical axis shows the pressure (
When the volume (V) is plotted with P) as the horizontal axis, in the conventional mode, as shown in FIG. The pressure immediately before compression is P s (11+, P s 02), and since compression starts from this point, the acupressure line is drawn so that the pressure rise in the closed space 9.1o is shown by the actual pressure and the broken line. Two diagrams are drawn. In this situation, a pressure difference (for example, ΔP) with a volume of Vl occurs between the closed spaces 9 and 10 forming the compression chamber, causing leakage between them, and the overall However, the disadvantage was that the power of the compressor increased.

又、上記吸入通路15の隙間g2のように、吸入通路1
4に比べて吸入通路が極端に狭くなると、この部分にお
ける圧力損失と圧力変動は大きくなるので、圧縮機の体
積効率の低下により性能が低下する恐がある。
Also, like the gap g2 of the suction passage 15, the suction passage 1
If the suction passage becomes extremely narrow compared to No. 4, the pressure loss and pressure fluctuation in this portion will increase, so there is a risk that the performance will decrease due to a decrease in the volumetric efficiency of the compressor.

更に、吸入通路14.15に至る吸入通路の広さの相違
により、該吸入通路14.15では圧力損失と圧力変動
の大きさが異なるから、圧縮直前の冷媒ガスの圧力も異
なってくるようになり、したがって、密封空間を形成す
る一対の圧縮室1例えば、第1図の密封空間7.8.9
.10等の間で圧力差を生ずるため、この圧力差によシ
漏洩量は増加するから圧縮機の動力も増加し、ひいては
全断熱動車の低下を助長する不具合がある。
Furthermore, due to the difference in the width of the suction passage leading to the suction passage 14.15, the magnitude of pressure loss and pressure fluctuation in the suction passage 14.15 differs, so the pressure of the refrigerant gas immediately before compression also differs. Therefore, a pair of compression chambers 1 forming a sealed space, e.g., sealed space 7.8.9 in FIG.
.. Since a pressure difference is generated between the compressors 10 and 10, the amount of leakage increases due to this pressure difference, and the motive power of the compressor also increases, which in turn causes a problem that promotes the deterioration of the fully adiabatic moving vehicle.

又、前記吸入通路14.15の圧力損失は、圧縮機が高
速回転する#1ど顕著となるために、該圧縮機の回転数
が例えば回転数N = 7.000〜1.0ooorp
m等に高速化すれば、性能は大巾に低下する等の不利点
がある。
In addition, the pressure loss in the suction passage 14.15 becomes more noticeable when the compressor #1 rotates at high speed.
If the speed is increased to speeds such as m, there are disadvantages such as a significant drop in performance.

〈発明の目的〉 この発明の目的は上述従来技術に基づくスクロール圧縮
機等の流体機構の問題点を解決すべき技術的課題とし、
固定スクロールと旋回スクロールのスクロールラップ間
の吸入通路の圧力損失を低減して性能の向上を図るよう
にしてエネルギー産業における流体利用分野に益する優
れたスクロール流体機構を提供せんとするものである。
<Objective of the Invention> The object of the present invention is to solve the problems of fluid mechanisms such as scroll compressors based on the above-mentioned prior art, and
It is an object of the present invention to provide an excellent scroll fluid mechanism that reduces pressure loss in the suction passage between the scroll wraps of a fixed scroll and an orbiting scroll and improves performance, thereby benefiting the field of fluid application in the energy industry.

〈発明の概要〉 上述目的に沿い先述特許請求の範囲を要旨とするこの発
明の概要は、前述問題点を解決するために上記旋回スク
ロールラップの外端部におけるスクロールラップ巻終シ
端面から約180度内側のラップ巻き位置までのラップ
部と係合する鏡板に、凹部を形成し、両スクロールで形
成される吸入室での吸入通路を広くするようにし、又、
上記旋でのラップをその内壁面から一様な厚さを有し、
かつ該スクロールラップ厚さを前記範囲より内側スクロ
ールラップの厚さよりも薄く形成し、該薄肉部のラップ
部と係合する鏡板に凹部を形成し、更に、上記旋回スク
ロールの鏡板部に設けた凹部と両スクロールで形成され
る吸入室における固定スクロール側の溝部最外周の側壁
部との位置関係がDO1:吸入室の内系、DO:前記凹
部の外径、ε:旋回半径としたときDO1≧Do−1−
Z・εを満足するようにした技術的手段を講じたもので
ある。
<Summary of the Invention> In order to solve the above-mentioned problems, the present invention, which is based on the above-mentioned object and is summarized in the above-mentioned claims, is to solve the above-mentioned problem. A concave portion is formed in the end plate that engages with the wrap portion up to the inner wrap winding position to widen the suction passage in the suction chamber formed by both scrolls, and
The wrap in the above-mentioned lathe has a uniform thickness from its inner wall surface,
and the thickness of the scroll wrap is formed to be thinner than the thickness of the inner scroll wrap within the above range, a recess is formed in the end plate that engages with the wrap portion of the thin portion, and further a recess provided in the end plate of the orbiting scroll. and the side wall of the outermost periphery of the groove on the fixed scroll side in the suction chamber formed by both scrolls, where DO1 is the inner diameter of the suction chamber, DO is the outer diameter of the recess, and ε is the turning radius, DO1≧ Do-1-
This method takes technical measures to satisfy Z・ε.

