JPS60221481A - Orienting heat conductive member - Google Patents

Orienting heat conductive member

Info

Publication number
JPS60221481A
JPS60221481A JP59075825A JP7582584A JPS60221481A JP S60221481 A JPS60221481 A JP S60221481A JP 59075825 A JP59075825 A JP 59075825A JP 7582584 A JP7582584 A JP 7582584A JP S60221481 A JPS60221481 A JP S60221481A
Authority
JP
Japan
Prior art keywords
heat conductive
conductive member
heat
vapor
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59075825A
Other languages
Japanese (ja)
Inventor
Morinobu Endo
守信 遠藤
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59075825A priority Critical patent/JPS60221481A/en
Publication of JPS60221481A publication Critical patent/JPS60221481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:An orienting heat conductive member, obtained by covering a bundle of carbon fibers, grown in the vapor-phase, and having a specific element fiber diameter and remarkably higher heat conductivity in the longitudinal direction than in the direction perpendicular thereto with a low heat conductive material, and having excellent heat conductivity in the axial direction. CONSTITUTION:An orienting heat conductive member obtained by covering a bundle of carbon fibers, grown in the vapor phase, prepared by thermal decomposition of a mixed gas of a hydrocarbon, e.g. benzene, and hydrogen gas in the presence of fine particles, e.g. Fe, at a temperature as high as about 1,000 deg.C by the vapor-phase method, and having 5-20mu, preferably 10+ or -3mu element fiber diameter and remarkably higher heat conductivity in the longitudinal direction than in the direction perpendicular thereto with a low heat conductive material.

Description

【発明の詳細な説明】 (″発明の対象) 本発明は気相成長炭素繊維を用いた配向性熱伝導部材に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) The present invention relates to an oriented thermally conductive member using vapor grown carbon fibers.

(従来技術) 従来、電気的、機械的原因によって局部的に発生した熱
を系外に迅速に放散させる方法は種々研究され、たとえ
ばヒートポンフ0等によって一部は実用化されている。
(Prior Art) Various methods have been studied to rapidly dissipate heat locally generated due to electrical or mechanical causes to the outside of the system, and some of them have been put into practical use, for example, by the Heat Pump 0.

しかしながら伝熱体の幾回学的大きさ、とくに太さにお
いて限定され、まだ使用温度範囲に制限があるほか、機
械加工性不良、(発明の目的) 本発明の目的は上記従来技術の欠点を改善し、軸方向の
熱伝導率の極めて良好な配向性熱伝導部材を提供するこ
とにある。
However, the geometrical size, especially the thickness, of the heat transfer body is limited, and there are still limitations on the temperature range in which it can be used, as well as poor machinability. It is an object of the present invention to provide an oriented thermally conductive member which has improved thermal conductivity in the axial direction.

(発明の構成) 本発明は素線径5〜20μ、好ましくは10±3μを有
する気相成長法によって得られる炭素繊維であって、望
ましくはその層面方向(長さ方向)の熱伝導率(In−
plane thermal condnctivit
y )は2000ないし3000 kcal/rn−h
+”Cの範囲にあり、またこれと同一層面において上記
と直角方向の熱伝導率は上記の1/100に相当する2
0ないし30kcat//rrI−hr・℃を有し、高
度に異方性をもった炭素繊維の束を低熱導材で被覆して
なる配向性熱伝導部材である。
(Structure of the Invention) The present invention provides a carbon fiber obtained by a vapor phase growth method having a strand diameter of 5 to 20μ, preferably 10±3μ, and desirably has a thermal conductivity in the layer direction (longitudinal direction) ( In-
plane thermal conductivity
y) is 2000 to 3000 kcal/rn-h
+”C, and the thermal conductivity in the direction perpendicular to the above on the same layer plane is 2, which is equivalent to 1/100 of the above.
It is an oriented heat conductive member having a temperature of 0 to 30 kcat//rrI-hr·°C and made by covering a bundle of highly anisotropic carbon fibers with a low thermal conductive material.

