JPS6022167B2 - two-fluid power station - Google Patents

two-fluid power station

Info

Publication number
JPS6022167B2
JPS6022167B2 JP51112897A JP11289776A JPS6022167B2 JP S6022167 B2 JPS6022167 B2 JP S6022167B2 JP 51112897 A JP51112897 A JP 51112897A JP 11289776 A JP11289776 A JP 11289776A JP S6022167 B2 JPS6022167 B2 JP S6022167B2
Authority
JP
Japan
Prior art keywords
gas
burner
supply pipe
valve
cycle driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51112897A
Other languages
Japanese (ja)
Other versions
JPS5338845A (en
Inventor
愿介 岡田
隆一 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP51112897A priority Critical patent/JPS6022167B2/en
Publication of JPS5338845A publication Critical patent/JPS5338845A/en
Publication of JPS6022167B2 publication Critical patent/JPS6022167B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 この発明は蒸気原動所等に於て燃料にLPG等の液化ガ
スを使用する原動所の熱効率を良くする様に主原動部に
膨張ガスによる補助原動部を併設して運転する様にした
二流体原動所に関するものであり、特に、主原動部の排
熱エネルギー活用を図り全原動所の熱効率の向上を促進
する様にした二流体原動所に係るものである。
[Detailed Description of the Invention] This invention provides an auxiliary power unit using expansion gas in addition to the main power unit in order to improve the thermal efficiency of a power station that uses liquefied gas such as LPG as fuel in a steam power station or the like. The present invention relates to a two-fluid power station designed to operate, and in particular, to a two-fluid power station designed to utilize waste heat energy of the main driving part to promote improvement in the thermal efficiency of the entire power station.

従来、蒸気タービンの原動機を有する発電所等の原動所
に於ては資源問題、大気汚染等の公害問題に対処するた
めに液化ガスを燃料に使用する様になって釆た。
BACKGROUND ART In the past, liquefied gas has been used as fuel in power stations such as power plants having steam turbine engines in order to deal with resource problems and pollution problems such as air pollution.

−さりながら、該液化ガスの蒸発、燃焼通路に於てはま
ず、蒸発器に於ける冷却された流体によつて熱量が不可
避的に失われることと、燃焼、乃至、燃焼後の排気プロ
セスから排気ガス熱量として逸散してしまうことによる
かなりの放熱損失があり、これがあるため原動所は甚だ
しく熱効率が悪いものとなる本質的欠点があった。
- However, in the evaporation of the liquefied gas and in the combustion path, firstly, heat is inevitably lost by the cooled fluid in the evaporator, and from the combustion and post-combustion exhaust processes. There is considerable heat loss due to heat dissipated in the exhaust gas, and this has the inherent drawback that the power plant has extremely poor thermal efficiency.

他方、従来燃料としての液化ガスは一般に蒸発器等を通
路経由し、その間の自然界熱量等によって熱交換をして
蒸発を行い、ガス燃料として炉部で燃焼させる様にされ
ている。
On the other hand, conventionally, liquefied gas as a fuel is generally passed through a passage through an evaporator, etc., and is evaporated by exchanging heat with natural heat therebetween, and then combusted in a furnace as a gas fuel.

この様に在来型原動所では原動部とは別途に蒸発装置を
配設するためそれだけプラントが複雑になり、メンテナ
ンスもやり難く、設備費並びに運転コストが高くなると
いう不利点があった。
As described above, conventional power plants have disadvantages in that the evaporation equipment is installed separately from the power plant, which makes the plant complex, makes maintenance difficult, and increases equipment and operating costs.

