JPS60222185A - Method and device for supplying cryogenic medium - Google Patents

Method and device for supplying cryogenic medium

Info

Publication number
JPS60222185A
JPS60222185A JP7971184A JP7971184A JPS60222185A JP S60222185 A JPS60222185 A JP S60222185A JP 7971184 A JP7971184 A JP 7971184A JP 7971184 A JP7971184 A JP 7971184A JP S60222185 A JPS60222185 A JP S60222185A
Authority
JP
Japan
Prior art keywords
nozzle
cryogenic medium
flange
liquid
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7971184A
Other languages
Japanese (ja)
Inventor
Nobuo Tanabe
田辺 伸夫
Shinichi Maeda
前田 伸一
Takeshi Yamane
山根 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP7971184A priority Critical patent/JPS60222185A/en
Publication of JPS60222185A publication Critical patent/JPS60222185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To simplify the installation as a whole, to reduce operating energy and to utilize effectively the cold heat of a cryogenic medium by ejecting directly said medium into the liquid phase of the liquid to be cooled. CONSTITUTION:A nozzle mounting pipe 13 which has a supporting flange 14 on the outside of a containing vessel 11 for contg. the liquid to be cooled and communicates the inside and outside of the vessel is provided to the vessel bottom 11A positioned in the liquid phase of said vessel. A nozzle 16 which ejects the cryogenic medium into said liquid phase and has a nozzle flange 15 on the root end side is disposed by inserting the nozzle into said pipe from the outside of the vessel. A cryogenic medium introducing pipe 20 having a fixing flange 19 which supports the flange 15 between said flange and the supporting flange 14 is connected to the nozzle 16. The cryogenic medium is directly ejected into the liquid phase of the liquid to be cooled. As a result, the installation is simplified as a whole and the operating energy is reduced. The effective use of the cold heat of the cryogenic medium is thus made possible.

Description

【発明の詳細な説明】 [技術分野] 本発明は極低温媒体の供給方法および供給装置に係り、
特に、海水淡水化目的で極低温のLNG(液化天然ガス
)を海水に供給する場合等の方法およびその実施装置に
関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a cryogenic medium supply method and supply device,
In particular, the present invention relates to a method and an apparatus for supplying cryogenic LNG (liquefied natural gas) to seawater for the purpose of seawater desalination.

[背3H(技術] LNGは極低温(−161,5°C)で輸入され、海水
との熱交換により気化され使用されているが、気化の際
、LNGの気化熱で海水中に氷を晶析させ、これを海水
から分離、洗浄、融解させて淡水を生産する、LNG冷
熱利用海水淡水化技術が既に知られている。
[Secret 3H (Technology)] LNG is imported at an extremely low temperature (-161.5°C) and used after being vaporized by heat exchange with seawater. During vaporization, the heat of vaporization of LNG creates ice in the seawater. Seawater desalination technology using LNG cold energy is already known, which produces fresh water by crystallizing it, separating it from seawater, washing it, and melting it.

第1図にはLNGを海水へ供給するための従来の装置が
示され、この図において、収容缶としての結晶缶l内に
は被冷却液としての海水2が収容され、この海水2は攪
拌機3により攪拌されるとともに結晶缶循環ポンプ4に
より循環され、LNG導入管5より結晶缶lの気相部か
ら海水2の液相表面にLNGを散布し、散布されたLN
Gは撹拌されている海水z中に巻込まれ、海水2から熟
を奪って気化した後、結晶缶l内を上昇して気相連通管
6から図示しないガス加熱器へ流入し、一方、結晶缶l
内の海水2はLNGより冷却されて晶析が起り、微細な
氷結晶粒が浮遊5するスラリーとなり、このスラリーは
スラリー導出管7を介して図示しない溶解層へ移送され
るようになっている。
FIG. 1 shows a conventional device for supplying LNG to seawater. In this figure, seawater 2 as a liquid to be cooled is stored in a crystal canister l as a storage canister, and this seawater 2 is fed by an agitator. 3 and circulated by the crystal tank circulation pump 4, LNG is dispersed from the gas phase of the crystal tank 1 to the liquid phase surface of the seawater 2 through the LNG inlet pipe 5, and the LNG is dispersed.
G is drawn into the seawater z being stirred, deprives the seawater 2 of its ripeness and vaporizes, then rises inside the crystal can 1 and flows into the gas heater (not shown) through the gas phase communication pipe 6. can l
The seawater 2 inside is cooled by the LNG and crystallized to form a slurry in which fine ice crystal grains are suspended, and this slurry is transferred to a dissolution layer (not shown) via a slurry outlet pipe 7. .

