JPS60222551A - Egr controlling device for diesel engine - Google Patents

Egr controlling device for diesel engine

Info

Publication number
JPS60222551A
JPS60222551A JP59079778A JP7977884A JPS60222551A JP S60222551 A JPS60222551 A JP S60222551A JP 59079778 A JP59079778 A JP 59079778A JP 7977884 A JP7977884 A JP 7977884A JP S60222551 A JPS60222551 A JP S60222551A
Authority
JP
Japan
Prior art keywords
back pressure
engine
throttle valve
egr
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59079778A
Other languages
Japanese (ja)
Inventor
Ken Ando
安藤 謙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59079778A priority Critical patent/JPS60222551A/en
Publication of JPS60222551A publication Critical patent/JPS60222551A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To increase the controlling accuracy of an EGR control by controlling the opening of an exhaust throttle valve in accordance with deviation between an actual back pressure and a target back pressure determined in accordance with load and engine speed at the time of an EGR control area. CONSTITUTION:A control circuit 19 judges the operating condition of an engine 1 by means of various detected outputs from a water temp. sensor 13, a load sensor 14, an engine speed sensor 15, etc. And, when the condition is judged an EGR control area in which an EGR valve 5 is opened, an exhaust throttle valve 12 is controlled to a defined opening through a negative pressure control valve 16 and an exhaust throttle valve device 7, in accordance with deviation between an actual back pressure in an exhaust system passage 3 which is detected by a pressure sensor 200, and a target back pressure which is determined in accordance with previously stored engine load and engine speed, to make the actual back pressure agree with the target back pressure. Thereby, dispersion in controlled opening due to the tolerance, etc. of the exhaust throttle valve can be reduced, improving the controlling accuracy of the EGR control.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は排気系通路に設けられ排気系通路面積を調節す
ることにより背圧を高めるための排気絞り弁を備えた排
気ガス再循環(EGJ制御装置に係り、具体的には排気
絞り弁の開度制御に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an exhaust gas recirculation (EGJ controlled The present invention relates to an apparatus, and specifically relates to opening degree control of an exhaust throttle valve.

〔発明の背景〕[Background of the invention]

′ディーゼルエンジンにおいては一般に吸排気の差圧が
小さいので、従来のこの種の装置にあっては排気系通路
に設けられた排気絞り弁で該通路の有効面積を調節する
ことにより背圧を高め、エンジンに要求されるEGR量
を確保するようにしている。
'In a diesel engine, the differential pressure between intake and exhaust is generally small, so conventional devices of this type increase the back pressure by adjusting the effective area of the exhaust throttle valve installed in the exhaust system passage. , to ensure the amount of EGR required by the engine.

一般的に排気絞り弁の開度制御は、エンジン負荷とエン
ジン回転数に基づいてめられた絞り弁開度になるように
排気絞り弁を駆動するようにしているが、排気絞り弁の
製造時の公差等に起因する排気絞り弁の制御開度のばら
つきζこより、特に過剰絞り状態においてはEGR量が
不必要に増加し、黒煙発生量の増加、出力性能の悪化、
エンジンの耐久性の低下等の問題が発生していた。
Generally, the opening degree of the exhaust throttle valve is controlled by driving the exhaust throttle valve so that the throttle valve opening degree is set based on the engine load and engine speed. Due to the variation in the control opening of the exhaust throttle valve due to the tolerance of
Problems such as reduced engine durability were occurring.

〔発明の目的〕[Purpose of the invention]

本発明の目的は排気絞り弁の制御開度のばらつきを低減
することlこよりEGI(制御の制御精度の向上を図る
ことにある。
An object of the present invention is to reduce variations in the control opening degree of an exhaust throttle valve, and to improve the control accuracy of EGI (control).

