JPS60221706A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS60221706A
JPS60221706A JP60063561A JP6356185A JPS60221706A JP S60221706 A JPS60221706 A JP S60221706A JP 60063561 A JP60063561 A JP 60063561A JP 6356185 A JP6356185 A JP 6356185A JP S60221706 A JPS60221706 A JP S60221706A
Authority
JP
Japan
Prior art keywords
multimode
mode
transmission line
light
single mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60063561A
Other languages
Japanese (ja)
Inventor
Katsuki Tanaka
田中 捷樹
Yoshitaka Takasaki
高崎 喜孝
Yasushi Takahashi
靖 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60063561A priority Critical patent/JPS60221706A/en
Publication of JPS60221706A publication Critical patent/JPS60221706A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To decrease a coefficient of mode coupling and to prevent electric power from being diffused by providing an annular multimode core part to the outer peripheral part of a single-mode core as a center part. CONSTITUTION:The single mode transmission line consists of the single-mode core part 1 and an intermediate clad part 5 and a multimode transmission line consists of an annular multimode clad part 5 and an external clad part 3. This structure makes the electromagnetic field distribution of light of the single-mode transmission line greatly different from that of the annular multimode transmission line, so mode switching between the both is hard to occur and the diffusion of photoelectric power from a single mode area to a multimode area is suppressed low.

Description

【発明の詳細な説明】 公衆通信回線の加入者に画像等を含む各種のサービスを
行なう場合、コスト等の面から、光ファイバを導入する
ことが有望視されている。この場合、中央局(センタ)
から加入者端末(サブスクライバ)への伝送情報として
は、音声、ディジタル化多重信号、動画、静止画などの
VHF多重信号が考えられるが、これらを総合した信号
帯域は400MHz以上であり、信号がすべてディジタ
ル化される場合には、数100 MHzの帯域となる。
DETAILED DESCRIPTION OF THE INVENTION When providing various services including images to subscribers of public communication lines, it is considered promising to introduce optical fibers from the viewpoint of cost and the like. In this case, the central office
The information transmitted from the terminal to the subscriber terminal (subscriber) may include VHF multiplexed signals such as audio, digitized multiplexed signals, moving images, and still images, but the combined signal band of these is 400MHz or more, and all signals When digitized, the band is several hundred MHz.

一方、サブスクライバからセンタへの伝送情報としては
音声、ビデオ、データやファックスなpのデノげ々lし
a畳かνであるhs、こり、への信号帯域は高々s5M
Hz程度であり、ディジタル化を行なっても、80MH
z程度の帯域である。゛この観点からみると、センタか
らサブスクライバへの下りの伝送は光源として高速変調
が可能な半導体レーザを、また伝送路として広帯域特性
を有する単一モードファイバを用い、サブスクライバか
らセンタへの上りの伝送は高速変調特性が要求されない
ことから光源として安価な発光ダイオード(LFtD)
を用い、伝送路としては、LEDとの結合効率が良い多
モードファイバを用いることが考えられる。このため、
−加入者あたり、2本の光ファイバを布設することが考
えられるが、加入者線配線の単純化の観点から、1本の
光ファイバで上記双方向の伝送を行なうことが望ましい
0従来、このような用途に用いる光ファイバとして第1
図に示されるような構造が考えられていた。
On the other hand, the signal band for transmission information from the subscriber to the center, such as voice, video, data, and fax, is at most S5M.
Hz, and even if it is digitized, it will only reach 80MHz.
It is a band of about z.゛From this point of view, the downstream transmission from the center to the subscribers uses a semiconductor laser capable of high-speed modulation as the light source, and the transmission path is a single mode fiber with broadband characteristics, and the upstream transmission from the subscribers to the center Since high-speed modulation characteristics are not required, light-emitting diodes (LFtD) are inexpensive as light sources.
It is conceivable to use a multimode fiber with good coupling efficiency with the LED as the transmission line. For this reason,
- Although it is possible to install two optical fibers per subscriber, from the viewpoint of simplifying subscriber line wiring, it is desirable to perform the above bidirectional transmission with one optical fiber. The first optical fiber used in applications such as
The structure shown in the figure was considered.

