JPS6022120A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS6022120A
JPS6022120A JP13123883A JP13123883A JPS6022120A JP S6022120 A JPS6022120 A JP S6022120A JP 13123883 A JP13123883 A JP 13123883A JP 13123883 A JP13123883 A JP 13123883A JP S6022120 A JPS6022120 A JP S6022120A
Authority
JP
Japan
Prior art keywords
waveguide
optical
light
intersection
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13123883A
Other languages
Japanese (ja)
Other versions
JPH045174B2 (en
Inventor
Takao Kawaguchi
隆夫 川口
Kenzo Ochi
謙三 黄地
Hideaki Adachi
秀明 足立
Kentaro Setsune
瀬恒 謙太郎
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13123883A priority Critical patent/JPS6022120A/en
Priority to PCT/JP1984/000039 priority patent/WO1984003155A1/en
Priority to EP84900750A priority patent/EP0137851B1/en
Priority to US06/667,480 priority patent/US4715680A/en
Priority to DE8484900750T priority patent/DE3482287D1/en
Publication of JPS6022120A publication Critical patent/JPS6022120A/en
Publication of JPH045174B2 publication Critical patent/JPH045174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/055Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic
    • G02F1/0553Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic specially adapted for gating or modulating in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the leak of light to be transmitted and to improve the branching ratio by gently changing the structure of the crossing section of an optical switch made of a material having a significant electro-optical effect. CONSTITUTION:An epitaxial single crystal film grown on the <111> face is formed on the alpha-Al2O3 surface 31 of a substrate as a thin PLZT film having a significant electro-optical effect to regulate the optical transmission loss to 3dB/cm. A negative pattern of an AZ resist is formed on the PLZT film by a lift process, a Ta2O5 film is vapor-deposited on the resist, and the resist is removed with acetone to manufacture load device type optical waveguides. Light is kept under the Ta2O5 film and transmitted. In case of 4mum width W1 of the optical waveguide 32 and theta1 angle of crossing, the width W2 at the center of the crossing section is regulated to 40mum, it is gradually increased within the range of 2mm. length L1, and a smoothly connected structure is provided. Light is transmitted through the waveguide 321 in 16dB branching ratio.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光スィッチに関する。特に導波光を分岐させる
ことによシ光出力をオン、オフさせる光集積回路に適用
する光スィッチに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical switches. In particular, the present invention relates to an optical switch applied to an optical integrated circuit that turns on and off optical output by branching guided light.

従来例の構成とその問題点 従来この種の分岐導波路を用いた光スィッチとして、全
反射型スイッチがある。以下、図面を用いて全反射型ス
イッチ等に使用される光分岐導波路の構成とその問題点
を説明する。第1図は電気光学効果を有する基板上に構
成された全反射型光スイッチ1oを示す。同図において
、11と13および12と14は互い交差する光導波路
を示す。
Conventional Structure and Problems There is a total internal reflection switch as a conventional optical switch using this type of branch waveguide. Hereinafter, the configuration of an optical branching waveguide used in a total reflection type switch and the like and its problems will be explained with reference to the drawings. FIG. 1 shows a total internal reflection type optical switch 1o constructed on a substrate having an electro-optic effect. In the figure, 11 and 13 and 12 and 14 indicate optical waveguides that intersect with each other.

15と16は光導波路上に設けられた電極を示し17は
光伝搬制御部を示し、上記光導波路の交差部分上に設け
られている。このような構成の光スィッチにおいて、電
1i15.16に電圧を印加することにより、電気光学
効果により制御部17の下の光導波路部分の屈折率が小
さくなる。従って11より入射した導波光は電極15.
16に電圧が印加されている場合、制御部17部分で全
反射条件を満たし、14へ伝搬することになる。なお、
電圧が印加されていない場合は、11より入射した導波
光は、制御部17の部分を直進し導波路13へ伝搬され
る。導波路12より入射した導波光についても同様に導
波路13.14へスイッチされる。
Reference numerals 15 and 16 indicate electrodes provided on the optical waveguide, and 17 indicates a light propagation control section, which is provided on the intersection of the optical waveguides. In the optical switch having such a configuration, by applying a voltage to the electrodes 1i15.16, the refractive index of the optical waveguide portion below the control section 17 is reduced due to the electro-optic effect. Therefore, the guided light incident from electrode 11 is transmitted to electrode 15.
When a voltage is applied to 16, the total reflection condition is satisfied at the control section 17, and the signal propagates to 14. In addition,
When no voltage is applied, the guided light incident from 11 travels straight through the control section 17 and is propagated to the waveguide 13 . The guided light incident from the waveguide 12 is similarly switched to the waveguides 13 and 14.