〔発明の概要〕[Summary of the invention]

本発明は、ディーゼルエンジンの排気系通路と吸気系通
路とを連通ずるEGRG路と、該EGRG路に設けられ
EGR量を調節するEGR,弁と、前記排気系通路にお
けるEGRG出部より下流側に設けられ排気系通路面積
を調節する排気絞り弁と、エンジンの運転状態を示す各
種センサの検出出力を取り込み、該検出出力に基づいて
前記EGR弁及び排気絞り弁を駆動するための制御信号
を出力する制御回路とを少くとも有するEGRG御6装
置において、エンジンの運転状態がBGRG御領域にあ
る場合には排気系通路の実際の背圧と予め記憶されてい
る、エンジン負荷とエンジン回転数に応じて定められた
目標背圧との偏差に応じて前記実際の背圧が目標背圧と
なるように排気絞り弁の開度を制御することにより、排
気絞り弁の製造時の公差等に起因する制御開度のばらつ
きを低減させ、結局、EGRG御の制御精度の向上を図
るものである。
The present invention provides an EGRG passage that communicates an exhaust system passage and an intake system passage of a diesel engine, an EGR and a valve provided in the EGRG passage that adjusts the amount of EGR, and a downstream side of an EGRG outlet in the exhaust system passage. It takes in the detection outputs of an exhaust throttle valve provided to adjust the exhaust system passage area and various sensors indicating the operating state of the engine, and outputs a control signal for driving the EGR valve and the exhaust throttle valve based on the detection outputs. In the EGRG control device, which has at least a control circuit for By controlling the opening degree of the exhaust throttle valve so that the actual back pressure becomes the target back pressure according to the deviation from the target back pressure determined by the The purpose is to reduce variations in the control opening degree and ultimately improve the control accuracy of the EGRG control.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面に基づいて説明する。第1図には
本発明に係るEGRG御装置の一実施例の構成が示され
ており、同図においてディーゼルエンジン1の吸気系通
路2と排気系通路3との間にはEGR弁5を介してEG
几連通路4前記通路2.3を連通ずるように形成されて
いる。
Embodiments of the present invention will be described based on the drawings. FIG. 1 shows the configuration of an embodiment of an EGRG control device according to the present invention, in which an EGR valve 5 is connected between an intake system passage 2 and an exhaust system passage 3 of a diesel engine 1. TeEG
A communication passage 4 is formed so as to communicate with the passage 2.3.

BGR弁5は、BGRG路4の通路面積を増減する弁体
9と、該弁体9と一体的に形成されたロッド21の後端
が固着されたターイアフラム23と、該ダイアフラム2
3を図上、下方に付勢する圧縮ばね22と、バキューム
ポンプ17で発生した負圧をエンジンの要求するより適
切な負圧に制御する負圧制御弁201と通路330を介
して連通されたダイアフラム室8とからなり、前記通路
330を介して該ダイアフラム室8内に導入される、負
圧制御弁201で形成された制御負圧に応じて前記排気
系通路3からBGRG路4を介して吸気系通路2に環流
される排気ガスの再循環量(EGR量)を制御するよう
に構成されている。
The BGR valve 5 includes a valve body 9 that increases or decreases the passage area of the BGRG passage 4, a tire diaphragm 23 to which the rear end of a rod 21 integrally formed with the valve body 9 is fixed, and the diaphragm 2.
3 is connected via a passage 330 to a compression spring 22 that urges it downward, and a negative pressure control valve 201 that controls the negative pressure generated by the vacuum pump 17 to a more appropriate negative pressure required by the engine. A diaphragm chamber 8 is introduced into the diaphragm chamber 8 through the passage 330, and is introduced from the exhaust system passage 3 through the BGRG passage 4 in response to the controlled negative pressure formed by the negative pressure control valve 201. It is configured to control the recirculation amount (EGR amount) of exhaust gas that is recirculated to the intake system passage 2.