しかしながら、このような従来方法および装置では、L
NGを結晶缶1の気相部から海水2の表面に散布させる
ものであるため、攪拌機3や結晶缶循環ポンプ4を必要
とし、全体として設備が大掛りとなり運転エネルギーも
大きなものであった。また、気相部中にLNGを散布し
てしまうところから、気相部の温度が低下してしまい、
LNGを気化させるという観点から見た場合に不利であ
り、またLNGの潜熱、顕然の有効利用が十分でなく、
更には界面プロー7り(氷ブロック)が発生し易いとい
う欠点を有し、必ずしもLNGの冷熱を有効活用できる
ものではなかった。
However, in such conventional methods and devices, L
Since NG is dispersed from the gas phase of the crystal can 1 onto the surface of the seawater 2, a stirrer 3 and a crystal can circulation pump 4 are required, and the overall equipment is large-scale and requires a large amount of operating energy. In addition, since LNG is dispersed into the gas phase, the temperature of the gas phase decreases.
This is disadvantageous from the perspective of vaporizing LNG, and the latent heat of LNG is not effectively utilized sufficiently.
Furthermore, it has the disadvantage that interfacial blowing (ice blocks) is likely to occur, and it has not always been possible to effectively utilize the cold energy of LNG.

また、LNGを海水に供給する場合に限らず、LNG以
外の極低温媒体を海水以外の被冷却液に供給する場合に
ついても同様の事態を招く場合があった。
Moreover, a similar situation may occur not only when LNG is supplied to seawater, but also when a cryogenic medium other than LNG is supplied to a cooled liquid other than seawater.

[発明の目的] 本発明の目的は、全体として設備が簡素化され、運転エ
ネルギーも低減化され、極低温媒体の冷熱の有効活用も
図られる極低温媒体の供給方法および供給装置を提供す
ることにある。
[Object of the Invention] An object of the present invention is to provide a method and apparatus for supplying a cryogenic medium, in which the equipment as a whole is simplified, operating energy is reduced, and the cold energy of the cryogenic medium is effectively utilized. It is in.

[発明の構成1 そのため、本発明に係る供給方法は、極低温媒体を常温
付近の被冷却液と直接接触させても大きな温度差による
蒸気爆発(極低温媒体の急激な沸IJIh)の発生がな
いという知見を実験により確かめたことに基づくもので
あり、即ち、極低温媒体を被冷却液の液相中に直接噴出
させることにより。
[Configuration 1 of the Invention] Therefore, the supply method according to the present invention prevents the occurrence of steam explosion (rapid boiling IJIh of the cryogenic medium) due to a large temperature difference even if the cryogenic medium is brought into direct contact with the liquid to be cooled at around room temperature. This is based on the fact that it has been experimentally confirmed that there are no

極低温媒体の液相中での流れや液相中に生ずる極低温媒
体の気泡の攪拌作用を活用して従来の攪拌機や循環ポン
プの必要性を排除し、また、液相中に直接噴出させるこ
とにより冷熱を有効活用させるようにして前記目的を達
成しようとするものである。
Eliminates the need for conventional stirrers and circulation pumps by utilizing the flow of the cryogenic medium in the liquid phase and the agitation effect of the bubbles of the cryogenic medium that occur in the liquid phase, and also enables direct injection into the liquid phase. This aims to achieve the above objective by effectively utilizing cold energy.