〈実施例〉 次に、この発明の実施例を第6図以下の図面に基づいて
説明すれば以下の通りである。同、第1〜3図と同一態
様部分は同一符号を用いて説明するものとする。
<Example> Next, an example of the present invention will be described below based on the drawings from FIG. 6 onwards. The same parts as in FIGS. 1 to 3 will be described using the same reference numerals.

第6〜8図に示す実施例において、空調機械用のスクロ
ール圧縮機の旋回スクロールラップ6の外縁部2におけ
るラップ巻終り端面3から約180度内側の−24まで
の途中のラップ部と係合する鏡板4に円弧状の溝25の
凹部を形成し、その外径DoVi、鏡板4の中心Omと
一致した中心を有する。
In the embodiment shown in FIGS. 6 to 8, it engages with a part of the outer edge 2 of the orbiting scroll wrap 6 of a scroll compressor for an air conditioning machine, halfway from the end surface 3 of the wrap to -24, approximately 180 degrees inward. A concave portion of an arc-shaped groove 25 is formed in the mirror plate 4, and has an outer diameter DoVi and a center coincident with the center Om of the mirror plate 4.

而して、核凹部25を形成すること國より、吸入室13
での冷媒通路が従来機械に対して広く保たれる。
Therefore, by forming the nuclear recess 25, the suction chamber 13 is
The refrigerant passage is kept wide compared to conventional machines.

又、第9図に示す実施例は、旋回スクロール2の鏡板4
に設ける凹部30′をラップ部終り端面23から180
度内側の位置24の直前までラップ部と係合する鏡板4
に上記同様に形成させた態様である。
Further, in the embodiment shown in FIG. 9, the end plate 4 of the orbiting scroll 2
A concave portion 30' provided in
End plate 4 that engages with the lap portion until just before the inner position 24
This is an embodiment formed in the same manner as above.

又、第10.11図に示す実施例においては旋回スクロ
ールラップ6の外端部6′に於けるラップ巻き終り端面
23から約180度内側の位置24までのラップ6′を
その内壁面から一様な厚さを有し、かつ、そのラップ厚
さtliそれより先のラップ6の厚さtよりも薄((1
−1(t) 形成し、その薄肉部のラップ部6′と係合
する鏡板4に凹部30″″を形成した態様である。
In addition, in the embodiment shown in FIG. 10.11, the wrap 6' from the end surface 23 of the wrap winding end 23 at the outer end 6' of the orbiting scroll wrap 6 to a position 24 located approximately 180 degrees inward is separated from the inner wall surface thereof. , and its lap thickness tli is thinner than the thickness t of the preceding lap 6 ((1
-1(t) This is an embodiment in which a concave portion 30'' is formed in the end plate 4 which engages with the wrap portion 6' of the thin wall portion.

而して、凹部30°゛を上述の様にすれば、吸入通路を
より一層に広くすることが出来る・而して、上記?ツブ
6の薄肉部6′の範囲は前記位置23.24間に限定さ
れず、その中間の適宜ラップ巻き角度の位置間を薄肉部
6′に形成しても上述同様の効果を得ることができる。
By making the recessed portion 30° as described above, the suction passage can be made even wider. The range of the thin wall portion 6' of the knob 6 is not limited to the above-mentioned positions 23 and 24, and the same effect as described above can be obtained even if the thin wall portion 6' is formed between the positions at an appropriate wrap angle between the positions 23 and 24. .