更に、排ガス温度が高いためにプラント近傍の大気温度
を上昇させ地域気象を変動させ居住環境を悪化させる等
の公害問題をも発生させる難点があった。この発明の目
的は上記従来技術に基づく原動所の問題点‘こ鑑み、液
化ガスを原動部に直接介装させる通路を通過させること
により在来型原動所の熱損失を利用して液化ガスの気化
並びに常時運転の主原動部に対し補助原動部を調整的に
稼動させることにより原動所全体の熱効率を向上させる
様にした優れた二流体原動所を提供せんとするものであ
る。
Furthermore, the high exhaust gas temperature raises the atmospheric temperature near the plant, causing changes in the local weather and causing pollution problems such as deterioration of the living environment. The purpose of the present invention is to solve the problems of the power station based on the prior art described above, and to utilize the heat loss of the conventional power station by passing the liquefied gas through a passage that is directly interposed in the prime mover. It is an object of the present invention to provide an excellent two-fluid power station in which the thermal efficiency of the entire power station is improved by operating an auxiliary drive unit in a coordinated manner with respect to the main drive unit which performs vaporization and operates constantly.

上記目的に沿うこの発明の構成は液化ガスを閉サイクル
原動部に送給し」該閉サイクル原動部の凝縮器、或は凝
縮器及び排気部に於て熱交換してガス化すると共に開サ
イクル原動部の実際熱効率の向上を図り、該ガスは閉サ
イクル原動機横で常時燃焼されてその主原動部を常時稼
動して出力送給可能にし、更に、場合によってはガス化
した液化ガスの一部又は全部を迂回通路より該ガス化液
化ガスを動作流体として池設開サイクル原動部に送給し
て補助原動部を稼動させて後閉サイクル原動部で燃焼さ
せる様にし、而して、上記閉サイクル原動部の凝縮器の
吸収熱量不足の場合は上記迂回通路に介装した調整機構
により該開サイクル原動部へのガス遍路は閉じて閉サイ
クル原動機機のみを稼動させて全原動所の熱損失を可及
的に減少して効率的に運転出来る様にしたことを要旨と
するものである。
The structure of the present invention in accordance with the above object is to supply liquefied gas to a closed cycle driving part, to exchange heat in the condenser of the closed cycle driving part, or in the condenser and exhaust part to gasify the gas, and to convert the gas into an open cycle. In order to improve the actual thermal efficiency of the prime mover, the gas is constantly combusted next to the closed cycle prime mover, allowing the main prime mover to operate at all times and deliver output, and in some cases, some of the gasified liquefied gas is Alternatively, the entire gasified liquefied gas is fed as a working fluid to the pond-installed open cycle driving section, the auxiliary driving section is operated, and the latter is combusted in the closed cycle driving section. If the heat absorbed by the condenser of the cycle drive unit is insufficient, the adjustment mechanism installed in the detour passage closes the gas route to the open cycle drive unit and operates only the closed cycle drive unit, reducing heat loss in the entire drive station. The main idea is to reduce this as much as possible to enable efficient operation.

次にこの発明の実施例を図面に基づいて説明すれば以下
の通りである。
Next, embodiments of the present invention will be described below based on the drawings.

1はLPG,LNG等の液化燃料の液化ガスタンクであ
り「該液化ガスタンク1は給液管2を通して給液ポンプ
3に連絡し、更に、該給液ポンプ3は次の給液管4を介
して主原動部としての閉サイクル原動部5の凝縮器6に
て連絡している。
1 is a liquefied gas tank for liquefied fuel such as LPG, LNG, etc., and the liquefied gas tank 1 is connected to a liquid supply pump 3 through a liquid supply pipe 2, and the liquid supply pump 3 is connected to the next liquid supply pipe 4 through a liquid supply pipe 4. They are connected through a condenser 6 of a closed cycle drive unit 5 as the main drive unit.