ここで、lは単一モードコア部、2は多モードコア部で
あり、3は両者に共通のクラッド部である0本構造によ
り、単一および多モードの双方向伝送が可能であるが、
このような非対称構造の光ファイバは、低損失な光ファ
イバの作製法であるMCVD法やVAD法による製作が
きわめて難かしく。
Here, l is a single mode core part, 2 is a multimode core part, and 3 is a cladding part common to both. Due to the 0-wire structure, single and multimode bidirectional transmission is possible.
It is extremely difficult to manufacture an optical fiber having such an asymmetric structure using the MCVD method or VAD method, which are methods for manufacturing a low-loss optical fiber.

実用的ではない。このため、上記手法によって容易に作
製できる構造として第2図(a)に示す同心構造が提案
されている。この構造における各部の屈折率分布は第2
図(b)のごとくであり、この場合、単一モード伝送路
は単一モードコア部lとこれより屈折率の低く、単一モ
ードコア部に対してクラッドとして作用する多モードコ
ア部2により構成され、多モード伝送路は多モードコア
部2とクラッド部3により構成される。本構造は同心構
造のため、第1図の構造に比べ製作が容易である利点を
有するが、以下の問題がある。すなわち、本構造では単
一モードコア部を伝搬する光の伝搬定数と多モードコツ
部伝搬光の伝搬定数の差が小さく単一モードコア部に入
射させた光電力は。
Not practical. For this reason, a concentric structure shown in FIG. 2(a) has been proposed as a structure that can be easily manufactured by the above method. The refractive index distribution of each part in this structure is the second
In this case, the single mode transmission line consists of a single mode core part l and a multimode core part 2, which has a lower refractive index and acts as a cladding for the single mode core part. The multimode transmission line is composed of a multimode core section 2 and a cladding section 3. Since this structure is a concentric structure, it has the advantage of being easier to manufacture than the structure shown in FIG. 1, but it has the following problems. That is, in this structure, the difference between the propagation constant of light propagating through the single mode core section and the propagation constant of light propagating through the multimode core section is small, and the optical power incident on the single mode core section is small.

微小な光ファイバの曲げなどに基づくモード変換iこよ
り伝送距離とともに、しだいに多モードコア部に拡散し
て行き、長距離伝送後は多モード分布となり多モード分
散のため、結局、広帯域伝送ができない。
Mode conversion due to slight bending of the optical fiber, etc. As the transmission distance increases, the mode is gradually diffused into the multimode core, and after long distance transmission, it becomes a multimode distribution, resulting in multimode dispersion, making broadband transmission impossible. .

本発明は、上記欠点をのぞいた単一モード、多モード複
合光ファイバを提供するものであり、多モードコア部を
リング状とし、単一モードの伝搬定数と、多モードの伝
搬定数の差を大きくしてモード結合係数を小さくシ、電
力の拡散が生じζこくくするものである。
The present invention provides a single mode/multimode composite optical fiber which eliminates the above-mentioned drawbacks.The multimode core portion is formed into a ring shape, and the difference between the single mode propagation constant and the multimode propagation constant is reduced. By making it larger, the mode coupling coefficient becomes smaller, which causes power dispersion and makes it more difficult.

以下図面を用いて本発明の詳細な説明する0第3図(a
)は本発明による光ファイバーの実施例の構成を示す断
面図である。第3図(b)はこのファイバの屈折率分布
であり、単一モード伝送路は単一モードコア部lと中間
クラッド部5で構成され、多モード伝送路はリング状の
多モードコア部2と中間クラッド部5および外側クラ・
ンド部3により構成される。このような構造では単一モ
ード伝送路における光の電磁界分布は、リング状多モー
ド伝送路における光の電磁界分布と大きく異なるため、
両者のモード交換は起きにくく、単一モード領域から多
モード領域への光電力の拡散を低くおさえることができ
る。
The present invention will be explained in detail below with reference to the drawings.
) is a sectional view showing the structure of an embodiment of an optical fiber according to the present invention. FIG. 3(b) shows the refractive index distribution of this fiber, where the single mode transmission line consists of a single mode core part 1 and an intermediate cladding part 5, and the multimode transmission line consists of a ring-shaped multimode core part 2. and the intermediate cladding part 5 and the outer cladding part 5.
It is composed of a hand section 3. In such a structure, the electromagnetic field distribution of light in a single mode transmission line is significantly different from the electromagnetic field distribution of light in a ring-shaped multimode transmission line.
Mode exchange between the two modes is difficult to occur, and the diffusion of optical power from the single mode region to the multimode region can be kept low.

