JPS6022210A - Digital controller for hydropower plant - Google Patents

Digital controller for hydropower plant

Info

Publication number
JPS6022210A
JPS6022210A JP12950983A JP12950983A JPS6022210A JP S6022210 A JPS6022210 A JP S6022210A JP 12950983 A JP12950983 A JP 12950983A JP 12950983 A JP12950983 A JP 12950983A JP S6022210 A JPS6022210 A JP S6022210A
Authority
JP
Japan
Prior art keywords
water
numerical
calculation
flow rate
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12950983A
Other languages
Japanese (ja)
Inventor
Tetsuya Noguchi
野口 哲「や」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12950983A priority Critical patent/JPS6022210A/en
Publication of JPS6022210A publication Critical patent/JPS6022210A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To apply a digital controller to a hydropower plant and to improve the arithmetic processing efficiency by detecting a state change of the numberical input and carrying out selectively a nyumerical operation necessary for control in response to the result of said detection. CONSTITUTION:A state change detecting circuits 51 detects an intake level 14 and an intake gate opening 18 to decide the state among 71-74 for the operation of this time. For the outputs of arithmetic processors 23, 25, etc., the result of the preceding operation is held in case any new operation is not performed. Then a sequence needed for control is processed by an arithmetic processor circuit 29, and the output of this circuit 29 drives a motor 16 for operation of intake gate. The opening 18 is controlled toward a target 26 of opening amount in response to the motor gate opening characteristics 31 so that the flow rate of the water passing through an intake gate 2 is set at an amount corresponding to the output command value 12. Thus the motor output 35 is set equal to the command value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複雑な数値演算を行々う水力発電所用ディジタ
ル制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a digital control device for a hydroelectric power plant that performs complex numerical calculations.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

今まで発電所に用いられてきたリレー盤、アナログ調整
器に代って最近ではマイクロプロセッサを広用したディ
ジタル制御装置が導入されて来ている。そして、初期の
導入段階ではこのディジタル制御装置の処理内容は従来
リレー盤の処理をそのまま置換えたものが多く、また、
アナログ調整器の置換えにしても簡単橙数値演算で処理
できる場合が多く、比較的に簡単な数値演算およびリレ
ー盤と同様なシーケンス処理であった。
Recently, digital control devices that widely use microprocessors have been introduced to replace the relay panels and analog regulators that have been used in power plants up until now. At the initial stage of introduction, the processing content of this digital control device was often a direct replacement of the processing of conventional relay panels;
Even when replacing an analog regulator, it can often be processed using simple orange numerical calculations, and the sequence processing is relatively simple and similar to that of a relay board.

一方、火力、原子力発電プラン)においては各プラント
にポストコンビーータがあるので、これによシ複雑な数
値演算を処理し、シーケンメ処理や比較的簡単な数値演
算看マイクロプロセッサを用いたディジタル制御装置で
行なっている場合が多い。しかし、水力発電所において
ホストコンピュータが設置されている所は少なく、この
水力発電所においては従来のリレー盤やアナログ調整器
をマイクロプロセッサを応用したディジタル制御装置へ
置換える際に従来の機能に加えて新たな機能や従来以上
の制御精度等を要求されることが多い。そして、この新
たな機能や従来以上の制御精度等を実現するのにディジ
タル制御装置内で複雑人数値演算を行なう必要があるこ
とも少なくない◇第1図は、取水口の流量調整制御をデ
ィジタル制御装置で行Jなう様にした水力発電プラント
の水系および制御系の一般的な概略図を示したものであ
る。図において、発電所上流の水は図示しない導水路を
通して貯水池または調整池1へ流れ込み、゛取水ロ2.
水路3を通して発電所近くの上水槽4へ導カれ、さらに
ガイドベーン5を介して発電機7を駆動する水車6へ導
入され、これにより放水路8を通して図示しない下池ま
たは河川へ導かれるO この水力発電プラントでは発電機7の出力調整は、上水
槽4の水位9を水位検出器10で検出し、この上水槽水
位9に基づいて水位調整器11によシ行なっている。以
下にその出力調整がどの様に行なわれるかを説明する。
On the other hand, in thermal power and nuclear power generation plans, each plant has a postcombinator, which processes complex numerical operations and performs sequence processing and relatively simple numerical operations, and digital control using a microprocessor. This is often done using equipment. However, there are few hydroelectric power plants where host computers are installed, and when replacing conventional relay panels and analog regulators with digital control devices using microprocessors, these hydroelectric power plants have added the conventional functions. In many cases, new functions and higher control precision than before are required. In order to realize these new functions and control accuracy higher than before, it is often necessary to perform complex numerical calculations within the digital control device. 1 shows a general schematic diagram of a water system and a control system of a hydroelectric power plant as implemented by a control device. In the figure, water upstream of the power plant flows into a reservoir or regulating pond 1 through a water conduit (not shown).
This water is guided through a waterway 3 to an upper water tank 4 near the power plant, and further introduced via a guide vane 5 to a water turbine 6 that drives a generator 7, and is thereby guided through a tailrace 8 to a lower pond or river (not shown). In a hydroelectric power plant, the output of the generator 7 is adjusted by detecting the water level 9 of the water tank 4 with a water level detector 10, and using the water level regulator 11 based on the water level 9 of the water tank 4. How the output adjustment is performed will be explained below.