而して、該閉サイクル原動部5は排ガス煙突7を有する
火炉8にボィラ9を臨ませ、更、蒸気タービン10は発
電機11に連結されており、該ボィラ9、蒸気タービン
1川ま上記凝縮器6級び給水ポンプ12と直列連結され
た閉通路管13により連結されている。そして、該凝縮
器6に連絡している前記給液管4は該凝縮器6に介装さ
れた後ガス化管14として前記煙突7の内部に介装され
たガスボィラ15に連絡されると共にその復通路の給ガ
ス管16は、弁17、圧力調整弁18を介して前記火炉
8内に臨まされたバーナー9に連絡している。
The closed cycle driving unit 5 has a boiler 9 facing a furnace 8 having an exhaust gas chimney 7, and a steam turbine 10 is connected to a generator 11. The class 6 condenser is connected to the water supply pump 12 by a closed passage pipe 13 connected in series. The liquid supply pipe 4 connected to the condenser 6 is connected to the condenser 6 and then connected as a gasification pipe 14 to a gas boiler 15 installed inside the chimney 7. The return gas supply pipe 16 communicates with the burner 9 facing into the furnace 8 via a valve 17 and a pressure regulating valve 18.

一方、該給ガス管16には補助原動部としての開サイク
ル原動部20が介装され、そのガス膨張タービン21に
は発電機22が連結されており、該ガス膨張タービン2
1のガス通路の分岐管23は前記開サイクル原動部5の
給ガス管16の弁17、圧力調整弁18の前部に介挿連
結され、又、ガス膨張タービン21の入口には弁24が
設けられている。上記構成に於て、適宜初期稼動状態を
経て、弁17,24の一方を全閉し、他方を全開に、又
は、夫々を適当な開度に開かせ、圧力調整弁18を所定
圧力に調整し、バーナー9を点火状態にし、給液ポンプ
3を作動させると、液化ガスタンクーよりLPG,LN
Gの液化ガスは該給液ポンプ3により給液管4から閉サ
イクル原動部5の凝縮器6に入り、蒸気タービン10か
らの蒸気と該凝縮器6で熱交換し、従って、少くとも一
部が気化し、ガス化し、ガス化管14を通り煙突7内の
ガスボィラ15に至り、該ガスボィラ15にて排ガスの
熱により再び熱交換され、完全ガス化され、ェンタルピ
ーを増量されて給ガス管16より弁17又は24を経て
直接バーナ19側、又は、ガス膨張タービン21側に流
入し、或は、適当に流量配分されて直接バーナ19又は
ガス膨張タービン21側に流入し、最終的には何れの流
量も圧力調整弁18を経てバーナ19で点火され、火炉
8内で燃焼し、ボイラ9を加熱する。
On the other hand, an open cycle driving unit 20 as an auxiliary driving unit is interposed in the gas supply pipe 16, and a generator 22 is connected to the gas expansion turbine 21.
The branch pipe 23 of the gas passage 1 is inserted and connected to the front part of the valve 17 and the pressure regulating valve 18 of the gas supply pipe 16 of the open cycle driving section 5, and a valve 24 is connected to the inlet of the gas expansion turbine 21. It is provided. In the above configuration, after an appropriate initial operating state, one of the valves 17 and 24 is fully closed and the other is fully open, or each is opened to an appropriate opening degree, and the pressure regulating valve 18 is adjusted to a predetermined pressure. Then, when the burner 9 is ignited and the liquid supply pump 3 is operated, LPG and LN are discharged from the liquefied gas tank.
The liquefied gas of G enters the condenser 6 of the closed cycle driving unit 5 from the liquid supply pipe 4 by the liquid supply pump 3, and exchanges heat with the steam from the steam turbine 10 in the condenser 6, so that at least a portion of the gas is The gas is vaporized and gasified, and passes through the gasification pipe 14 to the gas boiler 15 in the chimney 7, where it is again heat exchanged with the heat of the exhaust gas, completely gasified, and enthalpy is increased, and then sent to the gas supply pipe 16. Then, it flows directly into the burner 19 side or the gas expansion turbine 21 side via the valve 17 or 24, or flows directly into the burner 19 or gas expansion turbine 21 side with an appropriate flow rate distribution, and finally either. The flow rate also passes through the pressure regulating valve 18 and is ignited by the burner 19, combusts in the furnace 8, and heats the boiler 9.

