JPS60221594A - Air electrode for electrolyzing alkali chloride - Google Patents

Air electrode for electrolyzing alkali chloride

Info

Publication number
JPS60221594A
JPS60221594A JP59078894A JP7889484A JPS60221594A JP S60221594 A JPS60221594 A JP S60221594A JP 59078894 A JP59078894 A JP 59078894A JP 7889484 A JP7889484 A JP 7889484A JP S60221594 A JPS60221594 A JP S60221594A
Authority
JP
Japan
Prior art keywords
air electrode
carbon
alkali chloride
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59078894A
Other languages
Japanese (ja)
Inventor
Yuko Fujita
藤田 雄耕
Hitoshi Nakamura
仁志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP59078894A priority Critical patent/JPS60221594A/en
Publication of JPS60221594A publication Critical patent/JPS60221594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To prolong the life of an air electrode by using powder having a prescribed specific surface area obtd. by graphitizing furnace black as the constituent material of the air electrode. CONSTITUTION:The air electrode for electrolyzing alkali chloride is made of graphite powder having <=95m<2>/g specific surface area obtd. by graphitizing furnace black. The air electrode has superior resistance to corrosion by an electrolytic soln. contg. alkali chloride, so the life of the electrode is prolonged.

Description

【発明の詳細な説明】 本発明は塩化アルカリ電解用空気極に関するものであり
、その目的とするところは、を気極の構成材料としてフ
ァーネスブラックを黒鉛イし処理して得ろn、比表面積
が95m /f以下の黒鉛粉床を用いろことによって、
空気極の浮防をより長くぜんとするにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air electrode for alkali chloride electrolysis, and its purpose is to obtain a specific surface area by treating furnace black with graphite as a constituent material of the air electrode. By using a graphite powder bed of 95 m / f or less,
The purpose is to keep the air electrode floating for a longer period of time.

従来、実用に供されている塩化アルカリ電解槽では、通
例陰極として、軟鋼のエキスバンプーlトメタルが用い
られている。この場合の陰極反応は21i2(J +2
e−+ R2↑+20H−’ (11、’ fl h−
唸fliから水毀が発生ナス−rjfつしτ燃料K M
に用いられろいわゆる空気極を陰極として用いろと、陰
極反応は、 Ow −1−2Kt(J + 4e−→4on−(2)
となり、陰極電位は、前述の(1)式の反応の場合と比
較すると、理論値で1.28V貢となる。換8すると摺
電圧が1.28V低下する。実際の電解槽でも0.9〜
1.OV の′重圧の節減が可能である。このような理
由から、近年食塩電解槽の陰面として、軟鋼の代りに空
気極を適用するという方式が注目を浴びている。
Conventionally, in alkali chloride electrolytic cells that have been put into practical use, extruded metal made of mild steel is usually used as a cathode. The cathodic reaction in this case is 21i2(J +2
e-+ R2↑+20H-'(11,' fl h-
Water damage occurs from the roaring eggplant - rjf horse τ fuel K M
When a so-called air electrode is used as a cathode, the cathode reaction is Ow -1-2Kt (J + 4e-→4on-(2)
Therefore, the cathode potential is theoretically 1.28 V when compared with the reaction of the above-mentioned formula (1). When the voltage is changed to 8, the sliding voltage decreases by 1.28V. Even in an actual electrolytic cell, it is 0.9~
1. It is possible to reduce the burden of OV. For these reasons, in recent years, the use of air electrodes instead of mild steel has been attracting attention as a hidden aspect of salt electrolyzers.