気相法によって生成される炭素繊維は軸方向の熱伝導性
が極めて良好であり、しかも軸に直角方向の熱伝導性は
いちじるしく低いという特性を有している点に着目して
本発明に想到するに至った気相法いわゆるCVD法(C
hemical vapordep6sition )
による炭素繊維の製法は従来多数公開されているがその
基本的方法の−は、たとえば特公昭58−22571号
に見られるように、ベンゼン等の炭化水素と水素ガスと
の混合ガスをFe等の微粒子の存在下に1000℃前後
の高温にて熱分解することによって製造される。
The present invention was conceived based on the fact that carbon fiber produced by the vapor phase method has extremely good thermal conductivity in the axial direction, and extremely low thermal conductivity in the direction perpendicular to the axis. The vapor phase method that led to the so-called CVD method (C
chemical vapor dep6sition)
Many carbon fiber manufacturing methods have been published in the past, but the basic method is, for example, as seen in Japanese Patent Publication No. 58-22571, in which a mixed gas of a hydrocarbon such as benzene and hydrogen gas is mixed with Fe etc. It is produced by thermal decomposition at a high temperature of around 1000°C in the presence of fine particles.

斯様にして得られた炭素繊維は通常その素線径は気相法
の諸条件によって随意に調製可能であるが概ね50μ以
下である。本発明における気相法炭素繊維は本発明の目
的を達成するために20μ以下、5μ以−1が好ましい
The diameter of the carbon fibers obtained in this manner can be adjusted as desired depending on the conditions of the vapor phase method, but is generally 50 μm or less. In order to achieve the object of the present invention, the vapor grown carbon fiber in the present invention preferably has a thickness of 20μ or less and 5μ or more -1.

本発明炭素繊維配向性熱伝導部材は、その軸方向の熱伝
導率において2000ないし3000k c at/m
・hr・℃の数値を有する。上記数値を得られる温度範
囲は100°にないし800°にの範囲である。斯様な
熱伝導率は他の良熱伝導体とされている銅、あるいは三
塩化鉄(FeCt3)の熱伝導率の。
The oriented carbon fiber thermally conductive member of the present invention has an axial thermal conductivity of 2000 to 3000k at/m.
・Has a numerical value of hr・℃. The temperature range in which the above values can be obtained is from 100° to 800°. Such thermal conductivity is comparable to that of copper or iron trichloride (FeCt3), which are considered to be other good thermal conductors.

上記と同一の温度範囲における数値の実にほぼ5倍以上
の値であシ、しかも、最も黒鉛化度の良い高配向性熱分
解黒鉛として知られるHOPGの層面方向の熱伝導率に
ほぼ近似する高値である。斯様な温度−熱伝導率特性に
ついては第1図に示す通りである。
The value is actually more than five times the value in the same temperature range as above, and moreover, it is a high value that almost approximates the thermal conductivity in the layer direction of HOPG, which is known as highly oriented pyrolytic graphite with the highest degree of graphitization. It is. Such temperature-thermal conductivity characteristics are shown in FIG.

更に本発明炭素繊維配向性熱伝導部材は、その軸に直角
方向における熱伝導率において、20ないし30 kc
a7!/′it+−hr・’Cを有する。この数値は上
記斯様な伝熱特性を有する炭素繊維は本発明者らによっ
てはじめて取得されたものである。この炭素繊維の上記
伝熱特性を利用することにより、局部的に発生した熱を
すみやかに発生個所から放散させる目的に極めて好都合
である。すなわち、伝導による放散熱量は、輻射、対流
による放散熱量に比較して格段に犬であり、輻射、対流
放散熱量は伝導熱量に比して無視できる程度に低い。し
たがって局部的に発生した熱を、発生個所の周辺に熱的
影響を与えることなく系外に取出すことができる利点が
ある。たとえばIC基板の冷却、・ぐワードランシスタ
ーの冷却、スピーカーヨークコイルの冷却、高温ガスの
熱交換などに巾広い用途を見出すことが可能である。
Further, the thermally conductive member with oriented carbon fibers of the present invention has a thermal conductivity of 20 to 30 kc in the direction perpendicular to its axis.
a7! /'it+-hr・'C. This value indicates that the carbon fiber having such heat transfer characteristics as described above was obtained for the first time by the present inventors. Utilizing the heat transfer properties of carbon fibers is extremely convenient for quickly dissipating locally generated heat from the location where it is generated. That is, the amount of heat dissipated by conduction is much smaller than the amount of heat dissipated by radiation and convection, and the amount of heat dissipated by radiation and convection is negligibly low compared to the amount of heat conducted. Therefore, there is an advantage that locally generated heat can be taken out of the system without having a thermal effect on the surrounding area of the generated location. For example, it is possible to find a wide range of applications such as cooling IC boards, cooling word drive sisters, cooling speaker yoke coils, and exchanging heat for high-temperature gases.