また排気系通路3のRGRG出部6より下流側には排気
絞り弁装置7が設けられている。排気絞り弁装置7は、
ダイアフラム室40を画成するダイアフラム42と、ダ
イアフラム42を図上、上方に付勢する圧縮はね44と
、ダイアフラム42に一端が固着されるロッド11と、
一端に排気絞り弁12が固着され他端がロッド11に揺
動可能に取り付けられたロッド30とから構成されてい
る。ダイアフラム室40にはバキュームポンプ17で発
生した負圧が通路45.負圧制御弁161通路46を介
して導入され、排気絞り弁12は所定の開度に制御され
る。
Further, an exhaust throttle valve device 7 is provided downstream of the RGRG outlet 6 of the exhaust system passage 3. The exhaust throttle valve device 7 is
A diaphragm 42 that defines a diaphragm chamber 40, a compression spring 44 that urges the diaphragm 42 upward in the figure, and a rod 11 whose one end is fixed to the diaphragm 42.
The exhaust throttle valve 12 is fixed to one end of the rod 30 and the other end is swingably attached to the rod 11. Negative pressure generated by the vacuum pump 17 flows into the diaphragm chamber 40 through a passage 45. The negative pressure control valve 161 is introduced through the passage 46, and the exhaust throttle valve 12 is controlled to a predetermined opening degree.

また排気系通路3における排気絞り弁12の設置位置よ
り上流側には背圧センサ200が設けられており、該背
圧センサ200は背圧を検出し、これを電気信号に変換
し、制御回路19に出力するO さらに19は制御回路であり、制御回路19はエンジン
冷却水温を検出する水温センサ13、エンジンの負荷状
態を検出する負荷センサ14、エンジン回転数を検出す
る回転数センサ15、排気系通路3における排気絞り弁
12より上流側の背圧を検出する背圧センサ200の各
検出出力を取り込み、エンジンの運転状態に応じてEG
RG路4を介して吸気系通路2に導入するBGRGスの
流量を制御するための制御信号を負圧制御弁16.20
1にそれぞれ出力する。
Further, a back pressure sensor 200 is provided upstream of the installation position of the exhaust throttle valve 12 in the exhaust system passage 3, and the back pressure sensor 200 detects the back pressure, converts it into an electrical signal, and sends it to the control circuit. Furthermore, 19 is a control circuit, and the control circuit 19 includes a water temperature sensor 13 that detects the engine cooling water temperature, a load sensor 14 that detects the engine load condition, a rotation speed sensor 15 that detects the engine rotation speed, and an exhaust Each detection output of the back pressure sensor 200 that detects the back pressure on the upstream side of the exhaust throttle valve 12 in the system passage 3 is taken in, and the EG
A control signal for controlling the flow rate of BGRG gas introduced into the intake system passage 2 via the RG passage 4 is sent to the negative pressure control valve 16.20.
Output each to 1.

次に第2図に制御回路19の具体的構成を示す。Next, a specific configuration of the control circuit 19 is shown in FIG.

同図において50A、50B、50Cはそれぞれエンジ
ン冷却水温を検出する水温セン−1+13、エンジン1
の負荷状態を検出する負荷センサ14、排気系通路3に
おける排気絞り弁12の設置位置より上流側の背圧を検
出する背圧センサ200の各検出出力を所定のレベルま
で増幅するバッファアンプであり、60はこれらのバッ
ファアンプ50A、50B、50Cの各出力を選択的に
取り込むためのマルチプレクサ(MX)である。
In the same figure, 50A, 50B, and 50C are water temperature sensor 1+13, which detects engine cooling water temperature, and engine 1, respectively.
It is a buffer amplifier that amplifies the detection outputs of the load sensor 14, which detects the load state of , 60 is a multiplexer (MX) for selectively taking in each output of these buffer amplifiers 50A, 50B, and 50C.