尚、上記旋回スクロールの鏡板4に設けた凹部30°″
と両スクロール1.2で形成される吸入室13に於ける
固定スクロール1側の溝部最外周の側壁16との位置関
係が次式の Dsi≧Do−1−Z−ε−(3) ここで(Ilsi:吸入室の内径、DO:前記凹部の外
径、ε:旋回半径)を満足するように、寸法Dsi、D
Oを設定する。
In addition, the recessed portion 30°'' provided in the end plate 4 of the above-mentioned orbiting scroll
The positional relationship between this and the side wall 16 at the outermost circumference of the groove on the fixed scroll 1 side in the suction chamber 13 formed by both scrolls 1.2 is as follows: Dsi≧Do-1-Z-ε-(3) where (Ilsi: inner diameter of the suction chamber, DO: outer diameter of the recess, ε: turning radius).
Set O.

尚、両スクロール1.20m3.4の外縁部である鏡板
摺動部31は、潤滑と吸入室13と旋回スクロール2の
背部空間とのシール作用を行なっているものである。
The end plate sliding portion 31, which is the outer edge of both scrolls 1.20 m3.4, performs lubrication and sealing between the suction chamber 13 and the back space of the orbiting scroll 2.

これにより、両スクロール1.2の軸方向摺動部31の
シール性能を確保するものである。
This ensures the sealing performance of the axial sliding portions 31 of both scrolls 1.2.

〈発明の効果〉 以上この発明によれば、スクロール流体機構に於てその
スクロール2鏡板にスクロールラップの外端縁に於て凹
部を形成したことにより吸入通路を広くしてその圧力損
失が低減され、漏出も無くなり、動力の増加が抑制され
、又熱効吊が向上する優れた効果が奏される。
<Effects of the Invention> According to the present invention, in the scroll fluid mechanism, by forming a recess at the outer edge of the scroll wrap in the end plate of the scroll 2, the suction passage is widened and the pressure loss is reduced. The excellent effects of eliminating leakage, suppressing the increase in power, and improving thermal efficiency are achieved.

而して、上述実施例において吸入通路の通路面積はほぼ
同面積に形成されるため、該通路での圧力損失もほぼ同
じであることになり、第12図に示す様に縦軸に圧力(
P)を横軸に体積(V)をとると先述従来態様の第5図
の指圧線のグラフに対比して示す指圧線図に於て二つの
吸入空間での圧縮直前の圧力は共にpeoとなり、この
圧力から圧縮が開始されるので、指圧線図は実線と点線
が一本になり、両圧縮室間で圧力差は無く、したがって
、圧縮空間の漏洩等も無く一田力効呂の向上が図れるこ
とが分る。
In the above-described embodiment, since the suction passages have approximately the same area, the pressure loss in the passages is also approximately the same, and as shown in FIG. 12, the pressure (
When P) is taken as the volume (V) on the horizontal axis, the pressure immediately before compression in the two suction spaces is both peo in the acupressure diagram shown in contrast to the acupressure line graph of FIG. Since compression starts from this pressure, the solid line and dotted line become one in the acupressure diagram, and there is no pressure difference between the two compression chambers.Therefore, there is no leakage of the compression space, and the Ichida force is improved. It turns out that it can be achieved.

即ち、旋回スクロールの鏡板に吸入通路用の凹部を形成
することにより、旋回スクロールの重量が低減され、圧
縮機全体として軽量化も図れる効果がある。
That is, by forming the concave portion for the suction passage in the end plate of the orbiting scroll, the weight of the orbiting scroll is reduced, which has the effect of reducing the weight of the compressor as a whole.

次にこの発明と従来技術である1例の特開昭57−13
7601号公報に開示されている発明との作用効果の相
違について、横軸は圧縮機回転数Noを、縦軸に吸入圧
力の損失JPs及び旋回スクロールに作用する遠心力F
cをとる第13図を用いて対比説明すると、実線がこの
発明の効果を示すグラフであり、破線は従来態様である
特開昭57−137601号の発明の効果を示している
尚、吸入圧力の損失、dosとは次式で表わされる値で
ある。
Next, an example of this invention and the prior art is JP-A-57-13.
Regarding the differences in operation and effect from the invention disclosed in Publication No. 7601, the horizontal axis represents the compressor rotation speed No, and the vertical axis represents the suction pressure loss JPs and the centrifugal force F acting on the orbiting scroll.
To explain the comparison using FIG. 13, which takes c. The loss, dos, is a value expressed by the following equation.