給電指令所等からの出力指令値12と取水口水位検出器
13によシ検出される取水口水位14とを従来のディジ
タル制御装置を適用した流量調整制御装置15へ入力し
、これらのデータにょシ出力指令値12と同じ出力を発
電するのに必要な水の使用流量を貯水池または調整池1
から流出させるのに必要な取水口f−)2の開度をその
関係式によシ算出する。そして、取水ログート2のダー
ト操作用モータ16に取付けたr−)開度検出器17に
より検出した取水口ダート開度18を流量調整制御装置
15へ入力し、関係式にょし算出された取水口ダート2
の開度と実際の取水ログート開度18とを比較し、その
偏差に応じて?−)操作用モータ16へ操作指令19を
与え取水ログート2を駆動し、貯水池または調整池1か
らの水の流出量20が出力指令値12と同じ出力の発電
を行なうのに必要な流量となる様に制御する。
The output command value 12 from a power supply control center etc. and the water intake water level 14 detected by the water intake water level detector 13 are input to the flow rate adjustment control device 15 to which a conventional digital control device is applied, and these data are used. The flow rate of water required to generate the same output as the output command value 12 is determined by
The opening degree of the water intake port f-)2 required for the water to flow out from the water is calculated using the relational expression. Then, the intake dart opening 18 detected by the r-) opening detector 17 attached to the dart operation motor 16 of the water intake log 2 is input to the flow rate adjustment control device 15, and the intake dart opening 18 is calculated using the relational expression. dirt 2
Compare the opening degree with the actual water intake log opening degree 18, and check the difference according to the deviation. -) The operation command 19 is given to the operation motor 16 to drive the water intake log 2, and the outflow amount 20 of water from the reservoir or regulation pond 1 becomes the flow rate necessary to generate power with the same output as the output command value 12. control.

ところで、上水槽4では上水槽4への水の流入量21と
上水槽4からの水の流出量22との差によシ上水槽水位
9が変化する。そこで、水位調整器11はガイドベーン
5を駆動し上水槽4からの水の流出量22を調整して上
水槽水位9が変化しなくなる様にする。ここで、水位調
整器11による調整では上水槽水位9が安定状態となる
と上水槽4への水の流入量21と上水槽4からの水の流
出量22は同じになる。そして、貯水池まだは調整池1
からの水の流出量20と上水槽4への水の流入量21.
上水量4からの水の流出量22と水車6の水の使用流量
は各々等しいので、22=21=22=水車6の水の使
用流量となシ、貯水池または調整池1からの水の流出量
20の流量を調整することで水車6の水の使用流量を調
整するととができ、これにより発電機7の出力を出力指
令値12と同じになる様に調整することができる。
By the way, in the upper water tank 4, the upper water tank water level 9 changes depending on the difference between the amount 21 of water flowing into the upper water tank 4 and the amount 22 of water flowing out from the upper water tank 4. Therefore, the water level regulator 11 drives the guide vane 5 to adjust the outflow amount 22 of water from the water tank 4 so that the water level 9 of the water tank does not change. Here, in the adjustment by the water level regulator 11, when the water tank water level 9 becomes stable, the amount 21 of water flowing into the water tank 4 and the amount 22 of water flowing out from the water tank 4 become the same. And the reservoir is still the regulating pond 1
The amount of water flowing out from the tank 20 and the amount of water flowing into the water tank 4 21.
Since the outflow amount 22 of water from the water supply volume 4 and the flow rate of water used by the water wheel 6 are equal, 22 = 21 = 22 = the flow rate of water used by the water wheel 6, and the outflow of water from the reservoir or regulating pond 1. By adjusting the flow rate 20, the flow rate of water used by the water turbine 6 can be adjusted, and thereby the output of the generator 7 can be adjusted to be the same as the output command value 12.

この様な流量調整制御を行なう水力発電プラントにおい
て、一般に急激に取水ログート2を開閉すると、水系の
過渡応答などの問題が起こるために、取水ログート2の
開閉幅等に制限がある場合が多い。そこで、第2図には
との取水口ダート2の開閉幅に制限があるときの流量調
整制御を従来のディジタル制御装置で実現する場合の制
御構成のブロック図を示す。図において、23は出力指
令値12と同じ出力を発電するのに必要な水の使用流量
すなわち流量目標値24を算出する演算処理、25は流
量目標値24を貯水池まだは調整池1から流出するのに
必要な取水ログート開度すなわちゲート開度目標値26
を流量目標値24と取水口水位検出器13によシ検出し
た取水口水位14とによシ算出する演算処理、27はf
−)開度目標値26とダート開度検出器17によシ検出
した取水口ff−)開度18とあ偏差を算出する演算処
理、28は演算処理27の出力である偏差へ取水ロダー
ト2の開閉幅に対する制限を加えてr−)操作用モータ
16へ操作指令19を与える操作指令演算処理°、29
は流量調整制御に必要なシーケンス演算処理、3oは流
量調整制御に関する警報およびモニタ等の演算処理であ
シ、31は前記ダート操作用モータ16のモータ・f−
)開度特性、32は上水槽水位特性、33は水位調整器
特性、34は水車・発電機特性、35は発電機出力を示
したものである。伺、23〜3oは第1図の流量調整制
御装置15内にある。
In a hydroelectric power plant that performs such flow adjustment control, there are often restrictions on the opening/closing width of the water intake log 2 because problems such as transient response of the water system occur when the water intake log 2 is suddenly opened and closed. Therefore, FIG. 2 shows a block diagram of a control configuration when a conventional digital control device implements flow rate adjustment control when there is a limit to the opening/closing width of the water intake dart 2. In the figure, 23 is a calculation process for calculating the flow rate of water required to generate the same output as the output command value 12, that is, the flow rate target value 24, and 25 is the calculation process for calculating the flow rate target value 24 from the reservoir or regulating pond 1. The required water intake log opening, that is, the gate opening target value 26
27 is f
-) A calculation process for calculating the opening degree 18 and the deviation from the water intake port ff detected by the opening target value 26 and the dart opening degree detector 17. r-) Operation command calculation processing for giving an operation command 19 to the operation motor 16 °, 29
3o is a sequence calculation process necessary for flow rate adjustment control, 3o is a calculation process for alarms and monitors related to flow rate adjustment control, and 31 is a motor f- of the dart operation motor 16.
) Opening characteristic, 32 is water tank water level characteristic, 33 is water level regulator characteristic, 34 is water turbine/generator characteristic, and 35 is generator output. 23 to 3o are located in the flow rate adjustment control device 15 shown in FIG.