また62はマルチプレクサ60により選択されたアナロ
グ信号をディジタル信号に変換するためのA/D変換器
、64.66は入出力ボート、70は一時的にデータを
記憶するためのランダムアクセスメモリ(RAMと記す
。¥2は固定データ及びプログラム等を格納するための
リードオンリメモリ(ROMと記す。)、74はROM
72に格納されたプログラムに基づいて各種の演算処理
を行い、入出カポ−トロ6を介して負圧制御弁16゜2
01にそれぞれ制御信号を出力するCPUである。
Further, 62 is an A/D converter for converting the analog signal selected by the multiplexer 60 into a digital signal, 64 and 66 are input/output ports, and 70 is a random access memory (RAM and ¥2 is a read-only memory (hereinafter referred to as ROM) for storing fixed data and programs, etc., and 74 is a ROM.
Various calculation processes are performed based on the programs stored in the 72, and the negative pressure control valve 16°2 is
This is a CPU that outputs control signals to each of the CPUs 01 and 01.

更に28はエンジン回転数を検出する回転数センサ15
の検出出力を波形整形する整形回路、56は各部の同期
を取るためのクロックパルスを出力するクロックパルス
発振器である。
Furthermore, 28 is a rotation speed sensor 15 that detects the engine rotation speed.
56 is a clock pulse oscillator that outputs a clock pulse for synchronizing each part.

次に第3図に制御回路19により実行されるプログラム
の内容を示す。同図において、プログラムが起動される
と、ステップ300で水温センサ13の検出出力TWが
取り込まれ、次のステップ302でエンジン冷却水温T
WがTW≧Koであるか否かの判定が行われ、エンジン
冷却水温TWが設定値Ko(例えば50℃)以上である
と判定された場合にはステップ304に移行する。ステ
ップ304では回転数センサ15よりエンジン回転数R
Hの取り込みが行われ、更にステップ306で負荷セン
サ14の検出出力りの取り込みが行われる。そしてステ
ップ308では第4図に示すようなROM72に予め記
憶されているBGR弁5の制御負圧マツプに基づいてバ
キュームポンプ17から負圧制御弁201を介してBG
R弁5のダイアフラム室8に所定の負圧が供給され、B
GR通路4を介して排気系通路3より吸気系通路2に送
られるEGR′i・が適切な値となるように制御される
。ここで第4図に示すEGR弁5の制御負圧マツプはエ
ンジン負荷りとエンジン回転数FLEにより定められた
BGR弁5の制御負圧値を示している。本実施例では、
例えば上記マツプにおいてEGR弁5は−15Q mm
Hgで開き始め、−300mmHgで全開状態となる。
Next, FIG. 3 shows the contents of the program executed by the control circuit 19. In the figure, when the program is started, the detection output TW of the water temperature sensor 13 is taken in at step 300, and the engine cooling water temperature T is taken in at the next step 302.
It is determined whether W is TW≧Ko, and if it is determined that the engine cooling water temperature TW is equal to or higher than the set value Ko (for example, 50° C.), the process moves to step 304. In step 304, the engine rotation speed R is detected by the rotation speed sensor 15.
H is taken in, and furthermore, in step 306, the detection output of the load sensor 14 is taken in. Then, in step 308, the BG is transferred from the vacuum pump 17 via the negative pressure control valve 201 based on the control negative pressure map of the BGR valve 5 stored in advance in the ROM 72 as shown in FIG.
A predetermined negative pressure is supplied to the diaphragm chamber 8 of the R valve 5, and the B
The EGR′i· sent from the exhaust system passage 3 to the intake system passage 2 via the GR passage 4 is controlled to an appropriate value. Here, the controlled negative pressure map of the EGR valve 5 shown in FIG. 4 shows the controlled negative pressure value of the BGR valve 5 determined by the engine load and the engine rotational speed FLE. In this example,
For example, in the above map, the EGR valve 5 is -15Q mm
It starts to open at Hg and becomes fully open at -300mmHg.