また、本発明に係る供・給装置は、被冷却液を収容する
収容缶の前記被冷却液の液相中に維持する缶液に、缶外
側に支持フランジを有し且つ缶内外を連通ずるノズル取
付管を設け、このノズル取付管内に前記液相中に極低温
媒体を噴出し■、つ基端側にはノズルフランジを有する
。ノズルを缶外側から挿入して配置し、更に、このノズ
ルには、ノズルフランジを前記支持フランジとの間に挟
持する固定フランジを有する極低温媒体導入管を接続し
、これにより、収容缶内の被冷却液の液相中に極低温媒
体を直接噴出させることを可能にして前記目的を達成し
ようとするものである。
Further, the supply/supply device according to the present invention has a support flange on the outside of the can for the can liquid maintained in the liquid phase of the liquid to be cooled in a storage can containing the liquid to be cooled, and communicates the inside and outside of the can. A nozzle mounting pipe is provided, into which a cryogenic medium is ejected into the liquid phase, and a nozzle flange is provided on the base end side. A nozzle is inserted and arranged from the outside of the can, and furthermore, a cryogenic medium introduction pipe having a fixed flange for sandwiching the nozzle flange and the support flange is connected to this nozzle. The object is to achieve the above object by making it possible to directly inject a cryogenic medium into the liquid phase of the liquid to be cooled.

[実施例の説明1 以下、本発明の実施例を図面に基づいて説明する。[Description of Example 1 Embodiments of the present invention will be described below based on the drawings.

第2図には本発明に係る極低温媒体の供給装置がLNG
冷熱利用海水淡水化装置の結晶缶に適用された一実施例
が示されている。図中、収容缶としての結晶缶llには
被冷却液としての海水12が収容され、結晶缶11の缶
底11Aには、第3図に拡大して示されるように、缶内
外を連通ずるノズル取付管13が取4−1けられ、ノズ
ル取伺管13の缶外側の端部には支持フランジ14が設
けられている。このノズル取付管13内には基端側にノ
ズルフランジ15をイ1するノズル16が缶外側から挿
入されて配置され、ノズル取付管13とノズル16との
間隙には被冷却液噴出用流路としての海水噴出用流路1
7が形成され、この海水噴出用流路17には海水導入管
18が連通され海水導入管18から流路17に供給され
る海水はノズル16の先端付近から噴出されるようにな
っている。また、前記ノズル16には、ノズルフランジ
15を支持フランジ14との間に挟持する固定フランジ
19を有する極低温媒体導入管としてのLNG導入管2
0が接続され、支持フランジ14と固定フランジ19は
ノズルフランジ15を挟んで締付けポルト21により!
1゛いに締イ1けられている。
FIG. 2 shows a cryogenic medium supply device according to the present invention.
An embodiment is shown in which the present invention is applied to a crystal can of a seawater desalination device using cold energy. In the figure, a crystal can 11 serving as a storage can accommodates seawater 12 as a liquid to be cooled, and a can bottom 11A of the crystal can 11 is provided with communication between the inside and outside of the can, as shown in an enlarged view in FIG. A nozzle mounting pipe 13 is removed 4-1, and a support flange 14 is provided at the end of the nozzle mounting pipe 13 on the outside of the can. A nozzle 16 having a nozzle flange 15 on the base end side is inserted into the nozzle mounting pipe 13 from the outside of the can, and a gap between the nozzle mounting pipe 13 and the nozzle 16 is provided with a flow path for ejecting the liquid to be cooled. Seawater spout channel 1
7 is formed, and a seawater introduction pipe 18 is communicated with this seawater spouting passage 17, so that the seawater supplied from the seawater introduction pipe 18 to the passage 17 is jetted from near the tip of the nozzle 16. The nozzle 16 also has an LNG introduction pipe 2 as a cryogenic medium introduction pipe, which has a fixed flange 19 that sandwiches the nozzle flange 15 with the support flange 14.
0 is connected, and the support flange 14 and fixed flange 19 are tightened by the port 21 with the nozzle flange 15 in between!
It is fastened to 1.