以上の第1図、第2図に示したプラント概要および制御
の構成ブロックにょシ、水力発電プラントの発電機出力
35の調整を行なうが、本プラントでは前記した様に水
位調整器11が取水口水位9によシ発電・・後出力35
を調整しておシ貯水池または調整池1からの水の流出量
2oすなわち取水口ff−)2を通過する水の流量を調
整することで発電機出力35を調整することができる。
The plant outline and control configuration blocks shown in Figures 1 and 2 above adjust the generator output 35 of the hydroelectric power plant. Power generation based on water level 9... Output 35
The generator output 35 can be adjusted by adjusting the outflow amount 2o of water from the water reservoir or regulating pond 1, that is, the flow rate of water passing through the water intake port ff-)2.

そこで、以下に取水口r−ト2を通過する水の流量を調
整する流量調整制御の動作について説明し、併ゎせて発
電機出力35の調整についても説明する。
Therefore, the operation of the flow rate adjustment control for adjusting the flow rate of water passing through the water intake port 2 will be explained below, and the adjustment of the generator output 35 will also be explained.

本7’ 5ントでは、前記した様に取水ログート2を通
過する水の流量によシ発電機出力35が調整できるので
、出力指令値12と同じ出力を発電するのに必要な水の
使用流量を算出し、この使用流量を流すのに必要な開度
に取水ログート2を調整すれば発電機7は出力指令値1
2と同じ出力を発電する様になる。そこで、まず最初に
演算処理23において発電機出力35と水の使用流量・
との関係式から出力指令値12と同じ出力を発電するの
に必要な水の使用流量すなわち流量目標値24を算出す
る。次に、演算処理25において、この流量目標値24
と取水口水位14の関係式によりダート開度目標値26
を算出し、この26と実際の取水口r−)開度18の偏
差を演算処理27でめて演算処理28により取水口r−
ト2の開閉幅に対する制限を行ない、取水口r−)操作
用モータ16に対して操作指令19を与える。そして、
流量調整制御に必要なシーケンス処理を演算処理29で
、警報およびモニタ等の処理を演算処理3oで行なう。
In this case, the generator output 35 can be adjusted according to the flow rate of water passing through the water intake log 2 as described above, so the flow rate of water used to generate the same output as the output command value 12 can be adjusted. Calculate and adjust the water intake log 2 to the opening degree necessary to flow this usage flow rate, the generator 7 will output the command value 1.
It will generate the same output as 2. Therefore, first, in the arithmetic processing 23, the generator output 35 and the water usage flow rate/
The flow rate of water required to generate the same output as the output command value 12, that is, the target flow rate value 24 is calculated from the relational expression. Next, in the calculation process 25, this flow rate target value 24
The dart opening target value 26 is determined by the relational expression between and water intake water level 14.
is calculated, and the deviation between this 26 and the actual water intake r-
The opening/closing width of the water intake port 2 is limited, and an operation command 19 is given to the water intake port r-) operation motor 16. and,
Sequence processing necessary for flow rate adjustment control is performed by arithmetic processing 29, and processing for alarms, monitors, etc. is performed by arithmetic processing 3o.

以上の様に流量調整制御装置15で行々われてダート操
作用モータ1.6へ操作指令19が与えられると、ダー
ト操作用モータ16はモータ・ダート開度特性31によ
シ実際の取水口f−)開度18が前記ゲート開度目標値
26となる様に取水口r−ト2を調整する。これによシ
、出力指令値12と同じ出力を発電するのに必要な水の
流量が取水口f −) 2を通過し流量調整制御が行な
われることになる。そして、この水取口r−ト2を通過
する流量によシ上水槽水位9が上水槽水位特性32に応
じて変化し、水位調整器11はこの水位変化が起こらな
くなる様にガイドベーン5を駆動上、水車6の水の使用
流量を調整する。ここで、水車6の水の使用流量は上水
槽4からの水の流出量22であシ、上水槽4への水の流
入量21は貯水池または調整池1からの水の流出量20
と同じである。伺、上水槽水位9が変化しなくなるのは
上水槽54への水の流入量21と上水槽4への水の流出
量22が等しくなった場合である。以上のことから、水
位調整器11は取水Or−ト2を通過する水の流量と水
車6の水の使用流量とを等しくする様な調整が行表われ
ることになる。そこで、前記した演算処理23の発電機
出力35と水車6の水の使用流量の関係式に本プラント
の水車6の水の使用流量と発電機出力35の関係式を用
いることで、取水ログート2を通過する水お流量を調整
すれば、発電機出力35が出力指令値12と同じに々る
様に調整できる。
When the operation command 19 is given to the dart operation motor 1.6 by the flow rate adjustment control device 15 as described above, the dart operation motor 16 uses the motor/dart opening characteristic 31 to control the actual water intake. f-) Adjust the water intake port 2 so that the opening degree 18 becomes the target gate opening value 26. As a result, the flow rate of water necessary to generate the same output as the output command value 12 passes through the water intake port f-)2, and flow rate adjustment control is performed. The upper water tank water level 9 changes according to the upper water tank water level characteristic 32 due to the flow rate passing through the water intake port 2, and the water level regulator 11 adjusts the guide vane 5 so that this water level change does not occur. For driving purposes, the flow rate of water used by the water turbine 6 is adjusted. Here, the flow rate of water used by the water turbine 6 is the outflow amount 22 of water from the water tank 4, and the inflow amount 21 of water to the water tank 4 is the outflow amount 20 of water from the reservoir or regulating pond 1.
is the same as The water level 9 of the water tank does not change when the amount of water flowing into the water tank 54 21 and the amount of water flowing out 22 of the water tank 4 become equal. From the above, the water level regulator 11 performs an adjustment to equalize the flow rate of water passing through the water intake orifice 2 and the flow rate of water used by the water turbine 6. Therefore, by using the relational expression between the water usage flow rate of the water turbine 6 of this plant and the generator output 35 in the relational expression between the generator output 35 and the water usage flow rate of the water turbine 6 in the arithmetic processing 23 described above, the water intake log 2 By adjusting the flow rate of water passing through, the generator output 35 can be adjusted to be the same as the output command value 12.