而して、ボィラ9で加熱発生された蒸気は閉通路管13
により蒸気タービン10を作動して発電機11をを常時
運転し、前の如く凝縮器6で液化ガスと熱交換し、これ
を昇温ガス化し、排気を凝縮水化した後給水ポン12に
より再びボィラ9に帰還し、閉サイクル稼動し、主原動
部5の運転を維持する。
Thus, the steam heated and generated by the boiler 9 is passed through the closed passage pipe 13.
The steam turbine 10 is operated to constantly operate the generator 11, and as before, the condenser 6 exchanges heat with the liquefied gas, and the gas is heated and the exhaust gas is converted to condensed water. It returns to the boiler 9, operates in a closed cycle, and maintains the operation of the main driving unit 5.

一方、給ガス管16から弁24を経て流入したガスは動
作流体として膨張タービン21に入り、之を駆動し、発
電機22を稼動して開サイクル原動部20の運転を行い
、動作終了後のガスは該分岐ガス管23より給ガス管1
6に合流して圧力調整弁18より前記の如くバーナー9
で点火され、火炉8内で燃焼される。
On the other hand, the gas flowing from the gas supply pipe 16 through the valve 24 enters the expansion turbine 21 as a working fluid, drives it, operates the generator 22, operates the open cycle driving section 20, and after the operation is completed, Gas is supplied from the branch gas pipe 23 to the gas supply pipe 1
6 and is connected to the burner 9 from the pressure regulating valve 18 as described above.
It is ignited and burned in the furnace 8.

而して上記運転に於て、閉サイクル原動部5の負荷が少
ない場合には凝縮器6及びガスボィラ15に於ける(液
化)ガスに対する吸収熱量が少し、ことになり、その様
な状態に於ては弁17を全開状態、一方、弁24を全閉
状態として開サイクル原動部20を停止し、閉サイクル
原動部5のみを集中作動させてガスの気化並びに蒸気タ
ービン10及び発電機11の実際熱率向上を図に様にす
る。
In the above operation, if the load on the closed cycle driving section 5 is small, the amount of heat absorbed by the (liquefied) gas in the condenser 6 and the gas boiler 15 will be small, and in such a state, Then, the valve 17 is fully opened, and the valve 24 is fully closed to stop the open cycle driving unit 20, and only the closed cycle driving unit 5 is operated centrally to vaporize the gas and operate the steam turbine 10 and generator 11. The improvement in heat rate is shown in the figure.

逆に(液化)ガスに対する熱吸収量が多い場合には可及
的にガス給液ポンプ21を高出力駆動させる様にし、更
に〜必要に応じて一部ガス膨張タービン21側、一部バ
ーナ19側という様に分流することも可能である。
On the other hand, if the amount of heat absorbed by the (liquefied) gas is large, the gas supply pump 21 is driven at high output as much as possible, and furthermore, if necessary, some parts are driven to the gas expansion turbine 21 side and some parts to the burner 19 side. It is also possible to divide the flow into two sides.

第1図に示す実施例は、液化ガスのガス化熱交換部を凝
縮器6とその後段の排気部7にガスボィラ15を設ける
直列タイプとしたが、その装備配列が逆順である様に設
計することも可能であり、それはシステム設計の態様に
適宜従うことが出来ることは勿論である。
In the embodiment shown in FIG. 1, the liquefied gas gasification heat exchange section is a series type in which the gas boiler 15 is installed in the condenser 6 and the exhaust section 7 at the subsequent stage, but the equipment arrangement is designed to be in the reverse order. Of course, this can be done in accordance with the system design.