このような従来の光スィッチにおいては以下に示す欠点
もしくは問題点があった。すなわち、電気光学効果によ
る屈折率変化が小さいため、導波路11と12の交差角
は小さく、導波路11よシ入射し、導波路13へ伝搬す
る導波光は導波路14へも伝搬することがあり、10 
(iB以上の消光比を得ることが非常に困難であった。
Such conventional optical switches have the following drawbacks or problems. That is, since the refractive index change due to the electro-optic effect is small, the intersection angle between the waveguides 11 and 12 is small, and the guided light that enters the waveguide 11 and propagates to the waveguide 13 can also propagate to the waveguide 14. Yes, 10
(It was very difficult to obtain an extinction ratio of iB or higher.

このため、充分なスイッチング特性を得ることが困難で
あシ実用上問題があった。
For this reason, it is difficult to obtain sufficient switching characteristics, which poses a practical problem.

又、この点を改善するために第2図に示す構成カ用イラ
れている。この構造は同図において、交差部の近傍にお
いて導波路の線路幅を放物線状に増加させ連結させた放
物線状導波路111,121゜141.1151を設け
ている。この構成では、理論的にモードの変換量が少な
く、例えばTEooモードであれは、11から伝搬した
光はTEooモードのまま直進し、導波路141へ漏洩
することなく161から13へと伝搬するとされている
Further, in order to improve this point, the configuration shown in FIG. 2 is used. In this structure, parabolic waveguides 111 and 121°141.1151 are provided in which the line width of the waveguide is increased in a parabolic manner near the intersection and connected. In this configuration, the amount of mode conversion is theoretically small; for example, in the TEoo mode, the light propagated from 11 travels straight in the TEoo mode, and propagates from 161 to 13 without leaking into the waveguide 141. ing.

しかしながら、この構造では放物線状導波路の線路幅に
、伝搬モードを変化させない形状条件が存在している。
However, in this structure, there is a shape condition in the line width of the parabolic waveguide that does not change the propagation mode.

すなわち、 W2=(2αλ。/nb)Z+W0’ である。That is, W2=(2αλ./nb)Z+W0' It is.

ここで、λ0:光の波長、nb□:光導波路のバルクの
屈折率、z:定幅導波路からの距離(第2図参照)、W
:放物線状導波路の幅、Wo:定幅導波町の幅、α:1
よシ小さい正実数。
Here, λ0: wavelength of light, nb□: bulk refractive index of optical waveguide, z: distance from constant width waveguide (see Figure 2), W
: Width of parabolic waveguide, Wo: Width of constant width waveguide, α: 1
A small positive real number.

このため、放物線状導波路の長さを短かくするためにα
:1としても、放物線状導波路の長さは2闘以上になり
、素子全体では5mm程度となる。
Therefore, in order to shorten the length of the parabolic waveguide, α
:1, the length of the parabolic waveguide will be 2 mm or more, and the entire device will be about 5 mm.

したがって、素子の寸法公差に余裕を持たせるように、
α=0.6にすると、素子寸法が10Ill#1以上と
なり、集積化には適さない。故にα:1とするために、
導波路幅を精度よく構成する必要がある。
Therefore, in order to provide a margin for the dimensional tolerance of the element,
When α=0.6, the element size becomes 10Ill#1 or more, which is not suitable for integration. Therefore, in order to set α:1,
It is necessary to configure the waveguide width with high precision.

もし、α〉1の場合には、放物線状導波路と定幅導波路
との接続部は滑らかに結合していないので、伝搬モード
変換が発生し、例えばTKooモード光の一部がTE0
1モード光は導波路11から伝搬した場合導波路14に
漏洩する割合がTEooと比較し高く、この光スィッチ
の分比例を低下させるため、精度よく上記構造を形成し
なければ、小型かつ分岐比を10 dB以上にすること
は困難であった。
If α>1, the connection between the parabolic waveguide and the constant-width waveguide is not coupled smoothly, so propagation mode conversion occurs, and for example, part of the TKoo mode light becomes TE0
When 1-mode light propagates from the waveguide 11, the rate of leakage to the waveguide 14 is higher than that of TEoo, which reduces the proportionality of this optical switch. It was difficult to increase the value to 10 dB or more.

本発明者らは、光分岐導波路を工夫することに留 よシ、分岐特性を大幅に改善でき、かつ歩坐→シよく形
成できる構造を見い出し、スイッチング特性の優れた光
スィッチを実現できることを見い出した。
The inventors of the present invention did not limit themselves to devising optical branching waveguides, but discovered a structure that could significantly improve the branching characteristics and that could be easily formed from one position to another, thereby realizing an optical switch with excellent switching characteristics. I found it.

発明の目的 本発明は、上記従来例の有していた欠点もしくは問題点
を除去した分岐特性の良好な光スィッチを提供すること
を目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an optical switch with good branching characteristics that eliminates the drawbacks or problems of the above-mentioned conventional examples.