第4図(a)は本発明による光ファイバの他の実施例の
断面図であり、第4図(b)は、第4図(a)において
AA’ 断面よりみた屈折率分布である。本構造におい
て6は空気層であり、単一モードコア部と多モードコサ
部はガラス薄膜で接続されている。第3図(a)の場合
と中間クラッド層が存在しない点で異なっているが、基
本的な動作は同じである。
FIG. 4(a) is a sectional view of another embodiment of the optical fiber according to the present invention, and FIG. 4(b) is a refractive index distribution seen from the AA' cross section in FIG. 4(a). In this structure, 6 is an air layer, and the single mode core part and the multimode cosa part are connected by a glass thin film. The difference from the case of FIG. 3(a) is that there is no intermediate cladding layer, but the basic operation is the same.

第5図は本発明に基づく光ファイバを用いた双方向伝送
の概念図であり上りと下りで光波長が異なる構成である
。センタ側にある半導体レーザからの光はレンズ8によ
り単一モード、多モード複合光ファイバ23の単一モー
ドコア部1ζこ投入される。ファイバを伝搬した光は、
この波長の光を反射する波長選択性反射鏡lOにより反
射されて、レンズ2に上りサブスクライバ側の受光素子
13に導びかれ電気信号に変換される。一方、サブスク
ライバ側にあるLED14からの光の波長はレーザ7の
光波長と異なっており、この光はレンズ15によりファ
イバ23の多モードコア部2に投入される。この場合波
長選択性反射鏡lOはこの波長の光に対して十分な透過
率を有するものとする。伝搬光は、この波長の光を反射
し、レーザ7からの波長の光を透過するもう一つの波長
選択性反射鏡9により反射され、レンズ20により、セ
ンタ側受光素子に導びかれ受光される。また、センタか
らサブスクライバに光による給電を行なう場合は、セン
タ側におかれた。レーザ7、LED14と波長の異なる
給電用光源18からの光をレンズ17および波長選択性
反射性反射鏡16,9を用いて光ファイバ23の多モー
ドコア部に投入し、サブスクライバ側で出射光を波長選
択性反射鏡10.11およびレンズにより、受光素子2
1に導びいて電気エネルギに変換すればよい。
FIG. 5 is a conceptual diagram of bidirectional transmission using an optical fiber according to the present invention, and has a configuration in which the optical wavelengths are different for uplink and downlink. Light from the semiconductor laser on the center side is inputted into the single mode core portion 1ζ of the single mode/multimode composite optical fiber 23 by the lens 8. The light propagated through the fiber is
The light of this wavelength is reflected by the wavelength-selective reflecting mirror 10, passes through the lens 2, is guided to the light-receiving element 13 on the subscriber side, and is converted into an electrical signal. On the other hand, the wavelength of the light from the LED 14 on the subscriber side is different from the wavelength of the light from the laser 7, and this light is input into the multimode core section 2 of the fiber 23 by the lens 15. In this case, it is assumed that the wavelength-selective reflecting mirror IO has sufficient transmittance for light of this wavelength. The propagating light is reflected by another wavelength-selective reflecting mirror 9 that reflects the light of this wavelength and transmits the light of the wavelength from the laser 7, and is guided by the lens 20 to the center-side light-receiving element and received. . In addition, when optical power was to be supplied from the center to the subscribers, it was placed on the center side. Light from a power feeding light source 18 having a different wavelength from that of the laser 7 and LED 14 is input into the multimode core portion of the optical fiber 23 using a lens 17 and wavelength-selective reflective mirrors 16 and 9, and the emitted light is emitted at the subscriber side. The wavelength selective reflector 10.11 and the lens allow the light receiving element 2 to
1 and convert it into electrical energy.