ところで、以上の様な流量調整制御において、出力指令
値12は通常数十分間は一定であるし、取水口水位14
も数分間は一定値を保つ様な数値入力であり、演算処理
23.25等は常時性なう必要のある処理ではない。と
ころが、従来のディジタル制御装置では繰シ返し演算を
必要、不必要に関係なく全ての演算について行なってい
る@まだ、演算処理23.2.5では各々数値演算がほ
とんどであるが、現在の装置ではその処理の性質上、数
値演算がシーケンス演算に較べて数〜数十分(tt)る
いは特殊演算ではそれ以上)の演算処理時間を要する。
By the way, in the flow rate adjustment control as described above, the output command value 12 is usually constant for several tens of minutes, and the water intake water level 14
is a numerical input that maintains a constant value for several minutes, and the calculation processes 23, 25, etc. are not processes that need to be performed constantly. However, in conventional digital control devices, repeated calculations are performed for all calculations, regardless of whether they are necessary or not. Due to the nature of the processing, numerical calculations require several to several tens of minutes (tt) or longer for special calculations, compared to sequence calculations.

そのため、この流量調整制御の全演算処理時間に対して
演算処理23.25を実行するための演算処理時間が占
める割合が大きくなる。
Therefore, the calculation processing time for executing calculation processing 23 and 25 occupies a large proportion of the total calculation processing time for this flow rate adjustment control.

ここで、第3図にこの流量調整制御の演算処理のタイミ
ング図を示す。第3図中、左側の数字は第2図中の演算
処理を行しておりい几部分が各演算を実行している時間
を示している。また、Aは第2図の出力指令値12が変
化した状態、Bは出力指令値12が変化せず取水口水位
14が変化した状態、Cは出力指令値12.取水口水位
14がともに変化せず取水口開度18が変化した状態、
Dは出力指令値12.取水口水位14.取水ロデート開
度18の3つの数値入力がいずれも変化しなかった状態
を示す。伺、第3図中の斜線部分は制御に必要ない演算
時間を示している。
Here, FIG. 3 shows a timing diagram of the arithmetic processing of this flow rate adjustment control. In FIG. 3, the numbers on the left side indicate the time during which the arithmetic processing section in FIG. 2 executes each calculation. In addition, A is a state in which the output command value 12 in FIG. A state in which the intake water level 14 does not change and the intake opening 18 changes,
D is the output command value 12. Water intake water level 14. This shows a state in which none of the three numerical inputs for the water intake rod date opening degree 18 has changed. The shaded area in FIG. 3 indicates calculation time not required for control.

第3図からめかる様に従来のディジタル制御装置ではB
 、C、Dの状態となると制御上必要のない演算を処理
するのに大伴の時間を費やすので、この制御全体の処理
時間が長く々ってしまう。また、制御全体の処理を速い
周期で繰り返す必要のある場合にはこの不必要な演算の
ために他の処理に使用できる演算時間が制約されて、そ
の処理時間で処理できる機能すなわち演算量が制約され
ることもある。その上、出力指令値12.取水口水位1
4.取水口ダート開度18尋がアナログ量であると、そ
のドリフトやノイズによる微小変動に対しても演算を行
なうが、これらの演算も制御上不必要である。以上の様
に、従来のディジタル制御装置では制御に不必要な演算
を行なうので、演算時間の無駄が多く、また、その演算
時間の無駄によ多処理できる演算量に制約が出て来る等
の欠点があった。
As can be seen from Figure 3, in the conventional digital control device, B
, C, and D, a large amount of time is spent processing calculations that are not necessary for control, so the overall processing time for this control becomes long. In addition, when the entire control process needs to be repeated at a fast cycle, this unnecessary calculation limits the calculation time that can be used for other processes, which limits the functions that can be processed in that processing time, that is, the amount of calculation. Sometimes it is done. Moreover, the output command value is 12. Intake water level 1
4. If the water intake dart opening degree of 18 fathoms is an analog quantity, calculations will be performed for minute fluctuations due to drift and noise, but these calculations are also unnecessary for control purposes. As mentioned above, conventional digital control devices perform unnecessary calculations for control, resulting in a lot of wasted calculation time, and this waste of calculation time limits the amount of calculations that can be processed. There were drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明の目的は以上の様な演算時間の無駄をなくシ、演
算処理効率が良く、適切な制御を行なうことができる水
力発電所ディジタル制御装貨を提供することである。
An object of the present invention is to provide a digital control equipment for a hydroelectric power plant that eliminates the waste of calculation time as described above, has high calculation processing efficiency, and can perform appropriate control.