本発明炭素繊維は前記の通り素線径は5ないし20μ、
平均10μであるため、複数本の素線を引き揃え、炭素
繊維束として使用する。使用温度は本炭素繊維の酸化開
始温度である5001:以下である。まだ可撓性、弾性
にすぐれているため任意形状に曲げて使用することが出
来、これによって熱伝導性に悪影響は見られない。
As mentioned above, the carbon fiber of the present invention has a strand diameter of 5 to 20μ,
Since the average diameter is 10μ, a plurality of strands are aligned and used as a carbon fiber bundle. The operating temperature is 5001: or less, which is the oxidation start temperature of the present carbon fiber. Since it still has excellent flexibility and elasticity, it can be bent into any shape and used without any adverse effect on thermal conductivity.

第2図に本発明の熱伝導部材の例を示す。FIG. 2 shows an example of the heat conductive member of the present invention.

図において2は炭素繊維で長さ方向に揃えて束ねられた
もので、その周囲を低熱伝導材、例えば樹脂1を被覆す
る。被覆は塗布あるいはフィルムの溶着等で行なう。こ
の材料には樹脂の外、水ガラス等も使用できる。
In the figure, reference numeral 2 denotes a bundle of carbon fibers aligned in the length direction, and the periphery thereof is coated with a low heat conductive material such as resin 1. The coating is performed by coating or welding a film. In addition to resin, water glass can also be used as this material.

次に本発明の熱伝導部材の使用例を示す。Next, an example of use of the heat conductive member of the present invention will be shown.

発熱個所からの放熱が部品の配置上、限定されるパワー
トランジスターにおいて、第3図に示すようにプリント
基板の外周に本発明熱伝導部材を洗炭素繊維を束ね直径
1鴫のバンドルにしたものを受熱部及び放熱部を除き、
その他の部分をポリイミドフィルムで被覆して使用した
。本炭素繊維はパワートランジスター3の固定板4の下
部に銀ペーストにて接着し、プリント基板5の外周をめ
ぐシ放熱板6に銀ペースト接着した。トランジスターの
自己発熱10ワット時の温度上昇は本熱伝導部材使用前
において80℃であったものが木材使用によシ30℃に
低下し、その放熱効果は顕著なものと認められた。
In power transistors where heat dissipation from heat generating parts is limited due to the arrangement of the parts, the heat conductive member of the present invention is bundled with washed carbon fibers around the outer periphery of the printed circuit board to form a bundle with a diameter of 1 square inch, as shown in Figure 3. Excluding heat receiving and heat dissipating parts,
Other parts were covered with polyimide film and used. This carbon fiber was adhered to the lower part of the fixing plate 4 of the power transistor 3 with silver paste, and was adhered with silver paste to the heat dissipation plate 6 around the outer periphery of the printed circuit board 5. The temperature rise at 10 watts of self-heating of the transistor was 80°C before using this heat-conducting member, but it decreased to 30°C with the use of wood, and the heat dissipation effect was recognized to be remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度−熱伝導率特性曲線、第2図は本発明の熱
伝導部材の断面図、第3図はパワートランジスターへの
本部材使用例を示す。 1・・・被覆材、2・・・炭素繊維、3・・・パワート
ランジスター、4・・・トランジスター固定板、5・・
・プリント基板、6・・・放熱板、7・・・ケース。 代理人 菊抽鯖− 第1図 第2図 第3図 手 続 補 正 書(自発) 昭和59年!月−22日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和59年特許願第75825号 2、発明の名称 配向性熱伝導部材 3、補正をする者 事件との関係 特許出願人 住所 東京都港区芝大門−・T目13番9号代表者岸本
泰延 4、代理人 (郵便番号105) 居所 東京都港区芝大門−丁目13番8号昭和電工株式
会社内 電1話 東京 432−5111番(大代表)氏名 (
7037)弁猥、+ 講 地 精 −5。 図面ヨの柵。 6、補正の内容 (1)明細書第1頁18行目の「ポンプ」を「パイプ」
に訂正する。 (2)明細書第3頁18行目の[、あるいは三塩化鉄(
Fec13)Jを削除する。 (3)図面 第1図を別紙の通り訂正する。
FIG. 1 shows a temperature-thermal conductivity characteristic curve, FIG. 2 is a sectional view of the heat conductive member of the present invention, and FIG. 3 shows an example of the use of this member in a power transistor. DESCRIPTION OF SYMBOLS 1... Covering material, 2... Carbon fiber, 3... Power transistor, 4... Transistor fixing plate, 5...
- Printed circuit board, 6... heat sink, 7... case. Agent Kikudakusaba - Figure 1, Figure 2, Figure 3 Procedures Amendment (voluntary) 1981! Monday - 22nd Japan Patent Office Commissioner Kazuo Wakasugi 1. Indication of the case Patent Application No. 75825 of 1982 2. Name of the invention Oriented heat conductive member 3. Person making the amendment Relationship to the case Patent applicant address Port of Tokyo Shiba Daimon-ku, T-13-9 Representative Yasunobu Kishimoto 4, Agent (zip code 105) Address 13-8 Shiba Daimon-chome, Minato-ku, Tokyo Showa Denko Co., Ltd. Phone number 1 Tokyo 432-5111 (Main) Representative) Name (
7037) obscene, + koji spirit -5. The fence in the drawing. 6. Contents of the amendment (1) Change “pump” to “pipe” on page 1, line 18 of the specification
Correct. (2) [or iron trichloride (
Fec13) Delete J. (3) Figure 1 of the drawing will be corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] 素線径5〜20μを有し、長さ方向の熱伝導率がそれと
直角方向の熱伝導率よシ著しく高い気相成長炭素繊維の
束を低熱伝導材で被覆してなる配向性熱伝導部材。
An oriented thermally conductive member comprising a bundle of vapor-grown carbon fibers having a wire diameter of 5 to 20μ and whose thermal conductivity in the longitudinal direction is significantly higher than that in the direction perpendicular to the fibers, coated with a low thermally conductive material. .
JP59075825A 1984-04-17 1984-04-17 Orienting heat conductive member Pending JPS60221481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075825A JPS60221481A (en) 1984-04-17 1984-04-17 Orienting heat conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075825A JPS60221481A (en) 1984-04-17 1984-04-17 Orienting heat conductive member