又、火炉8からの排ガスの顔熱が非常に少ない設計の原
動所については第2図に示す様に排気部7でのガスボィ
ラ15を省略し、凝縮器6のみで全量ガスの気化を行わ
せる様にする。
In addition, for a power station designed to generate very little heat from the exhaust gas from the furnace 8, the gas boiler 15 in the exhaust section 7 is omitted as shown in Figure 2, and the entire amount of gas is vaporized only by the condenser 6. I'll do it like that.

上記の様にこの発明によれば、液化ガスを燃料とする原
動所に於て、閉サイクル原動部を常運転主原動部とし、
該液化ガス気化の熱交換機構を該閉サイクル原動部の凝
縮器と排気部、或は凝縮器のみに介菱したことにより、
システムの緋熱の有効利用が図れ、プラント全体として
の極めて高い原動所熱効率が得られ、蒸気原動所として
凝縮器を低温ガスで冷却するため実際熱効率の向上が企
れる効果があり、排気部にも熱交≠逸機横をもたせるこ
とにより排気の有する熱を収熱することによる伝熱面効
率の向上が図れ、又、別設蒸発装置等が不要であるため
直後ガス蒸発化が図れ、設備、経費の点で利点がある。
As described above, according to the present invention, in a power station that uses liquefied gas as fuel, the closed cycle driving section is used as the normally operating main driving section,
By providing the liquefied gas vaporization heat exchange mechanism to the condenser and exhaust section of the closed cycle driving section, or only to the condenser,
The system's scarlet heat can be used effectively, and the plant as a whole can achieve an extremely high power plant thermal efficiency.As the steam power plant cools the condenser with low-temperature gas, it has the effect of improving the actual thermal efficiency. By making heat exchange equal to heat exchanger, the efficiency of the heat transfer surface can be improved by collecting the heat contained in the exhaust gas, and since a separate evaporator is not required, gas can be evaporated immediately, and the equipment, There are advantages in terms of costs.

特に、主ガス通路と補助原動部のガス通路との分岐部に
主ガス通路開閉弁と補助原動部ガス通路開閉弁を設けた
ので、閉サイクル原動部の負荷の変動に応じて各弁の開
閉調節を行ないガスの流量配分を変更せしめることが出
来る。従って、開サイクル原動部の出力が低い時には開
サイクル原動部へのバイパスを停止し主原動部だけの効
率的な運転を行ない「又、閉サイクル原動部の出力が十
分高い場合には開サイクル原動部にガスをバイパスさせ
ることにより副発電機によって動力回収を行ないこの場
合にも効率的な運転を行なうことが出来、而して、上記
閉サイクル原動部と開サイクル原動部の運転を弁、バイ
パス弁を切換えることによって発電機の出力を常に最高
効率に保つことが出来る効果がある。
In particular, a main gas passage opening/closing valve and an auxiliary prime mover gas passage opening/closing valve are installed at the branch point between the main gas passage and the gas passage of the auxiliary driving unit, so each valve can be opened or closed according to changes in the load of the closed cycle driving unit. Adjustments can be made to change the gas flow distribution. Therefore, when the output of the open cycle drive section is low, the bypass to the open cycle drive section is stopped and only the main drive section is operated efficiently.Also, when the output of the closed cycle drive section is sufficiently high, the open cycle drive section By bypassing the gas to the auxiliary generator, power can be recovered by the auxiliary generator, and efficient operation can be achieved in this case as well. By switching the valve, the output of the generator can be kept at the highest efficiency at all times.