更にステップ310では第5図に示すようなROM72
に予め記憶されている背圧マツプに基づいて目標背圧P
Mの補間計算が行われる。そして次のステップ312で
は圧力センサ200の検出出力Pの取り込みが行われ、
ステップ314でPM≧Pであるか否かの判定が行われ
、PM≧Pであると判定された場合にはステップ316
で背圧Pが目標背圧PMに近づくように排気絞り弁12
を絞り込むための制御信号が制御回路19より負圧制御
弁16に出力され、排気絞り弁装置7におけるダイアフ
ラム室40にはより高い負圧がバキュームポンプ17よ
り通路45.負圧制御弁16゜通路46を介して供給さ
れる。
Furthermore, in step 310, the ROM 72 as shown in FIG.
The target back pressure P is calculated based on the back pressure map stored in advance in
An interpolation calculation of M is performed. Then, in the next step 312, the detection output P of the pressure sensor 200 is captured,
In step 314, it is determined whether PM≧P, and if it is determined that PM≧P, step 316
The exhaust throttle valve 12 is adjusted so that the back pressure P approaches the target back pressure PM.
A control signal for throttling is output from the control circuit 19 to the negative pressure control valve 16 , and a higher negative pressure is applied to the diaphragm chamber 40 in the exhaust throttle valve device 7 from the vacuum pump 17 to the passage 45 . Negative pressure control valve 16 is supplied via passage 46.

一方、ステップ314でPM(Pであると判定された場
合にはステップ318で排気絞り弁12を目標背圧PM
に近づくように開くべく、制御回路19より負圧制御弁
16に制御信号が出力され、該制御弁16によりダイア
フラム室40に供給される負圧は低下する。
On the other hand, if it is determined in step 314 that PM (P) is reached, then in step 318 the exhaust throttle valve 12 is adjusted to the target back pressure PM.
A control signal is outputted from the control circuit 19 to the negative pressure control valve 16 in order to open it so as to approach the diaphragm chamber 40, and the negative pressure supplied to the diaphragm chamber 40 by the control valve 16 decreases.

更にステップ302でエンジン冷却水温がTW(KQと
判定された場合には、すなわちエンジンの運転状態がE
GR,制御領域にないき判定された場合にはステップ3
20に移行し、ステップ320で制御回路19より負圧
制御弁16にバキュームポンプ17から排気絞り弁装f
7におけるダイアフラム室40への負圧の供給を断つた
めの制御信号が出力され、この結果排気絞り弁12は全
開状態となり、このプログラムの実行を終了する。
Furthermore, if it is determined in step 302 that the engine cooling water temperature is TW (KQ), that is, the engine operating state is E.
GR, step 3 if it is determined that the control area is blown.
20, and in step 320, the control circuit 19 connects the vacuum pump 17 to the negative pressure control valve 16 and exhaust throttle valve device f.
A control signal for cutting off the supply of negative pressure to the diaphragm chamber 40 at step 7 is output, and as a result, the exhaust throttle valve 12 becomes fully open, and the execution of this program ends.

以上に説明したように本実施例ではディーゼルエンジン
の排気系通路と吸気系通路とを連通するgGR通路と、
該EGR,通路に設けられB G R,[を調節するE
GR弁と、前記排気系通路におけるEGR取出部より下
流側に設けられた排気系通路面積を調節する排気絞り弁
と、エンジン運転状態を示す各種センサの検出出力を取
り込み、該検出出力に基づいて前記EGR弁及び排気絞
り弁を駆動するための制御信号を出力する制御回路とを
少なくとも有するEGR制御装置において、エンジンの
運転状態がBGR制御領域にある場合には排気系通路の
実際の背圧と予め記憶されている、エンジン負荷とエン
ジン回転数に応じて定められた目標背圧との偏差に応じ
て前記実際の背圧が目標背圧となるように排気絞り弁の
開度を制御することにより、排気絞り弁の公差等に起因
する制御開度のばらつきを低減させ、結局EGR制御の
制御制度の向上を図ることができる。
As explained above, in this embodiment, the gGR passage that communicates the exhaust system passage and the intake system passage of the diesel engine,
The EGR is provided in the passage and adjusts the BGR, [E
The detection outputs of the GR valve, the exhaust throttle valve that adjusts the area of the exhaust system passage provided on the downstream side of the EGR extraction part in the exhaust system passage, and various sensors indicating the engine operating state are taken in, and based on the detection output. In an EGR control device having at least a control circuit that outputs a control signal for driving the EGR valve and the exhaust throttle valve, when the engine operating state is in the BGR control region, the actual back pressure in the exhaust system passage and Controlling the opening degree of the exhaust throttle valve so that the actual back pressure becomes the target back pressure according to a deviation between a pre-stored target back pressure determined according to the engine load and the engine rotation speed. As a result, it is possible to reduce variations in the control opening degree due to tolerances of the exhaust throttle valve, etc., and ultimately improve the control accuracy of EGR control.