空気極の触媒もしくは触媒金属の担体として、カーボン
粉末が用いられる。カーボン粉末を大別するで活性炭、
カーボンブラ・ツクおよび黒鉛に分類することができろ
。活性炭は木材もしくは石炭を出発物質として炭化する
と同時に賦活処理を旌しf二ものである。カーボンブラ
!りは、炭化ホ累を不完全燃焼あるいは熱分解によって
得られるものの総称であり、炭化水素を炉内で不完全燃
腕して得ら几るファーネスブラック、天然ガスの炎を、
チャンネル鋼にあてて製造さnるチャンネルブラワク、
天然ガスを熱分解して生産されるサーマルブラック、サ
ーマルブラックの一ノ重であり、アセチレンの発熱分解
によってつくら几ろアセチレンブラック、炭化水素を開
放式の浅い血鍋に入れγこのち燃焼させて得られるラン
プブラーlりに分類されろ。
Carbon powder is used as a carrier for the catalyst or catalyst metal in the air electrode. Carbon powder is roughly divided into activated carbon,
It can be classified into carbon black and graphite. Activated carbon is produced by carbonizing wood or coal as a starting material and at the same time subjecting it to activation treatment. Carbon bra! Furnace black is a general term for materials obtained by incomplete combustion or thermal decomposition of carbonized carbon, and is a furnace black obtained by incomplete combustion of hydrocarbons in a furnace, natural gas flame,
Channel brawak manufactured by channel steel,
Thermal black is produced by thermally decomposing natural gas.It is a single layer of thermal black, and it is made by exothermic decomposition of acetylene.Thermal black is produced by putting hydrocarbons into a shallow open pot and then burning them. The resulting lamp blur can be categorized as follows.

黒鉛は天然黒鉛と人造黒鉛とに分類されろ。人造黒鉛粉
末は、コークス系のカーボン粉末をタールあるいはピッ
チなどの炭化しやすい結着剤と混合し、一旦ブロック状
に成形し1このち、黒鉛化処理し、最後に粉砕しrこも
のである。ま1こ最近では活性炭あるいはカーボンブラ
ーツクを粉末のままで川沿化処理しTコものも検討され
ている。これらの黒鉛化カーボン粉末も一種の人造黒鉛
には違いないが、上述のいわゆる人造黒鉛とは区別され
る。
Graphite is classified into natural graphite and artificial graphite. Artificial graphite powder is made by mixing coke-based carbon powder with a binder that easily carbonizes, such as tar or pitch, forming it into a block, then graphitizing it, and finally crushing it. Recently, activated carbon or carbon black is being considered as a powder that can be processed along the river. Although these graphitized carbon powders are also a type of artificial graphite, they are distinguished from the so-called artificial graphite described above.

これらの各種カーボン粉末の中で、燃料7K rllA
の空、電極用に検討されているものは、比表面積が20
0〜2000m/V の各種活性炭、比表面積が100
m/g以上のファーネスブラックおよび黒鉛化ファーネ
スブラック、比表面積が約60In2/f/のアセチレ
ンブラ・ツク、比1thI積が1o01n2/f以上の
天然黒鉛、比表面積が70m2/f以下の人造黒鉛であ
る。そして燃料電池のカーボン粉末としては100m/
f以上の比表[II]積を何するファーネスブラック、
天然黒鉛あるいは黒鉛化ファー不スブラワクが適してい
るといわれている。
Among these various carbon powders, fuel 7K rllA
The material being considered for electrodes has a specific surface area of 20
Various activated carbons of 0 to 2000 m/V, specific surface area of 100
Furnace black and graphitized furnace black of m/g or more, acetylene black with a specific surface area of about 60 In2/f/, natural graphite with a specific 1thI product of 1001n2/f or more, and artificial graphite with a specific surface area of 70 m2/f or less. be. And as carbon powder for fuel cells, 100m/
Furnace black, what is the product of ratio table [II] over f?
Natural graphite or graphitized fur unsubstituted wax is said to be suitable.

しかしながら、燃料1r、池の分野で得られる知見が塩
化アルカリ電解の分野にそのまま流用できろとは限らな
い。特に、燃料1H,mの空気極としてすぐnr=カー
ホン扮禾粉末化アルカ’Jlt解のそれに適用しfコ場
合、空気極の寿命が極端に短かいことが近年わかってき
1こ。これは燃料電池とアルカリ電解とでは同じ空気極
を用いても、電解液の種類。
However, the knowledge obtained in the field of fuel 1r and ponds cannot necessarily be directly applied to the field of alkali chloride electrolysis. In particular, it has recently been found that the life of the air electrode is extremely short when it is applied to the air electrode of fuel 1H,m and immediately applied to the solution of nr=carbonaceous powdered alkali. This is because fuel cells and alkaline electrolysis use the same air electrode, but the type of electrolyte.