〔発明の概要〕[Summary of the invention]

本発明は、数値演算がシーケンス演算に較べて数〜数十
倍の演算処理時間を要する点に着目し、数値入力の状態
変化を検出する処理を新たに従来の演算処理の前に加え
て、この検出した数値入力の状態変化によシ制御に必要
な数値演算を行なう様にすることで、ディジタル制御装
置内の数値演算のうちで制御に必要な数値演算だけを行
なうことにより演算時間の無駄をなくシ、演算時間の有
効活用を図るとともに、これによシ演算時間による演算
量への制約を減少させ併せて数値入力の微、小変動を用
いた不必要な演算を防止する様にしたことを特徴とする
ものである。
The present invention focuses on the fact that numerical calculations require several to several tens of times the processing time compared to sequence calculations, and adds a new process to detect changes in the state of numerical input before the conventional calculation processing. By performing the numerical calculations necessary for control based on the state change of the detected numerical input, only the numerical calculations necessary for control among the numerical calculations in the digital control device are performed, thereby eliminating wasted calculation time. In addition to eliminating the calculation time and making effective use of the calculation time, this also reduces the restriction on the amount of calculation due to the calculation time, and also prevents unnecessary calculations using minute and small fluctuations in numerical input. It is characterized by this.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第4図は本発明の一実施例に係る流量調整制御装置15
の制御ブロック図を示したものである。
FIG. 4 shows a flow rate adjustment control device 15 according to an embodiment of the present invention.
Fig. 2 shows a control block diagram of the system.

同、この流量調整制御装置15が適用される水力発電プ
ラントo水系および制御系は第1図に示した通り、従来
の場合と同様とする。
Similarly, the water system and control system of a hydroelectric power plant to which this flow rate adjustment control device 15 is applied are the same as in the conventional case, as shown in FIG.

第4図において、12〜14.16〜19゜23〜亭5
は第2図に示したものと同じものである。この制御構成
ブロック図に新たに加えられた演算処理は状態変化検出
処理51であるので、これについて説明する。
In Figure 4, 12~14.16~19°23~tei5
is the same as shown in FIG. The arithmetic processing newly added to this control configuration block diagram is the state change detection processing 51, so this will be explained.

この状態変化検出処理51は出力指令値12゜取水口水
位14.取水ログート開度18の3つの数値入力の状態
変化検出処理を行なって込る。
This state change detection process 51 is performed when the output command value is 12 degrees and the water intake water level is 14 degrees. A state change detection process for the three numerical inputs of the water intake log opening degree 18 is performed.

第5図にこの状態変化検出処理51の処理内容のブロッ
ク図を示す。図において、出方指令値12の状態変化を
検出する方法は次の通りである。まず、出力指令値12
の記憶用メモリ55に記憶した前回演算使用の出力指令
値56と今回の出力指令値12とを比較器57によシ比
較し、この差があらかじめ定めた設定値58以上であっ
た場合に出力指令値12の状態が変化した事を検出する
FIG. 5 shows a block diagram of the processing contents of this state change detection processing 51. In the figure, the method for detecting a change in the state of the output command value 12 is as follows. First, output command value 12
The comparator 57 compares the output command value 56 used for the previous calculation stored in the storage memory 55 and the current output command value 12, and if the difference is greater than or equal to a predetermined set value 58, the output is output. Detects that the state of command value 12 has changed.

そして、状態変化が起こった事を示す出力指令値12の
状態変化信号59をONシ、これにょシ演算に使用する
出力指令値52として今回の出力指令値12を選択する
とメもに次回の演算のために記憶用メモリ55にこの今
回の出方指令値12を記憶する。また、出力指令値12
の状態変化信号がOFFの場合は前回演算使用の出力指
令値56を保持する。伺、取水口水位14.取水口f−
)開度18についても出力指令値12と同様の状態変化
検出処理を行なっている。ただ、出力指令値12の記憶
用メモリに対応して取水口水位14の記憶用メモリ60
.取水口ダート開度18の記憶用メモリ65があシ、前
回演算使用の出力指令値56のかわシに各々前回演算使
用の取水口水位61゜取水口f−)開度62があシ、出
力指令値12の比較器57のかわシに各々比較器62.
67があり、出力指令値12の状態変化を検出するため
にあらかじめ定めた設定値58にかわって各々の状態変
化を検出するためにあらかじめ定めた設定値63.68
があ)、出力指令値12の状態変化信号59のかわシに
各々取水口水位14の状態変化信号64.取水口r−)
開度18の状態変化信号69が出力さ九る点および数値
入力の出力光が演算に使用する取水口水位53.取水口
ダート開度54となる点が異なるだけである。
Then, when the state change signal 59 of the output command value 12 indicating that a state change has occurred is turned ON, and the current output command value 12 is selected as the output command value 52 to be used for this calculation, it will also be used for the next calculation. This current output command value 12 is stored in the storage memory 55 for this purpose. In addition, the output command value 12
When the state change signal is OFF, the output command value 56 used in the previous calculation is held. The intake water level is 14. Water intake f-
) The same state change detection processing as for the output command value 12 is performed for the opening degree 18 as well. However, a memory 60 for storing the water intake water level 14 corresponds to a memory for storing the output command value 12.
.. The storage memory 65 for the intake dart opening 18 is blank, and the output command value 56 used for the previous calculation is replaced by the intake water level 61° intake f-) opening 62 for the previous calculation. In addition to the comparator 57 for the command value 12, each comparator 62.
67, and instead of the preset value 58 predetermined for detecting the state change of the output command value 12, there is a predetermined set value 63.68 for detecting each state change.
), the state change signal 59 of the output command value 12 and the state change signal 64 of the water intake water level 14, respectively. Water intake r-)
The point where the state change signal 69 of the opening degree 18 is output and the output light of the numerical input is the water intake water level 53 used for calculation. The only difference is that the water intake dart opening degree is 54.