aP s =P s−P e o ・= (4)ここで
、Pθ:吸入圧力(圧縮機外部、例えば吸入管内の圧力
) (K9/cd) −、Psi:吸入室3(3kl)の圧力(K9/d) 又、旋回スクロールに作用する遠心力Faとは次式で表
わされる値でわる0 Fc=We/g−ε、ω2.(5) ここで、Ws:旋回スクロールの重量(K9)g :重
力の加速度(m7g ) ε :旋回半径(m) U :主軸の回転角速度(=2yLNs/ 60 ) 
(r a d/ s )Ns:主軸の回転数(rpm) 而して、この発明では、従来態様に対して吸入通路を広
く確保するので、吸入圧力の損失ΔP8は小さくなり、
特に、スクロール圧縮機の高速回転化(例えば、N””
70000rpm)に対してその結果の相違が従来機械
に対して明確になっていることが分る。
aP s = P s - P e o ・= (4) Here, Pθ: Suction pressure (pressure outside the compressor, for example, inside the suction pipe) (K9/cd) −, Psi: Pressure in the suction chamber 3 (3kl) K9/d) Also, the centrifugal force Fa acting on the orbiting scroll is divided by the value expressed by the following formula: 0 Fc=We/g-ε, ω2. (5) Here, Ws: Weight of the orbiting scroll (K9) g: Acceleration of gravity (m7g) ε: Radius of rotation (m) U: Rotational angular velocity of the main shaft (=2yLNs/60)
(r a d/s) Ns: rotational speed of the main shaft (rpm) Therefore, in this invention, since the suction passage is secured wider than in the conventional mode, the suction pressure loss ΔP8 is reduced,
In particular, high-speed rotation of scroll compressors (for example, N""
70,000 rpm), the difference in results is clear compared to the conventional machine.

又、旋回スクロールに作用する遠心力Fcも更に小さく
なるので、スクロール圧縮機に作用する加振力そのもの
も小さくなり、従来機械に対して低振動のスクロール圧
縮機を提供することが可能となる効果がある。
In addition, since the centrifugal force Fc acting on the orbiting scroll is further reduced, the excitation force itself acting on the scroll compressor is also reduced, making it possible to provide a scroll compressor with low vibration compared to conventional machines. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来のスクロール流体機械の圧縮
状態を示す横断面図、第3図は従来のスクロール流体機
械の要部横断面図、第4図はラップの渦巻き状曲線の断
面図、第5図は従来態様の第う0q V、v 第7図 第8n 芥91!1 VI V 竿13図 圧#l餡熾回払数 AJs(rP勿)
Figures 1 and 2 are cross-sectional views showing the compressed state of a conventional scroll fluid machine, Figure 3 is a cross-sectional view of essential parts of a conventional scroll fluid machine, and Figure 4 is a cross-sectional view of the spiral curve of the wrap. , Fig. 5 shows the conventional mode.

Claims (1)

【特許請求の範囲】 減少により流体を圧縮するスクロール流体機械において
、上記旋回スクロールラップの外端部に於けるラップ巻
終り端面から約180度内側(ラップ巻き位置までの該
スクロールラップ部に位置する鏡板に吸入通路を低くす
る凹部全形成したことを%徴とするスクロール流体憬械
。 (2)上記凹部が略扇形の溝形状を成すことを特徴とす
る特許 ロール流体機械。 (3)上記スクロールラップの外端部に於けるラップ巻
き終り端面から約180度内側のラップ巻き位置までの
該スクロールラップの厚さを該内壁面から一様な厚さを
有し,かつ、このラップ厚さを上記範囲よシ内側のスク
ロールラップの厚さよりも薄く形成したことを特徴とす
る前記特許請求の範囲第1項第2項記載のいづれかのス
クロール流体機械。 (4)上記凹部と両スクロールで形成される吸入室に於
ける固定スクロール側の溝部最外周の側壁部との位置関
係が式Dai≧Do−}−Z・ε〜(ここでDsiH吸
入室の内径、Do前記凹部の外径、ε:旋回半径)を満
足するように形成されていることを特徴とする上記特許
請求の範囲第1・−3項記載のいづれかのスクロール流
体機械。
[Scope of Claims] In a scroll fluid machine that compresses fluid by reduction, approximately 180 degrees inward from the end surface of the lap winding end at the outer end of the orbiting scroll wrap (located in the scroll wrap portion up to the lap winding position) A scroll fluid machine characterized by the fact that a concave portion for lowering a suction passage is formed entirely in the end plate. (2) A patented roll fluid machine characterized in that the concave portion has a generally fan-shaped groove shape. (3) The scroll mentioned above The thickness of the scroll wrap from the end surface of the wrap winding end at the outer end of the wrap to the wrap winding position approximately 180 degrees inward from the inner wall surface, and the thickness of the scroll wrap is uniform. The scroll fluid machine according to claim 1, wherein the scroll wrap is formed thinner than the thickness of the scroll wrap on the inner side of the range. The positional relationship with the side wall of the outermost periphery of the groove on the fixed scroll side in the suction chamber is expressed by the formula Dai≧Do-}-Z・ε~ (here, DsiH the inner diameter of the suction chamber, Do the outer diameter of the recess, ε: A scroll fluid machine according to any one of claims 1 to 3, characterized in that the scroll fluid machine is formed to satisfy a radius of gyration.
JP59078418A 1984-04-20 1984-04-20 Scroll fluid machinery Pending JPS60222580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078418A JPS60222580A (en) 1984-04-20 1984-04-20 Scroll fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078418A JPS60222580A (en) 1984-04-20 1984-04-20 Scroll fluid machinery