電解液のD度9作動温度あるいは作iic!It流密度
といつTこ作動条件が異なるγこめである。1ことえば
、アルカリ型燃料?!aでは、通例、電解液は30%の
水酸化カリウム水浴液が用いられ、作動温度は室温から
60“Cの範囲であり、作動電流密度は約100mA/
d である。これに対し、塩化アルカリ電解では、電解
液(陰極電解液)としては、40〜50%の水酸化カリ
ウム水浴液あるいは30〜40%の水酸化ナトリウム水
溶液が用いられ、作動温度は、80〜95゛Cの範囲で
あり、作動電流密度は3o。
Electrolyte D degree 9 operating temperature or made iic! The flow density and the operating conditions are different. 1. In other words, alkaline fuel? ! In a, the electrolyte is usually a 30% potassium hydroxide water bath solution, the operating temperature is in the range from room temperature to 60"C, and the operating current density is about 100 mA/
It is d. On the other hand, in alkaline chloride electrolysis, the electrolyte (cathode electrolyte) used is a 40-50% potassium hydroxide water bath solution or a 30-40% sodium hydroxide aqueous solution, and the operating temperature is 80-95%. The operating current density is 3o.

〜4 Q Q mA/ Cdである。~4 Q Q mA/Cd.

′!j!気(jの寿命は、カーボンの腐食と深くかかわ
nあっている。木1頭元明者らの研究によれば、カーボ
ンの腐食は水酸化アルカリ水浴液のm度が高it f’
1. ハ%いほど、ま1こ作動温度が高ければ高いほど
より進み、カーボンの耐食性が同じならば作動直流−2
度が大きけi”Lば大きいほど、空気極の寿命がより短
かくなることがねかっ1こ。つまり、同じカーボンを用
い1こ場合、上述のまうな燃料′l11曲の作動条件下
では、カーボンの腐食がさほど進まず、′4命も充分長
いのに対し、塩化アルカIJ 7[解ではカーボンの腐
食がより進み、その1こめに空気(Vの寿命か短かい。
′! j! The lifespan of carbon is closely related to the corrosion of carbon.According to a study by Genmeisha et al., corrosion of carbon is caused by a high concentration of alkaline hydroxide bath solution.
1. The higher the operating temperature, the more progress is made, and if the corrosion resistance of carbon is the same, the operating DC -2
The larger the degree of i'L is, the shorter the life of the air electrode will be.In other words, if the same carbon is used, under the operating conditions of the above-mentioned correct fuel '11', , the corrosion of carbon does not progress that much and its life is long enough, whereas with alkali chloride IJ7, the corrosion of carbon progresses more, and the lifespan of air (V's life is short).

このような理由から、塩化アルカリ電解用空気極を二用
いろカーボンは、燃料電池に用いられろそtlより、さ
らに耐食性のすぐれ1こものでなければならないと判断
し、鋭意検討し1こ結果、不発明に至つγこ。
For these reasons, we determined that the carbon used in the air electrode for alkali chloride electrolysis must be even more corrosion resistant than the carbon used in fuel cells, and after extensive study, we found that: γ that leads to non-invention.

不発明は、塩化アルカリ電解用空気極のカーボン粉末材
料として、ファーネスブラックを黒お化し、その比表面
積を95m/f以Fとし1こものを用いることに特徴が
ある。
The invention is characterized in that furnace black is blackened and its specific surface area is 95 m/f or more and one piece is used as the carbon powder material for the air electrode for alkali chloride electrolysis.

かかるカーボン粉末を用いることによって、塩化アルカ
リ電解用空気極の寿命が決定的に延びることがわかつ1
こつ 同じ黒鉛化ファーネスブラックを用いても、比表面積が
従来のように、100m2/f以上の場合と、本発明の
ように95m/f以下の場合とでは空気極の寿命が決定
的に異なる理由については、十全に解明さnているとは
いい難い而もあるが、一応、次のような説明ができろ。
It has been found that by using such carbon powder, the life of the air electrode for alkali chloride electrolysis is decisively extended.
Even if the same graphitized furnace black is used, the life of the air electrode is decisively different when the specific surface area is 100 m/f or more as in the conventional case and when it is 95 m/f or less as in the present invention. Although it is difficult to say that this has been fully elucidated, the following explanation can be provided.