以上の様にして、3つの数値入力の状態変化を検出しそ
の状態変化信号59.64.69を演算選択処理70へ
入力し、本発明を適用した流量調整制御装置15内の数
値演算のうち、どの数値演算を行なう必要があるかを決
定する。71は出力指令値12が変化したため全ての演
算を行なう場合である。72は出力指令値12が変化せ
ず取水口水位14が変化したため演算に使用する出力指
令値52から流量目標値24を算出する演算処理23は
必要ないが、流量目標値24と演算に使用する取水口水
位53すなわち更新された今回の取水口水位14とから
開度目標26を算出演算処理25から以後の演算処理は
必要な場合である。73は、出力指令値12.取水口水
位14が変化せず取水口ff−)開度18が変化したた
め演算処理23゜25が必要なく、演算処理27以後が
必要である場合である。そして、74は、3つの数値人
力12゜14.18ともに変化がなく、演算処理23,
25゜27が必要ない場合を示している。これら71゜
72.73.74は各々第3図(2)A、B、C,Dと
同様の状態である。
As described above, the state changes of the three numerical inputs are detected, and the state change signals 59, 64, and 69 are input to the calculation selection process 70, and one of the numerical calculations in the flow rate adjustment control device 15 to which the present invention is applied. , determine which numerical operations need to be performed. 71 is a case where all calculations are performed because the output command value 12 has changed. In case 72, the output command value 12 does not change and the intake water level 14 changes, so the calculation process 23 for calculating the flow rate target value 24 from the output command value 52 used in the calculation is not necessary, but the flow rate target value 24 and the flow rate target value 24 are used in the calculation. The opening degree target 26 is calculated from the water intake water level 53, that is, the updated water intake water level 14 of this time.The calculation processing from the calculation processing 25 to the subsequent calculation processing is necessary. 73 is the output command value 12. This is a case where the water intake water level 14 does not change and the water intake ff-) opening degree 18 changes, so calculation processing 23.degree. 25 is not necessary, and calculation processing 27 and subsequent steps are necessary. 74 has no change in the three numerical values 12°14.18, and the calculation process 23,
This shows a case where 25°27 is not necessary. These 71°, 72, 73, and 74 are in the same state as A, B, C, and D in FIG. 3(2), respectively.

以上の様な構成において、本水力発電プラントの出力調
整について第1図、第4図を参照して説明する。
In the above configuration, output adjustment of the present hydroelectric power plant will be explained with reference to FIGS. 1 and 4.

まず、状態変化検出処理51によシ出力指令値12、取
水口水位14.取水口ダート開度18の状態変化を各々
検出し、これによシ今回の演算は71.72.73.7
4のいずれの状態で実施するかを決定する。71の場合
には、全ての演算を行ない従来のディジタル制御装置と
同様の演算処理時間が必要となる。72の場合は演算処
理23を省略するし、73では演算処理23.25を、
74では演算処理23.25.27を各々省略すること
になシ演算処理時間が従来のディジタル制御装置に較べ
て短くなる。ここで、各演算処理23゜25.27の出
力は新しい演算を行なわない場合は、前回の演算結果を
保持する様になっているので、27の出力に演算処理2
8によシ取水ログート2の開閉幅の制限を加えて取水口
ダート操作用モータ16へ操作指令19を出力するとい
う従来の処理は演算処理23.25.27を省略しても
問題なく、その後に制御に必要なシーケンスの処理を演
算処理29で警報およびモニタ等の処理を演算処理30
で行なう様にする。この様にして出力された操作指令1
9によシ取水ロダート操作用モータ16を駆動する。そ
して、以後は従来の流量調整制御装置15でf−)操作
用モータ16を駆動したのと同様に、モータ・?−)開
度特性31に応じて取水口f−)開度18をゲート開度
目標値26へ調整し、これによシ取水口f −) 2を
通過する水の流量が出力指令値12に応じた流量目標値
24と同様になシ、水位調整器11が上水槽水位特性3
2.水位調整器特性33を介してガイドベーン5を駆動
する。これにより、水車・発電機特性34に応じて発電
される発電機出力35が出力指令値12と同じになる様
に調整される。
First, the state change detection process 51 determines the output command value 12, the water intake water level 14. Each state change of the water intake dart opening degree 18 is detected, and based on this, the current calculation is 71.72.73.7
4. Decide in which state the process will be carried out. In the case of 71, all the calculations are performed and the calculation processing time similar to that of a conventional digital control device is required. In the case of 72, the calculation process 23 is omitted, and in the case of 73, the calculation process 23.25 is
In 74, since the calculation processes 23, 25, and 27 are omitted, the calculation processing time is shorter than that of a conventional digital control device. Here, the output of each calculation process 23°25.27 is designed to hold the previous calculation result if no new calculation is performed, so the output of calculation process 27 is
The conventional process of adding a limit to the opening/closing width of the intake log 2 to 8 and outputting the operation command 19 to the intake dart operation motor 16 has no problem even if the calculation processes 23, 25, and 27 are omitted. Processing of sequences necessary for control is performed by calculation processing 29, and processing of alarms, monitors, etc. is performed by calculation processing 30.
Let's do it as follows. Operation command 1 output in this way
9 drives the motor 16 for operating the water intake rodato. From then on, the conventional flow rate adjustment control device 15 drives the motor ? -) Adjust the water intake f-) opening 18 to the gate opening target value 26 according to the opening characteristic 31, and thereby the flow rate of water passing through the water intake f-) 2 reaches the output command value 12. Similarly to the corresponding flow rate target value 24, the water level regulator 11 is set to the upper water tank water level characteristic 3.
2. Drive the guide vane 5 via the water level regulator characteristic 33. Thereby, the generator output 35 generated according to the water turbine/generator characteristics 34 is adjusted to be the same as the output command value 12.