〔発明の効果〕〔Effect of the invention〕

本発明によればEGB、制御の制御精度の向上が図れる
According to the present invention, the control precision of EGB and control can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るEGR制御装置の一実施例の構成
を示す説明書、第2図は制御回路19の具体的構成を示
すブロック図、第3図は制御回路19により実行される
プログラムの内容を示すフローチャート、第4図はRO
M72に記憶されているEGR弁5の制御負圧マツプを
示す図、第5図は同様にROM72に記憶されている背
圧マツプを示す図である。 1・・・エンジン、2・・・吸気系通路、3・・・排気
系通路、4・・・BGR通路、5・・・EGFL弁、1
3・・・水温センサ、14・・・負荷センサ、15・・
・回転数センサ、16・・・負圧制御弁、19・・・制
御回路、200・・・圧力センサ、201・・・負圧制
御弁。 代理人鵜沼辰之 (ほか1名)
FIG. 1 is an instruction manual showing the configuration of an embodiment of the EGR control device according to the present invention, FIG. 2 is a block diagram showing the specific configuration of the control circuit 19, and FIG. 3 is a program executed by the control circuit 19. Flowchart showing the contents of RO
A diagram showing a control negative pressure map of the EGR valve 5 stored in M72, and FIG. 5 is a diagram showing a back pressure map similarly stored in ROM72. 1... Engine, 2... Intake system passage, 3... Exhaust system passage, 4... BGR passage, 5... EGFL valve, 1
3...Water temperature sensor, 14...Load sensor, 15...
- Rotation speed sensor, 16... Negative pressure control valve, 19... Control circuit, 200... Pressure sensor, 201... Negative pressure control valve. Agent Tatsuyuki Unuma (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] ディーゼルエンジンの排気系通路と吸気系通路とを連通
するBGR通路と、該EGR通路に設けられEGR量を
調節するEGR弁と、前記排気系通路−どおけるEGR
取出部より下流側に設けられ排気系通路面積を調節する
排気絞り弁と、エンジン、の運転状態を示す各種センサ
の検出出力を取り込み、該検出出力に基づいて前記EG
R弁及び排気絞り弁を駆動するための制御信号を出力す
る制御回路とを少くとも有し、前記各種センサは排気系
通路における排気絞り弁の設置位置より上流側の背圧を
検出する圧力センサを含み、前記制御回路はエンジンの
運転状態がBGR制御領域にある場合には前記圧力セン
サにより検出される排気系通路の実際の背圧と予め記憶
されている、エンジン負荷とエンジン回転数に応じて定
められた目標背圧との偏差に応じて前記実際の背圧が目
標背圧となるように排気絞り弁の開度を制御するための
制御信号を出力することを特徴とするディーゼルエンジ
ンのEGR制御装置
A BGR passage that communicates an exhaust system passage and an intake system passage of a diesel engine, an EGR valve provided in the EGR passage to adjust the amount of EGR, and an EGR between the exhaust system passage and the exhaust system passage.
The detection outputs of various sensors indicating the operating status of the engine and the exhaust throttle valve that is provided downstream from the extraction part and adjusts the exhaust system passage area are taken in, and the EG is adjusted based on the detection outputs.
It has at least a control circuit that outputs a control signal for driving the R valve and the exhaust throttle valve, and the various sensors include pressure sensors that detect back pressure upstream of the installation position of the exhaust throttle valve in the exhaust system passage. and the control circuit is configured to control the engine according to the actual back pressure in the exhaust system passage detected by the pressure sensor, the engine load and the engine rotation speed, which are stored in advance, when the engine operating state is in the BGR control region. The diesel engine is characterized by outputting a control signal for controlling the opening degree of the exhaust throttle valve so that the actual back pressure becomes the target back pressure according to the deviation from the target back pressure determined by the EGR control device
JP59079778A 1984-04-20 1984-04-20 Egr controlling device for diesel engine Pending JPS60222551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079778A JPS60222551A (en) 1984-04-20 1984-04-20 Egr controlling device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079778A JPS60222551A (en) 1984-04-20 1984-04-20 Egr controlling device for diesel engine