前記ノズル16から海水12内、即ち結晶缶ll内の液
相部に極低温媒体であるLNGが直接噴出されると、L
NGの冷熱により海水12は冷却されて晶析が起り、ス
ラリー状態となり、このスラリーはスラリー導出管22
を介して缶外へと導10 sれ、・方、気化したLNG
は気相連通管23を介して缶外へと導出される。
When LNG, which is a cryogenic medium, is directly injected from the nozzle 16 into the seawater 12, that is, into the liquid phase inside the crystal can ll, LNG
The seawater 12 is cooled by the cold heat of the NG, crystallization occurs, and becomes a slurry, and this slurry is passed through the slurry outlet pipe 22.
The vaporized LNG is guided out of the can through the
is led out of the can via the gas phase communication pipe 23.

このような本実施例によれば、LNGを結晶缶11内の
海水12の液相部に直接噴出させるものであるため、L
NGの冷熱、即ち潜熱や顕熱が海水12に直接吸収され
ることとなり、LNGの冷熱の有効活用が図られる。ま
た、海面ブロックの発生も防止される。更に、結晶缶1
1内の気相部にLNGを供給するものでないため、気相
部の温度が従来より上昇し、LNGを気化させる上で有
利である。しかも、このよう゛にLNGを常温付近の海
水12の液相に直接噴出させることとしても蒸気爆発現
象は生じないため、保安上の危険性もない。
According to this embodiment, since LNG is directly injected into the liquid phase of the seawater 12 in the crystal can 11, the LNG
The cold energy of NG, that is, latent heat and sensible heat, will be directly absorbed by the seawater 12, and the cold energy of LNG will be effectively utilized. In addition, the occurrence of sea surface blocks is also prevented. Furthermore, crystal can 1
Since LNG is not supplied to the gas phase part in the gas phase part 1, the temperature of the gas phase part increases compared to the conventional case, which is advantageous in vaporizing the LNG. Furthermore, even if LNG is directly injected into the liquid phase of seawater 12 at around room temperature, no steam explosion phenomenon will occur, so there is no safety risk.

更に、海水12中のLNGの流れや海水12中で生ずる
LNGの気泡の運動エネルギーにより十分な攪拌作用が
得られるため、従来必要であった攪拌機や循環ポンプが
不必要となり、設備が簡素化され、運転エネルギーも低
減化されるという効果がある。
Furthermore, sufficient stirring action is obtained by the flow of LNG in the seawater 12 and the kinetic energy of the LNG bubbles generated in the seawater 12, so the agitator and circulation pump that were conventionally required are no longer necessary, simplifying the equipment. This has the effect of reducing operating energy.

また、ノズル16は結晶缶11の缶外から容易に交換で
きるため、ノズル16が摩耗した際の交換や保守点検等
を行う上で極めて便宜である。
Furthermore, since the nozzle 16 can be easily replaced from outside the crystal can 11, it is extremely convenient to replace the nozzle 16 when it is worn out, perform maintenance and inspection, etc.

更に、ノズル16の近傍に海水噴出用流路17が設けら
れているため、海水によりノズル16先端部の流れが乱
されることとなりノズル16先端部の凍結が防1トされ
るという効果がある。
Furthermore, since the seawater spout channel 17 is provided near the nozzle 16, the seawater disturbs the flow at the tip of the nozzle 16, which has the effect of preventing the tip of the nozzle 16 from freezing. .

次に、前記以外の実施例につき説明する。Next, embodiments other than those described above will be described.

第4,5図には前記以外の実施例が示され、この実施例
では、ノズル16の周囲に海水噴出用流路17は設けら
れておらず、また、この実施例ではスズル取付管13は
テトラフルオロエチレン樹脂(商品名テフロン)が用い
られている他は、前記第2,3図に示される実施例と同
様の構成である。
4 and 5 show an embodiment other than the above. In this embodiment, a seawater spout passage 17 is not provided around the nozzle 16, and in this embodiment, the nozzle mounting pipe 13 is The structure is similar to that of the embodiment shown in FIGS. 2 and 3 above, except that tetrafluoroethylene resin (trade name: Teflon) is used.