以上の様に、従来のディジタル制御装置と同様に取水口
ダート2を通過する流量を調整する事で発電機出力35
が出力指令値12と同じになる様に調整する制御を実現
できる。ここで、本発明を適用した流量調整制御装置1
5内の演算処理時間を見てみることにする。第6図がそ
の演算処理のタイミング図であシ前記第3図に対応する
ものである。この第6図も第3図と同様に左側の数字は
第4図中の演算処理を示してお)、汎部分が各演算の実
行時間である。また、71.72.73゜74は第3図
中のA、B、C,Dと同じく前記した各数値入力の変化
状態を示している。
As described above, by adjusting the flow rate passing through the water intake dart 2, the generator output can be increased to 35
It is possible to realize control that adjusts so that the output command value becomes the same as the output command value 12. Here, flow rate adjustment control device 1 to which the present invention is applied
Let's take a look at the calculation processing time in 5. FIG. 6 is a timing diagram of the arithmetic processing and corresponds to FIG. 3 described above. Similarly to FIG. 3, in FIG. 6, the numbers on the left side indicate the calculation processing in FIG. 4), and the general portion is the execution time of each calculation. Further, 71.72.73.degree. 74 indicates the state of change of each of the numerical inputs described above, similar to A, B, C, and D in FIG.

筒6図では第3図になかった状態変化検出処理51が追
加されているが、本発明により第3図に見られ九B、C
9Dの状態での演算処理時間の無駄(又部分)が除去さ
れておシ、その分処理時間が短くなっている。
In Figure 6 of cylinder 6, a state change detection process 51 that was not present in Figure 3 has been added, but according to the present invention, it can be seen in Figure 3.
The waste (or part) of the arithmetic processing time in the 9D state is removed, and the processing time is shortened accordingly.

通常、出力指令値12は数十分間は一定であシ、取水口
水位も数分間は一定値を保つが、この間が第3図のB、
C,Dの状態に相当するので、本発明を適用した流量調
整制御装置は従来のものに較べて制御に必要な演算を短
時間で処理することができる。また、定周期で繰シ返し
演算を行なう場合には演算時間に余裕ができる。その上
、状態変化検出処理51においてノイズ等に起因する数
値入力の微小変動の数値を用いる様な不必要な演算を防
止でき、制御上適切な演算を行なうことができる様にな
る。
Normally, the output command value 12 remains constant for several tens of minutes, and the water intake water level also maintains a constant value for several minutes, but during this time B in Fig. 3,
Since this corresponds to states C and D, the flow rate adjustment control device to which the present invention is applied can process calculations necessary for control in a shorter time than the conventional device. Further, when the calculation is performed repeatedly at regular intervals, the calculation time can be increased. Moreover, in the state change detection process 51, unnecessary calculations such as using numerical values of minute fluctuations in numerical input due to noise etc. can be prevented, and calculations appropriate for control can be performed.

伺、上記実施例では演算処理を行なう必要がある場合の
検出を各数値入力の変化量によって行なったが、その数
値入力を使用する数値演算がその数値入力の変化率に関
係する場合は演算処理の必要な場合の検出にその数値入
力の変化率を用いてもよい。
In the above embodiment, the need to perform arithmetic processing was detected based on the amount of change in each numerical input, but if the numerical calculation using that numerical input is related to the rate of change of that numerical input, the arithmetic processing is performed. The rate of change of the numerical input may be used to detect the necessary case.

また、種々の数値演算を含んでいる場合には、その演算
処理の必要な場合の検出を薮値入力の変化率を組合せて
行なってもよい0 〔発明の効果〕 以上の様に本発明によれば、数値入力の状態変化を検出
し、この検出結果によシ制御に必要な数値演算を選択し
実行するようにしたので、従来見られた制御上必要のな
い演算に費やされる演算処理時間の無駄を除去し、演算
処理時間の短縮や余裕をもたらし、演算処理効率を良く
してホストコンピュータがない等の理由によシ複雑な数
値演算を要求される水力発電所に適用するのに適したデ
ィジタル制御装置が得られる。
Furthermore, if various numerical calculations are included, the necessity of the calculation processing may be detected by combining the rate of change of the bush value input. [Effects of the Invention] As described above, the present invention According to the method, changes in the state of numerical inputs are detected, and numerical calculations necessary for control are selected and executed based on the detection results, thereby reducing the calculation processing time that was previously spent on calculations that are not necessary for control. It eliminates waste, shortens calculation processing time and increases processing efficiency, making it suitable for use in hydropower plants where complex numerical calculations are required due to the lack of a host computer, etc. A digital control device is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な水力発電プラントの水系および制御系
の概略図、第2図は従来の流量調整制御装置のブロック
図、第3図は従来の流量調整制御の演算処理タイミング
図、第4図は本発明の一実施例に係る流量調整制御装置
のブロック図、第5図は第4図における状態変化検出処
理の処理内容ブロック図、第6図は第4図における流量
調整制御の演算処理タイミング図である。 12.52.56・・・出力指令値、23.25 。 27・・・演算処理、51・・・状態変化検出処理、5
3゜61・・・取水口水位、54.66・・・取水口f
−)開度、55.60.65・・・記憶用メモリ、57
゜62.67・・・比較器、58.63.68・・・設
定値、59.64169・・・状態変化信号、70・・
・演算選択処理、71・・・全ての演算を行なう場合、
72・・・25以後の演算を行なう場合、73・・・2
7以後の演算を行なう場合、74・・・23.25.2
7の演算が必要ない場合。
Figure 1 is a schematic diagram of the water system and control system of a typical hydroelectric power plant, Figure 2 is a block diagram of a conventional flow rate adjustment control device, Figure 3 is a calculation processing timing diagram of conventional flow rate adjustment control, and Figure 4 The figure is a block diagram of a flow rate adjustment control device according to an embodiment of the present invention, Figure 5 is a block diagram of the processing contents of the state change detection process in Figure 4, and Figure 6 is the calculation process of flow rate adjustment control in Figure 4. FIG. 12.52.56...Output command value, 23.25. 27... Arithmetic processing, 51... State change detection processing, 5
3゜61...water intake water level, 54.66...water intake f
-) Opening degree, 55.60.65... Memory for storage, 57
゜62.67... Comparator, 58.63.68... Setting value, 59.64169... Status change signal, 70...
- Calculation selection process, 71... When performing all calculations,
When performing calculations after 72...25, 73...2
When performing calculations after 7, 74...23.25.2
When operation 7 is not necessary.