そして、補助原動部が点検等の為に停止を必要とする場
合であっても主原動部は引き続き運転可能であるのでそ
の運転操作上の利点は極めて大きものがある。
Furthermore, even if the auxiliary drive unit needs to be stopped for inspection or the like, the main drive unit can continue to operate, which has an extremely large operational advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示すものであり、第1図は1
実施例の説明図、第2図は他の実施例の説明図である。 10・・・・・・蒸気タービン、5・・・・・’閉サイ
クル原動部、21・・・・・・ガス膨張タービン、20
・・・・・・開サイクル原動部、1…・・・…液化ガス
タンク、4,14,16・・・・・・主ガス通路、6・
・・・・・凝縮器、9・・・・・・ボイラー、19・・
・・・・バーナー、23・・…・補助原動部のガス通路
、17・・・・・・主ガス通路開閉弁、24……補助原
動部ガス遍路開閉弁、7・・・・・・排気部。第1図第
2図
The drawings show an embodiment of the invention, and FIG.
FIG. 2 is an explanatory diagram of another embodiment. 10...Steam turbine, 5...'Closed cycle driving unit, 21...Gas expansion turbine, 20
...... Open cycle driving part, 1... Liquefied gas tank, 4, 14, 16... Main gas passage, 6.
...Condenser, 9...Boiler, 19...
... Burner, 23... Gas passage of auxiliary drive unit, 17... Main gas passage on-off valve, 24... Auxiliary drive unit gas circuit on-off valve, 7... Exhaust Department. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 主発電機を運転する蒸気タービンとボイラーと給水
ポンプとが閉通路管によつて接続されて閉サイクル原動
部を形成しており、燃料とされる液化ガスのタンクに接
続されて延出する給液管が上記閉サイクル原動部の閉通
路管との熱交換部を経て給ガス管として前記ボイラーを
加熱するバーナに接続されており、而して、上記給ガス
管がバーナに接続される前段に副発電機を運転するガス
膨張タービンを介装している二流体原動所において、上
記給ガス管が弁を介して上記バーナに直接接続されてい
ると共に、該弁の前段にて前記閉サイクル原動部の出力
が大であるときに高エンタルピーのガスをガス膨張ター
ビンにバイパスさせて出力回収を行なう為のバイパス弁
を設け該ガス膨張タービンからの分岐ガスを前該弁から
直接配管された給ガス管と結合してバーナに接続し開サ
イクル原動部を形成していることを特徴とする二流体原
動所。 2 主発電機を運転する蒸気タービンとボイラーと給水
ポンプとが閉通路管によつて接続されて閉サイクル原動
部を形成しており、燃料とされる液化ガスのタンクに接
続されて延出する給液管が上記閉サイクル原動部の閉通
路管との熱交換部、及びボイラー排気部の熱交換部を経
て給ガス管として前記ボイラーを加熱するバーナに接続
されており、而して、上記給ガス管がバーナに接続され
る前段に副発電機を運転するガス膨張タービンを介装し
て有している二流体原動所において、上記給ガス管が弁
を介して上記バーナに直接接続されていると共に、該弁
の前段にて前記閉サイクル原動部の出力が大であるとき
に高エンタルピーのガスをガス膨張タービンにバイパス
させて出力回収を行なう為のバイパス弁を設けて該ガス
膨張タービンからの分岐ガスを前記弁から直接配管され
た給ガス管と結合してバーナに接続し開サイクル原動部
を形成していることを特徴とする二流体原動所。
[Claims] 1. A steam turbine that operates a main generator, a boiler, and a feed water pump are connected by a closed passage pipe to form a closed cycle driving part, and a tank for liquefied gas used as fuel is A connected and extending liquid supply pipe is connected to a burner that heats the boiler as a gas supply pipe through a heat exchange section with the closed passage pipe of the closed cycle driving unit, and the supply gas pipe In a two-fluid power plant in which a gas expansion turbine for operating an auxiliary generator is installed in a stage before being connected to a burner, the gas supply pipe is directly connected to the burner via a valve, and the valve is connected to the burner. A bypass valve is provided at the front stage of the closed cycle driving section to recover the output by bypassing the high enthalpy gas to the gas expansion turbine when the output of the closed cycle driving section is large. A two-fluid power station characterized in that the two-fluid power station is combined with a gas supply pipe directly connected to a valve and connected to a burner to form an open cycle driving unit. 2 The steam turbine that operates the main generator, the boiler, and the feed water pump are connected by a closed passage pipe to form a closed cycle driving section, which is connected to and extends to a tank for liquefied gas used as fuel. The liquid supply pipe is connected to the burner that heats the boiler as a gas supply pipe through a heat exchange part with the closed passage pipe of the closed cycle driving part and a heat exchange part of the boiler exhaust part, and is connected to the burner that heats the boiler as a gas supply pipe. In a two-fluid power plant that has a gas expansion turbine that operates an auxiliary generator interposed before the gas supply pipe is connected to the burner, the gas supply pipe is directly connected to the burner via a valve. In addition, a bypass valve is provided upstream of the valve to recover the output by bypassing the high enthalpy gas to the gas expansion turbine when the output of the closed cycle driving section is large. A two-fluid power station characterized in that a branched gas from the valve is connected to a gas supply pipe directly piped from the valve and connected to a burner to form an open cycle driving unit.
JP51112897A 1976-09-22 1976-09-22 two-fluid power station Expired JPS6022167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51112897A JPS6022167B2 (en) 1976-09-22 1976-09-22 two-fluid power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51112897A JPS6022167B2 (en) 1976-09-22 1976-09-22 two-fluid power station