Publications (1)

Publication Number Publication Date
JPS60221481A true JPS60221481A (en) 1985-11-06

Family

ID=13587349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075825A Pending JPS60221481A (en) 1984-04-17 1984-04-17 Orienting heat conductive member

Country Status (1)

Country Link
JP (1) JPS60221481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473855A (en) * 2015-12-22 2018-08-31 安赛乐米塔尔公司 The method of nonmetallic or metal heat transfer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473855A (en) * 2015-12-22 2018-08-31 安赛乐米塔尔公司 The method of nonmetallic or metal heat transfer

Similar Documents

Publication Publication Date Title
US5224030A (en) Semiconductor cooling apparatus
US5898570A (en) Enhanced heat transfer in printed circuit boards
US5494753A (en) Articles having thermal conductors of graphite
JP4972640B2 (en) System and method for thermal management of electronic components
US20070158584A1 (en) Heat sink with carbon nanotubes and method for manufacturing the same
JP2000281802A (en) Thermoconductive formed shape, its production, and semiconductor device
WO1992003034A1 (en) Heat-conductive metal ceramic composite material panel system for improved heat dissipation
US6367509B1 (en) Thermal harness using encased carbon-based fiber and end attachment brackets
CN1116400A (en) Cooling structure of unit
JP2011204749A (en) Sheet-like structure, electronic apparatus, and method for manufacturing electronic apparatus
JPS63313490A (en) Electric heating cable
CN112087914A (en) Flexible heat conducting strip and cable
KR100334992B1 (en) Sealing terminal
JPS5840286B2 (en) Method for manufacturing high tensile strength aluminum stabilized superconducting wire
CN210725787U (en) Flexible heat conducting strip and cable
JPS60221481A (en) Orienting heat conductive member
US4982783A (en) Self-tightening heat sink
JP2001217058A (en) Linear heater element and its connection structure
KR20200080961A (en) Insulated heat dissipating nanowires, methods of making the same, and composites comprising the same
JP2007300114A (en) Semiconductor device member and semiconductor device
US6994578B1 (en) Micro-connector structure and fabricating method thereof
US20070040266A1 (en) Heat-conducting packaging of electronic circuit units
US8808857B1 (en) Carbon nanotube array interface material and methods
JP2819018B2 (en) Resistance heating heater
JP2001110952A (en) Heat dissipating device