以上、本発明の実施例について述べた0説明の簡単のた
め、多モードコア部の屈折率分布はステップ状を仮定し
たが、本発明より広帯域特性を有するグレーデッド屈折
率分布の場合にも適用できることはいうまでもない。
Above, in order to simplify the explanation of the embodiments of the present invention, it is assumed that the refractive index distribution of the multimode core part is step-shaped, but the present invention can also be applied to the case of a graded refractive index distribution having broadband characteristics. It goes without saying that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図(、)は従来技術による単一モード
、多モード複合ファイバ、第2図(b)は同図(a)に
示される光ファイバの屈折率分布図、第3図(a)は本
発明の一実施例、第3図(b)は同図(a)に示される
光ファイバの屈折率分布図、第4図(a)は本発明の他
の実施例、第4図(b)は同図(a)に示される光ファ
イバの屈折分布図、第5図は本発明による光ファイバを
用いた単一モード、多モード双方向伝送の概念図である
。 l・・・単一モードコア部、2・・・多モードコア部、
3・・・クラッド部S 5・・・中間クラッド部、6・
・・中空部、7・・・半導体レーザ、14・・・発光ダ
イオード、23・・・単一モード、多モード複合ファイ
バ% 8゜12.15,17,20.21・・・集光用
レンズ、9.10,11.16・・・波長選択性反射鏡
、18・・・送電力用レーザ光源、13,19,22・
・・受光素子。 第 1 図 ¥:Jz図(り 第 2 図(b) 第 3 図(η) 第 3 図(6) 第4図(幻 A′ 第4図Cb)
Figures 1 and 2 (, ) are single mode and multimode composite fibers according to the prior art, Figure 2 (b) is a refractive index distribution diagram of the optical fiber shown in Figure (a), and Figure 3 ( a) is an embodiment of the present invention, FIG. 3(b) is a refractive index distribution diagram of the optical fiber shown in FIG. 4(a), and FIG. 4(a) is another embodiment of the present invention, FIG. Figure (b) is a refraction distribution diagram of the optical fiber shown in figure (a), and Figure 5 is a conceptual diagram of single mode and multimode bidirectional transmission using the optical fiber according to the present invention. l... Single mode core part, 2... Multimode core part,
3... Cladding part S 5... Intermediate cladding part, 6.
... Hollow part, 7... Semiconductor laser, 14... Light emitting diode, 23... Single mode, multimode composite fiber% 8゜12.15, 17, 20.21... Condensing lens , 9.10, 11.16... Wavelength selective reflecting mirror, 18... Laser light source for power transmission, 13, 19, 22...
··Light receiving element. Figure 1 ¥: Jz diagram (Figure 2 (b) Figure 3 (η) Figure 3 (6) Figure 4 (phantom A' Figure 4 Cb)

Claims (1)

【特許請求の範囲】[Claims] 円形断面を有する光ファイバにおいて、中心部lζ単一
モードコア部を有し、その外周部にリング状の多モード
コア部を有することを特徴とする単一モード、多モード
複合光ファイバ。
A single mode/multimode composite optical fiber having a circular cross-section, having a single mode core section at the center and a ring-shaped multimode core section at the outer periphery thereof.
JP60063561A 1985-03-29 1985-03-29 Optical fiber Pending JPS60221706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063561A JPS60221706A (en) 1985-03-29 1985-03-29 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063561A JPS60221706A (en) 1985-03-29 1985-03-29 Optical fiber

Publications (1)

Publication Number Publication Date
JPS60221706A true JPS60221706A (en) 1985-11-06

Family

ID=13232759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063561A Pending JPS60221706A (en) 1985-03-29 1985-03-29 Optical fiber

Country Status (1)