Publications (2)

Publication Number Publication Date
JPS5338845A JPS5338845A (en) 1978-04-10
JPS6022167B2 true JPS6022167B2 (en) 1985-05-31

Family

ID=14598230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51112897A Expired JPS6022167B2 (en) 1976-09-22 1976-09-22 two-fluid power station

Country Status (1)

Country Link
JP (1) JPS6022167B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819323B2 (en) * 2017-01-31 2021-01-27 株式会社Ihi Thermal cycle equipment

Also Published As

Publication number Publication date
JPS5338845A (en) 1978-04-10

Similar Documents

Publication Publication Date Title
JP3650112B2 (en) Gas turbine cooling medium cooling system for gas / steam turbine combined equipment
EP1016775B1 (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US5609029A (en) Thermal power engine and its operating method
US4037413A (en) Power plant with a closed cycle comprising a gas turbine and a work gas cooling heat exchanger
Mabrouk et al. A systematic procedure to optimize integrated solar combined cycle power plants (ISCCs)
US20190170025A1 (en) Renewable Energy Process and Method Using a Carbon Dioxide Cycle to Produce Work
CA2340650C (en) Gas turbine and steam turbine installation
CN102966495B (en) Tower type solar energy-steam combustion gas combined cycle power generation system
KR101397621B1 (en) System for increasing energy efficiency of gas power plant
CN110905618A (en) Internal combustion engine cogeneration waste heat recovery system suitable for distributed energy system
JPH05296009A (en) Exhaust heat recovery system for steam turbine equipment
CN110332729B (en) Absorption heat pump and organic Rankine cycle system and operation method
JP3697476B2 (en) Combined power generation system using gas pressure energy
JPS6022167B2 (en) two-fluid power station
JPH10121912A (en) Combustion turbine cycle system
CN210569359U (en) Based on absorption heat pump and organic rankine cycle system
CN202914258U (en) Tower-type solar energy auxiliary thermal power generating system integrating gas and steam
JP2001055906A (en) Combined power generating method and system therefor
KR20190032841A (en) Rankine cycle-based heat engine using ejector for waste heat recovery and method for operating the same heat engine
Totev et al. Reducing the CO 2 Emissions from Coal Combustion in a Power Unit by Using Absorption Chillers
JPS5922043B2 (en) Cold energy power generation plant
JP2001214758A (en) Gas turbine combined power generation plant facility
CN220791326U (en) Heat storage peak shaving system applied to CCPP power generation
JPH07113466B2 (en) Heating / cooling system using heat pump
JPH02146208A (en) Compound heat utilizing plant