Publications (1)

Publication Number Publication Date
JPS60222551A true JPS60222551A (en) 1985-11-07

Family

ID=13699659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079778A Pending JPS60222551A (en) 1984-04-20 1984-04-20 Egr controlling device for diesel engine

Country Status (1)

Country Link
JP (1) JPS60222551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160259U (en) * 1985-03-28 1986-10-04
JPS6351147U (en) * 1986-09-22 1988-04-06
US5918582A (en) * 1995-07-13 1999-07-06 Nissan Motor Integrated internal combustion engine control system with high-precision emission controls
US8776501B2 (en) 2009-12-22 2014-07-15 Perkins Engines Company Limited Regeneration assist calibration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160259U (en) * 1985-03-28 1986-10-04
JPS6351147U (en) * 1986-09-22 1988-04-06
US5918582A (en) * 1995-07-13 1999-07-06 Nissan Motor Integrated internal combustion engine control system with high-precision emission controls
US6032656A (en) * 1995-07-13 2000-03-07 Nissan Motor Co., Ltd. Integrated internal combustion engine control system with high-precision emission controls
US6170469B1 (en) 1995-07-13 2001-01-09 Nissan Motor Co., Ltd. Integrated internal combustion engine control system with high-precision emission controls
US6230697B1 (en) 1995-07-13 2001-05-15 Nissan Motor Co., Ltd. Integrated internal combustion engine control system with high-precision emission controls
DE19655217B4 (en) * 1995-07-13 2008-10-16 Nissan Motor Co., Ltd., Yokohama Integrated combustion engine control with a motor vehicle exhaust control
US8776501B2 (en) 2009-12-22 2014-07-15 Perkins Engines Company Limited Regeneration assist calibration

Similar Documents

Publication Publication Date Title
US5341300A (en) Trouble diagnosis device and method for exhaust gas return control device
JPS6232341B2 (en)
JPS5926782B2 (en) Internal combustion engine rotation speed control method
JPS60222551A (en) Egr controlling device for diesel engine
US4457275A (en) Idling speed control system for internal combustion engine
US5970961A (en) Valve control method
JPH10238414A (en) Control device for egr
JPH0988726A (en) Egr device for diesel engine
JPS62165538A (en) Fuel supply control device for internal combustion engine
JPS62147026A (en) Supercharger control device for internal combustion engine
JPS60219445A (en) Egr controller for diesel engine
JPS6138341B2 (en)
JPH0648116Y2 (en) Internal combustion engine intake system
JPH0634596Y2 (en) Engine idle speed controller
JPS61239303A (en) Feedforward type controlling method
JP2811702B2 (en) Engine intake system
JPH0641744B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPS6258041A (en) Suction pressure detector for internal combustion engine
JPH09228900A (en) Egr control device for internal combustion engine
JPS63179172A (en) Exhaust gas recirculation device for engine
JPH0447134B2 (en)
JPS62294758A (en) Suction device of internal combustion engine
JPS59192846A (en) Idling-speed controlling apparatus for internal- combustion engine
JPS61142340A (en) Fuel injection control device in internal combustion engine
JPS5879671A (en) Ignition timing controller of engine