Country Link
JP (1) JPS60221706A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355541A (en) * 1999-10-23 2001-04-25 Marconi Electronic Syst Ltd Optic fibre with monomode core and multimode core or layer
WO2007119509A1 (en) * 2006-04-05 2007-10-25 Nippon Telegraph And Telephone Corporation Double-core optical fiber
US20110235972A1 (en) * 2010-03-25 2011-09-29 Ruggiero Anthony J Separating and combining single-mode and multimode optical beams
EP2684081A4 (en) * 2011-03-05 2015-03-11 Alcatel Lucent Optical fibers with tubular optical cores
EP2666040A4 (en) * 2011-01-17 2018-07-04 Alcatel Lucent Multi-core optical fiber and optical communication systems
CN114764162A (en) * 2021-01-15 2022-07-19 矢崎总业株式会社 Optical fiber and optical transmission module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355541A (en) * 1999-10-23 2001-04-25 Marconi Electronic Syst Ltd Optic fibre with monomode core and multimode core or layer
JP2012048248A (en) * 2006-04-05 2012-03-08 Nippon Telegr & Teleph Corp <Ntt> Double-core optical fiber
WO2007119509A1 (en) * 2006-04-05 2007-10-25 Nippon Telegraph And Telephone Corporation Double-core optical fiber
JPWO2007119509A1 (en) * 2006-04-05 2009-08-27 日本電信電話株式会社 Double core optical fiber
JP2011191782A (en) * 2006-04-05 2011-09-29 Nippon Telegr & Teleph Corp <Ntt> Double core optical fiber
US8582936B2 (en) * 2010-03-25 2013-11-12 Lawrence Livermore National Security, Llc Separating and combining single-mode and multimode optical beams
US20110235972A1 (en) * 2010-03-25 2011-09-29 Ruggiero Anthony J Separating and combining single-mode and multimode optical beams
EP2666040A4 (en) * 2011-01-17 2018-07-04 Alcatel Lucent Multi-core optical fiber and optical communication systems
EP2684081A4 (en) * 2011-03-05 2015-03-11 Alcatel Lucent Optical fibers with tubular optical cores
CN114764162A (en) * 2021-01-15 2022-07-19 矢崎总业株式会社 Optical fiber and optical transmission module
EP4030206A1 (en) * 2021-01-15 2022-07-20 Yazaki Corporation Optical fiber and optical transmission module
JP2022109707A (en) * 2021-01-15 2022-07-28 矢崎総業株式会社 Optical fiber and optical transmission module
US11506836B2 (en) 2021-01-15 2022-11-22 Yazaki Corporation Optical fiber and optical transmission module

Similar Documents

Publication Publication Date Title
US4173390A (en) Fiber optic T-coupler
JPH04333808A (en) Photosemiconductor module
JP2867859B2 (en) Optical transceiver module for bidirectional transmission
JPH0341405A (en) Optoelectronic device
JPS5922202B2 (en) Optical waveguide termination device
JPH07261053A (en) Optical multiplexing and demultiplexing module
JPH07104148A (en) Optical parts
US20220276454A1 (en) Optical receiving engine based on planar waveguide chip
JPH11237529A (en) Optical transmission/reception module
JP2002169043A (en) Optical module
JPS60221706A (en) Optical fiber
JP3191998B2 (en) Wavelength multiplexing transceiver for optical communication
KR20030002071A (en) Oprical module
JP3006666B2 (en) Optical coupling device and optical coupling method
CN210442547U (en) Light receiving engine based on planar waveguide chip
KR100543708B1 (en) Mode converter device using omnidirectional reflectors
CN211528767U (en) Optical assembly and system thereof
JPH10104474A (en) Optical transmission device
JP3331828B2 (en) Optical transmission / reception module
JPS61295518A (en) Electrooptic converter
JPH10319278A (en) Optical coupling circuit
JP3528155B2 (en) Waveguide type optical switch
JPH01113708A (en) Optical multiplexing/demultiplexing module
JPH04273206A (en) Semiconductor laser array module
JPH08179169A (en) Bidirectional optical module