本発明者らの研究によれば、空気極のカーボンの腐食は
カーボンあるいはカーボンに担持さnlこ触媒の酸素の
吸着されているサイトをカソードとし、カーボンの酸素
が吸着されていないサイトをアノードとする局部to現
象によることがほぼわかってき1こ。
According to the research of the present inventors, corrosion of carbon at the air electrode is caused by using carbon or a catalyst supported on carbon, with the site where oxygen is adsorbed as the cathode, and the site on the carbon where oxygen is not adsorbed as the anode. It is now clear that this is mostly due to the local to phenomenon.

ま1こ、カーボンの腐食は、酸素の吸材さnているサイ
トとol!素の吸着されていないサイトとの間に流nろ
短絡電流が太きければ大きいほどより進む、この短絡電
光は酸素の吸着されているサイトの′tL位、換言する
と酸素の電解還元電位と、酸素の吸着されていないサイ
トの電位、換言すると、カーボン自体の酸素が関与しな
い酸化還元電位との差が大きければ大きいほど大きい、
酸素が吸着されているサイトにおける酸素の電解還元K
 位bs −正の場合には、カーボンの酸素が吸着され
ていないサイトの酸化還元電位は、カーボンの種類によ
って異なり、その電位が卑であればあるほどカーボンの
腐食がより進む。カーボンの酸化還元電位はカーボンを
用い1こ空気極を電解液に浸漬し1こ際の電位を測定す
ることによって知ることができろ。
Well, carbon corrosion occurs at sites that absorb oxygen! The thicker the short-circuit current between the site and the site where the element is not adsorbed, the faster the short-circuit current will advance. The larger the difference between the potential of the site where oxygen is not adsorbed, or in other words, the redox potential of the carbon itself where oxygen is not involved, the larger the difference.
Electrolytic reduction of oxygen K at sites where oxygen is adsorbed
When the position bs - is positive, the redox potential of carbon sites where oxygen is not adsorbed varies depending on the type of carbon, and the more base the potential, the more corrosion of the carbon progresses. The oxidation-reduction potential of carbon can be determined by immersing an air electrode made of carbon in an electrolyte and measuring the potential.

この方法で測定すると、同じ黒鉛化ファーネスブラック
を用いても比表面積が本発明のようIC95m2/g以
下の場合の方が従来のように100 In2/ 9以上
の場合より酸化還元電位は、より責になり、それだけ腐
食を受けにくい。
When measured using this method, even if the same graphitized furnace black is used, when the specific surface area is IC95m2/g or less as in the present invention, the oxidation-reduction potential is more responsible than when it is 100 In2/9 or more as in the conventional case. This makes it less susceptible to corrosion.

一方、空気極を800〜40 QmA/dといっγこ成
ぴt沼+髪で作動させ1こ際の電位は、実は酸素の吸着
されているサイトにおける酸素の電解還元電位によって
ほぼ決まってくるが、比表面積が100rn/V以上の
黒鉛化ファーネスブラックを用い1こ空気(徊の電位は
95m/f以下の比表面積を有する黒鉛化ファーネスブ
ラックを用い1こ空気極の電位より約100mV 貫に
なる。しγこがって後者の場合の方が、カーボンの酸素
が吸着されていないサイトの酸化還元電位と酸素の吸着
されているサイトにおけろ酸素の電解還元電位との差が
小さくなり、それだけカーボンの腐食が起りにくい。つ
まり、塩化アルカリ電解の如き厳しい作動条件で空気極
の寿命を長くしようとすれば、その電位はある程変、犠
牲にせざろを得ない。
On the other hand, when the air electrode is operated at 800 to 40 QmA/d, the actual potential is determined by the electrolytic reduction potential of oxygen at the site where oxygen is adsorbed. However, using graphitized furnace black with a specific surface area of 100 m/f or more, the potential of the electrode is approximately 100 mV higher than the potential of the air electrode. Therefore, in the latter case, the difference between the redox potential of carbon sites where oxygen is not adsorbed and the electrolytic reduction potential of oxygen at sites where oxygen is adsorbed is smaller. That is, carbon corrosion is less likely to occur.In other words, if you want to extend the life of the air electrode under harsh operating conditions such as alkaline chloride electrolysis, you will have to sacrifice some degree of potential.