このような実施例では、前記実施例と略同様の作用、効
果を奏する他、ノズル取付管13が前記素材より形成さ
れているため、断熱性に優れ、ノズル取付管13やその
近傍における凍結防止効果が大きく、また、界面張力が
大きいところからも同様にして凍結防止効果が大きい。
In addition to producing substantially the same functions and effects as in the previous embodiment, this embodiment has excellent heat insulation properties because the nozzle mounting pipe 13 is made of the above-mentioned material, and prevents freezing of the nozzle mounting pipe 13 and its vicinity. The effect is large, and the anti-freezing effect is also large due to the large interfacial tension.

なお、前記各実施例では本発明がLNG冷熱利用海水淡
水化技術に用いられる場合につき説明したが、本発明が
適用されるのは前記場合に限られず、LNGの気化装置
に適用して装置の小型化を図ってもよく、更には、LN
G以外の極低温媒体が海水以外の被冷却液に供給される
場合にも適用することができる。また、前、記ノズル1
6−が取付けられるのは缶底11Aに限らず、液相中に
位置する缶壁であればよい。
In each of the above embodiments, the present invention is applied to seawater desalination technology using LNG cold energy. However, the present invention is not limited to the above-mentioned cases, and can be applied to LNG vaporization equipment. It may be possible to reduce the size of the LN.
It can also be applied when a cryogenic medium other than G is supplied to a liquid to be cooled other than seawater. In addition, the above nozzle 1
6- is not limited to the can bottom 11A, but may be attached to any can wall located in the liquid phase.

[発明の効果] 上述のように本発明によれば、全体として設備が簡素化
され、運転エネルギーも低減化され、極低温媒体の冷熱
の有効活用も図られる極低温媒体の供給方法および供給
装置を提供することができる。
[Effects of the Invention] As described above, the present invention provides a cryogenic medium supply method and a supply device that simplify the equipment as a whole, reduce operating energy, and effectively utilize the cold energy of the cryogenic medium. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のLNG供給装置の構成を示す正面図、第
2図および第3図は本発明に係る極低温媒体の供給装置
がLNG冷熱利用海水淡水化用の結晶缶に適用された一
実施例の全体構成を示す正面図および要部を拡大して示
す断面図、第4図および第5図は前記以外の実施例の全
体構成および要部を示す正面図および拡大断面図である
。 11・・・収容缶としての結晶缶、12・・・被冷却液
としての海水、13・・・ノズル取付管、14・・・支
持フランジ、15・・・ノズルフランジ、16・・・ノ
ズル、17・・・被冷却液噴出用流路としての海水噴出
用流路、18・・・被冷却液導入管としての海水導入管
、19・・・固定フランジ、2o・・・極低温媒体導入
管としてのLNG導入管・ 代理人 弁理中 木下 実正 (はが1名)第1図 第2図 0 第3図
FIG. 1 is a front view showing the configuration of a conventional LNG supply device, and FIGS. 2 and 3 show an example in which the cryogenic medium supply device according to the present invention is applied to a crystal canister for seawater desalination using LNG cold energy. FIGS. 4 and 5 are a front view and an enlarged sectional view showing the overall structure and main parts of an embodiment other than the above. FIGS. DESCRIPTION OF SYMBOLS 11... Crystal can as a storage can, 12... Seawater as a liquid to be cooled, 13... Nozzle attachment pipe, 14... Support flange, 15... Nozzle flange, 16... Nozzle, 17... Seawater spout flow path as a flow path for spouting liquid to be cooled, 18... Seawater introduction pipe as a liquid introduction pipe to be cooled, 19... Fixed flange, 2o... Cryogenic medium introduction pipe LNG introduction pipe/agent Attorney Sanemasa Kinoshita (1 person) Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)極低温媒体を被冷却液の液相中に直接噴出させる
ことを特徴とする極低温媒体の供給方法。
(1) A method for supplying a cryogenic medium, characterized by directly jetting the cryogenic medium into the liquid phase of a liquid to be cooled.
(2)被冷却液を収容する収容缶の液相中に位置する缶
壁に、缶外側に支持フランジを有し[1つ缶内外を連通
ずるノズル取付管が設けられ、このノズル取付管内には
前記液相中に極低温媒体を噴出し往つ基端側にノズルフ
ランジを有するノズルが缶外側から挿入されて配置され
、更に、このノズルには、ノズルフランジを前記支持フ
ランジとの間に挟持する固定フランジを有する極低温媒
体導入管が接続されていることを特徴とする極低温媒体
の供給装置。
(2) The can wall, which is located in the liquid phase of the storage can containing the liquid to be cooled, has a support flange on the outside of the can [one nozzle mounting pipe that communicates between the inside and outside of the can, and inside this nozzle mounting pipe] A nozzle having a nozzle flange on the proximal end side for spouting a cryogenic medium into the liquid phase is inserted from outside the can, and the nozzle further includes a nozzle flange between the support flange and the nozzle flange. A cryogenic medium supply device, characterized in that a cryogenic medium introduction pipe having a clamping fixed flange is connected thereto.
(3)特許請求の範囲第2項において、前記ノズルの近
傍には被冷却液噴出用流路が形成されていることを特徴
とする極低温媒体の供給装置。
(3) The apparatus for supplying a cryogenic medium according to claim 2, characterized in that a flow path for ejecting the liquid to be cooled is formed in the vicinity of the nozzle.
JP7971184A 1984-04-20 1984-04-20 Method and device for supplying cryogenic medium Pending JPS60222185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7971184A JPS60222185A (en) 1984-04-20 1984-04-20 Method and device for supplying cryogenic medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7971184A JPS60222185A (en) 1984-04-20 1984-04-20 Method and device for supplying cryogenic medium