Publications (1)

Publication Number Publication Date
JPS60222580A true JPS60222580A (en) 1985-11-07

Family

ID=13661494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078418A Pending JPS60222580A (en) 1984-04-20 1984-04-20 Scroll fluid machinery

Country Status (1)

Country Link
JP (1) JPS60222580A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824345A (en) * 1986-04-28 1989-04-25 Sanden Corporation Scroll member for scroll type fluid displacement apparatus
JPH03160180A (en) * 1989-11-17 1991-07-10 Toyota Autom Loom Works Ltd Scroll type compressor
JPH03264789A (en) * 1990-03-12 1991-11-26 Daikin Ind Ltd Scroll type fluid device
US5501584A (en) * 1993-10-15 1996-03-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Scroll type compressor having a passage from the suction chamber to a compression pocket
US6158990A (en) * 1997-04-10 2000-12-12 Sanden Corporation Scroll member for a scroll type of fluid machinery and scroll type of fluid machinery produced thereby
JP2008185020A (en) * 2007-01-31 2008-08-14 Hitachi Ltd Scroll type fluid machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824345A (en) * 1986-04-28 1989-04-25 Sanden Corporation Scroll member for scroll type fluid displacement apparatus
JPH03160180A (en) * 1989-11-17 1991-07-10 Toyota Autom Loom Works Ltd Scroll type compressor
JPH03264789A (en) * 1990-03-12 1991-11-26 Daikin Ind Ltd Scroll type fluid device
US5501584A (en) * 1993-10-15 1996-03-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Scroll type compressor having a passage from the suction chamber to a compression pocket
US6158990A (en) * 1997-04-10 2000-12-12 Sanden Corporation Scroll member for a scroll type of fluid machinery and scroll type of fluid machinery produced thereby
JP2008185020A (en) * 2007-01-31 2008-08-14 Hitachi Ltd Scroll type fluid machine

Similar Documents

Publication Publication Date Title
KR880000832B1 (en) Scroll type fluid machine
JP6035111B2 (en) Helium hermetic scroll compressor
JPH03242484A (en) Scroll type compressor
JPS60222580A (en) Scroll fluid machinery
JP3988435B2 (en) Scroll compressor
JPH051399B2 (en)
JPH0861257A (en) Closed type motor-driven scroll compressor
JPH01273890A (en) Scroll-type compressor
JP3291844B2 (en) Scroll type fluid machine
US4904170A (en) Scroll-type fluid machine with different terminal end wrap angles
JP3516015B2 (en) Scroll member shape of scroll compressor
JP2858903B2 (en) Scroll compressor
JPH02169886A (en) Scroll compressor
JP2000110749A (en) Scroll compressor
JPS59105986A (en) Scroll type compressor
JP3059774B2 (en) Scroll compressor
JPS6365187A (en) Enclosed scroll compressor
JP3700218B2 (en) Scroll type fluid device
JPS60166782A (en) Scroll type fluid machinery
JPS61192882A (en) Scroll type compressor
JP2862043B2 (en) Scroll fluid machine
JPS63248991A (en) Scroll type compressor
KR20000075314A (en) scroll type compressor
JP2674290B2 (en) Scroll type fluid device
JPH11107940A (en) Scroll compressor