以下本発明の一実施例について詳述する。An embodiment of the present invention will be described in detail below.

実施例: 第1図は本発明の一実施例にがかる空気極の
断面構造を示す。空気極は集電体兼成極母体としての多
孔性ニッケル層(11と80m/fの比表面積を有する
黒鉛化ファーネスブラック粉床と結#剤としてのポリ4
〕゛ノ化エチレンとの混合物からなる岨煤層(2)と4
フ゛ノ化エチレン−6フツ化プロピレンコポリマーと4
フ・ノ化エチレ゛/−エチレンコポリマーとの混合物か
らなる多孔性接合層(3)と電解液91出を防止する1
こめの多孔性ポリ4フフ化エチレン膜層(4)との4重
1調からなる。
Embodiment: FIG. 1 shows a cross-sectional structure of an air electrode according to an embodiment of the present invention. The air electrode consists of a porous nickel layer (11) as a current collector and a polarizing matrix, a graphitized furnace black powder bed with a specific surface area of 80 m/f, and poly 4 as a binder.
] Soot layers (2) and 4 consisting of a mixture with ethylene chloride
Finated ethylene-hexafluorinated propylene copolymer and 4
Porous bonding layer (3) consisting of a mixture of fluorinated ethylene/-ethylene copolymer and electrolyte 91 to prevent leakage 1
It consists of a four-layer structure with a porous poly(tetrafluoroethylene) membrane layer (4).

この空気極tAlをカソードとし、二・フヶル板をアノ
ードとし、30%の水酸化ナトリウム水心液を電解液と
しfこハーフセルを組立て、作動温度を80°Cとし、
空気極に二酸化炭素を除去し1こ空気を送1]ながら、
 800mA/lriの″イ竜密度で作動させ1こ際の
苧気他の電位の経rF?j変化を調べtコ。空気極の屯
(7は+4ジ化水銀電極を照合電極として測定し1こ。
A half cell was assembled using this air electrode TAl as a cathode, the second fuel plate as an anode, and 30% sodium hydroxide as an electrolyte, and the operating temperature was set to 80°C.
While removing carbon dioxide and sending air to the air electrode,
Operate at a density of 800 mA/lri and examine the change in potential at this time. child.

まTコ比咬の1こめに、120m/yの比表面積を有す
る黒鉛化カーボンブラックを…い1こ従来型空気極(均
およしへ人を出発物質として得ら′#11こ比表面積が
1200m/f の活性炭を用い1こ従来型空気f値(
C+ vt一ついても、同様の試験を試みfコ、これら
の結末を第2図に示す。すなわち、本発明しこかかる比
表面積が80m”/yの出船化カーポンプう]々ん出い
γこ空気極(Alは、初期特性は劣るが、長期にゎrコ
って硬めて安定な性能を示すことがわかる。
First of all, graphitized carbon black with a specific surface area of 120 m/y was used as a conventional air electrode (uniformly obtained using humans as the starting material). Using activated carbon at 1200 m/f, the conventional air f value (
Even if there was only one C+ vt, similar tests were attempted and the results are shown in Figure 2. In other words, according to the present invention, the air electrode of a car pump with a specific surface area of 80 m"/y has a relatively hard surface and a stable performance over a long period of time. It can be seen that this shows that

以上詳述せる如く、木シロ明は長4醋の塩化アルカリ電
解用空気極を堤供するもので、その工業げj画III!
極めて大である。
As detailed above, Kishiromei supplies air electrodes for alkali chloride electrolysis, and the industrial project III!
It is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は本発明の一実施例にかかる空気極の断面6i造
をホす。丙2図は本発明の一夷blIi例にがかる空気
個体)の電位の経時変化を従来型空気極(均、1+との
比較のもとに示し1こものである。 ■・・・・・多孔性ニッケル層、 2・・・・融媒層。 3・・・・・多孔性接合;鍼、 4・・・ 多孔性ポリ
47)化エチレン膜層。
Figure 1 shows a cross-section 6i of an air electrode according to an embodiment of the present invention. Figure 2 shows the change over time in the potential of the air solid according to the first example of the present invention in comparison with a conventional air electrode (uniform, 1+). 2... Melting medium layer. 3... Porous bond; acupuncture needles. 4... Porous polyethylene film layer.