Publications (1)

Publication Number Publication Date
JPS60222185A true JPS60222185A (en) 1985-11-06

Family

ID=13697788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7971184A Pending JPS60222185A (en) 1984-04-20 1984-04-20 Method and device for supplying cryogenic medium

Country Status (1)

Country Link
JP (1) JPS60222185A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948830A (en) * 1972-09-18 1974-05-11
JPS5929079A (en) * 1982-08-09 1984-02-16 Tokyo Gas Co Ltd Liquefied gas vaporizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948830A (en) * 1972-09-18 1974-05-11
JPS5929079A (en) * 1982-08-09 1984-02-16 Tokyo Gas Co Ltd Liquefied gas vaporizer

Similar Documents

Publication Publication Date Title
US4838039A (en) Direct contact evaporator/freezer
JPS598719B2 (en) Cryogenic agent delivery device configured in a closed loop
CA2114446C (en) Draft tube, direct contact cryogenic crystallizer
KR900700833A (en) Device for manufacturing and spraying ice spheres for surface treatment
JPS60222185A (en) Method and device for supplying cryogenic medium
CA1278432C (en) Condensation of zinc vapour
JPS60241902A (en) Supply device of cryogenic medium
US5921085A (en) Condenser with built-in deaerator and starting/stopping methods of the same
EP0720584B1 (en) Method and device for cooling and carbonating a liquid
CA1129334A (en) Apparatus for impregnating water with carbon dioxide
US5368787A (en) White smoke generating apparatus
JPH038352Y2 (en)
JPS6136970B2 (en)
JPS61295442A (en) Refrigerant supplier in heat-accumulating type room cooling device
JPH0572375A (en) Boiling water and natural circulation reactor
JPS61138055A (en) Tank for supplying heated liquid of predetermined temperature
JPH07503185A (en) Equipment to enrich water with CO↓2 gas to produce carbonated water
SU1643067A1 (en) Fuel processing plants
RU2018331C1 (en) Method for supply of liquid nitrogen to fire-hose barrel and device for its realization
KR100514188B1 (en) The Gas filling up equipments
JPS5929079A (en) Liquefied gas vaporizer
JPS6236019A (en) Refrigerant supplying device in caustic soda refining device
KR970003392A (en) Fluid supply method and apparatus for substrate processing
JPH06210273A (en) Fresh water and cold sea water preparation device utilizing cold heat
KR960006720Y1 (en) Refrigerating apparatus