Claims (1)

【特許請求の範囲】[Claims] (1)要求される制御を実現させるために周期的に数値
演算を行なう水力発電所用のディジタル制御装置におい
て、前記数値演算の前回演算に使用した複数の数値入力
を記憶する記憶手段と、その記憶した数値と対応する前
記複数の数値入力の現在値を各々比較し、前記複数の数
値入力の各変化量があらかじめ設定された値以上である
ことを条件に前記複数の数値入力の状態変化を各々検出
する手段とを備え、その状態変化を検出した数値入力に
関係した数値演算のみを行なうことを特徴とする水力発
電所用ディジタル制御装置。 (2、特許請求の範囲第1項記載において、前記複数の
数値入力の各々の状態変化を検出する手段として、各数
値入力の変化率を用いることを特徴とする水力発電所用
ディジタル制御装置口(3)特許請求の範囲第1項記載
において、前記複数の数値入力の各々の状態変化を検出
する手段として各数値入力の特性、演算内容に厄払て前
記数値入力の変化量と変化率を組み合わせて用いること
を特徴とする水力発電所用ディジタル制御装置0
(1) In a digital control device for a hydroelectric power plant that periodically performs numerical calculations in order to realize required control, a storage means for storing a plurality of numerical inputs used in the previous numerical calculation, and a storage means for storing the plurality of numerical inputs used in the previous calculation of the numerical calculations; Compare each of the current values of the plurality of numerical inputs corresponding to the numerical value, and change the state of each of the plurality of numerical inputs on the condition that the amount of change in each of the plurality of numerical inputs is greater than or equal to a preset value. What is claimed is: 1. A digital control device for a hydroelectric power plant, comprising: detecting means, and performing only numerical calculations related to numerical inputs whose state changes have been detected. (2. A digital control device for a hydroelectric power plant according to claim 1, characterized in that the rate of change of each numerical input is used as means for detecting a change in the state of each of the plurality of numerical inputs ( 3) In claim 1, the means for detecting a change in state of each of the plurality of numerical inputs is a combination of the amount and rate of change of the numerical inputs by taking into account the characteristics and calculation contents of each numerical input. A digital control device for a hydroelectric power plant characterized by its use in
JP12950983A 1983-07-18 1983-07-18 Digital controller for hydropower plant Pending JPS6022210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12950983A JPS6022210A (en) 1983-07-18 1983-07-18 Digital controller for hydropower plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12950983A JPS6022210A (en) 1983-07-18 1983-07-18 Digital controller for hydropower plant

Publications (1)

Publication Number Publication Date
JPS6022210A true JPS6022210A (en) 1985-02-04

Family

ID=15011245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12950983A Pending JPS6022210A (en) 1983-07-18 1983-07-18 Digital controller for hydropower plant

Country Status (1)

Country Link
JP (1) JPS6022210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224008A (en) * 1985-03-29 1986-10-04 Yokogawa Electric Corp Sample value pi controlling device
US6571926B2 (en) 2001-02-12 2003-06-03 Means Industries, Inc. One-way clutch assembly featuring improved strut stability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841097U (en) * 1971-09-17 1973-05-25
JPS5464949A (en) * 1977-11-02 1979-05-25 Hitachi Ltd Bus-system digital input device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841097U (en) * 1971-09-17 1973-05-25
JPS5464949A (en) * 1977-11-02 1979-05-25 Hitachi Ltd Bus-system digital input device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224008A (en) * 1985-03-29 1986-10-04 Yokogawa Electric Corp Sample value pi controlling device
US6571926B2 (en) 2001-02-12 2003-06-03 Means Industries, Inc. One-way clutch assembly featuring improved strut stability

Similar Documents

Publication Publication Date Title
US4478783A (en) Nuclear power plant feedwater controller design
CN108153155A (en) A kind of modeling of power station floodgate based on multiple regression algorithm and computational methods
US5410470A (en) Process control method and system with employment of fuzzy inference
Talange et al. Spatial control of a large PHWR by decentralized periodic output feedback and model reduction techniques
Moon et al. Modified PID load-frequency control with the consideration of valve position limits
JPS6022210A (en) Digital controller for hydropower plant
JP2758237B2 (en) Hydroelectric power plant generator
RU51680U1 (en) HYDROTURBINE ROTATION REGULATOR
JPS5849645B2 (en) Intake gate control device
Burt et al. Advances in PLC-based canal automation
Zhang et al. PID control with fuzzy compensation for hydroelectric generating unit
Glattfelder et al. Hydropower reservoir level control: a case study
Lee et al. Robust controller design of nuclear power reactor by parametric method
JPH0370805B2 (en)
JP2001211694A (en) Governor control system for water-wheel generator
JP3018767B2 (en) Water level adjustment device
JPS5849647B2 (en) Hatsudenshiyo no Uten Seigiyosouchi
JP2737202B2 (en) Water turbine guide vane control device
CN118034022A (en) Method and system for optimizing control of water turbine
JPH0626080Y2 (en) Autonomous operation control device
JPS58216787A (en) Method for controlling inflow rate of gas for aeration in sewage treatment
Ormandzhiev et al. Synthesis of Fuzzy Controller for Cross-Flow Water Turbine
JPS5925088A (en) Light load air charging controller
JPH0350114B2 (en)
JPS61226573A (en) Water level controller