Claims (1)

【特許請求の範囲】[Claims] ファーネスブラックを黒鉛化処理して得られる黒鉛粉床
であって、比表面積が95 m/ &以下の黒鉛粉床を
柑いてなることを特徴とする塩化アルカリ電解用空気極
An air electrode for alkali chloride electrolysis, which is a graphite powder bed obtained by graphitizing furnace black and has a specific surface area of 95 m/2 or less.
JP59078894A 1984-04-18 1984-04-18 Air electrode for electrolyzing alkali chloride Pending JPS60221594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078894A JPS60221594A (en) 1984-04-18 1984-04-18 Air electrode for electrolyzing alkali chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078894A JPS60221594A (en) 1984-04-18 1984-04-18 Air electrode for electrolyzing alkali chloride

Publications (1)

Publication Number Publication Date
JPS60221594A true JPS60221594A (en) 1985-11-06

Family

ID=13674515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078894A Pending JPS60221594A (en) 1984-04-18 1984-04-18 Air electrode for electrolyzing alkali chloride

Country Status (1)

Country Link
JP (1) JPS60221594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608635A1 (en) * 1986-12-13 1988-06-24 Ringsdorff Werke Gmbh ELECTRODE FOR ELECTROCHEMICAL OPERATIONS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608635A1 (en) * 1986-12-13 1988-06-24 Ringsdorff Werke Gmbh ELECTRODE FOR ELECTROCHEMICAL OPERATIONS

Similar Documents

Publication Publication Date Title
Stonehart Carbon substrates for phosphoric acid fuel cell cathodes
Matsuki et al. Oxygen reduction electrocatalysis on some manganese oxides
US20080076008A1 (en) Electrode catalyst for fuel cell and fuel cell using the same
CA1122569A (en) Electrodes and their use
ES484348A1 (en) Metal electrodes for use in electrochemical cells and method of preparation thereof.
CN113512737B (en) Nickel hydroxide electrocatalyst, preparation method, electrochemical activation method and application thereof
JPH03111586A (en) Electrolytic bath for reduction of carbon dioxide
CN110699701B (en) Foam nickel loaded with metal nickel and vanadium trioxide compound and preparation method and application thereof
US3870565A (en) Cathode for the reduction of oxygen and a rechargeable cell comprising said cathode
Cong et al. Ni~ xCo~ 3~-~ x O~ 4 Mixed Valence Oxide Nanoparticles/Polypyrrole Composite Electrodes for Oxygen Reduction
US4379077A (en) Active carbon conditioning process
CN108484415A (en) A kind of preparation method of cadmium metal organic coordination compound and products thereof and derivative
JPS60221594A (en) Air electrode for electrolyzing alkali chloride
CN109267094B (en) Heteroatom-doped porous carbon/iron phosphide composite material
DE1671747A1 (en) Fuel electrode for a fuel cell
US4882024A (en) Hydrogen generator having a low oxygen overpotential electrode
CA1106797A (en) Active cobalt electrode for the cathodic evolution of hydrogen
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
CA1263626A (en) Use of gas depolarized anodes for the electrochemical production of adiponitrile
Moradmand Molten Carbonate Recycle and Recovery in the Direct Carbon Fuel Cell
DE3174079D1 (en) Partially-fluorinated carbon particles for use as electrodes
EP0978890A1 (en) Electrodes and electrochemical cells made with such electrodes
US3666565A (en) Method for preparing an electrode for fuel cell
JP2021161511A (en) Electrode and electrochemical reaction cell for oxidation reaction
JPH11121299A (en) Carbon electrode for electric double-layer capacitor, and manufacture thereof