発明の構成 本発明は、導波路の近傍における導波路の線路幅を交差
部中心に向かって増加させ、かつ滑らかに接続させ、上
記交差部近傍の外周線を多曲線状としたものである。
Structure of the Invention In the present invention, the line width of the waveguide in the vicinity of the waveguide is increased toward the center of the intersection, and the lines are connected smoothly, and the outer circumferential line in the vicinity of the intersection is made into a polygonal shape.

実施例の説明 以下本発明を、図を用いて説明する。Description of examples The present invention will be explained below with reference to the drawings.

第3図は本発明にかか名光スイッチの構造を示す。同図
において、本発明にかかる光スィッチは。
FIG. 3 shows the structure of an optical switch according to the present invention. In the figure, the optical switch according to the present invention is shown.

基板の表面31に形成した互いに交差する光導波路32
1と322および331と332と、上記交差部34の
表面に設けられた光の伝搬通路を選択させる制御電極3
61と362とから構成されたもので、さらに導波路の
交差部34の近傍における導波路3211.3221.
3311.3321の線路幅を交差部34の中心に向っ
て増加させ、かつ滑らかに接続させ、交差部近傍の導波
路の外周線36を双曲線状としている。
Optical waveguides 32 that intersect each other are formed on the surface 31 of the substrate.
1 and 322, 331 and 332, and a control electrode 3 provided on the surface of the intersection 34 for selecting a light propagation path.
61 and 362, and the waveguides 3211, 3221, .
The line width of 3311 and 3321 is increased toward the center of the intersection 34 and connected smoothly, and the outer circumferential line 36 of the waveguide near the intersection has a hyperbolic shape.

従来、このような構成では導波光の自然拡がりを制限す
ることは無いと考えられ、したがって分岐比を充分得る
ことはできないと考えられていた。
Conventionally, it has been thought that such a configuration does not limit the natural spread of guided light, and therefore it is not possible to obtain a sufficient branching ratio.

又、従来例で示したように、例えば導波路321の導波
光11は、膜厚と導波路幅との関係から決定される放物
線型の外周線のように連結されていないので、伝搬モー
ドが保存されず、分岐比を劣化させる高次モードの発生
が多く生じると考えられていた。
Furthermore, as shown in the conventional example, the guided light 11 of the waveguide 321 is not connected like a parabolic outer circumferential line determined from the relationship between the film thickness and the waveguide width, so the propagation mode is It was believed that many higher-order modes occur that are not preserved and degrade the branching ratio.

しかし、本発明者らは、本発明にかかる構造においても
導波光11は、交差部の通過のさいにも導波路332に
漏洩することなく、そのまま直進し導波路322に導波
することを見出し、新規の光スィッチを発明した。
However, the inventors of the present invention have discovered that even in the structure according to the present invention, the guided light 11 does not leak into the waveguide 332 even when passing through an intersection, and continues straight as it is and is guided to the waveguide 322. , invented a new light switch.

本発明にかかる構造を詳細に検討した結果、導波路幅に
最適の範囲のあることを見い出した。すなわち、導波路
幅5〜30μmが最適である。
As a result of a detailed study of the structure according to the present invention, it was found that there is an optimum range for the waveguide width. That is, a waveguide width of 5 to 30 μm is optimal.

5μm以下では導波光の交差路内で自然拡が大きく、良
好な分岐比を得ることが出来なかった。又、30μm以
上では、交差路寸法が大きくなり小型化が困難で集積化
には適さない。又、導波路の交差角も1〜5° を含む
範囲内が最適であった。
When the diameter is less than 5 μm, the guided light naturally spreads significantly within the cross-path, making it impossible to obtain a good branching ratio. Moreover, if it is 30 μm or more, the cross-path size becomes large, making it difficult to downsize and not suitable for integration. Moreover, the optimum crossing angle of the waveguides was within a range of 1 to 5 degrees.

1°未満では導波光の自然拡りによる漏洩が生じていた
と考えられる。5°以上では交差路形状に工夫を加えな
くとも分岐比が良好で2odB以上が容易に得られ、本
発明の意義がない。さらに、この場合、交差路寸法L1
を311D11以下とし上記構成で光スィッチを作成す
ると、導波路幅を双曲線状に加工するだけで、15 d
B以上の分岐比を得ることが出来た。したがって、この
種の構成の光スィッチでは、従来のものに比べ寸法公差
に余裕を持ちつつ小型で、しかも分岐比特性に優れ、故
に消光比の良好な素子を形成することが出来た。
If the angle is less than 1°, it is thought that leakage occurs due to the natural expansion of the guided light. If it is 5 degrees or more, the branching ratio is good and 2 odB or more can be easily obtained without any modification to the crossroad shape, and the present invention has no meaning. Furthermore, in this case, the intersection dimension L1
If the optical switch is made with the above configuration and the waveguide width is 311D11 or less, the width of the waveguide can be reduced to 15 d by simply machining it into a hyperbolic shape.
It was possible to obtain a branching ratio of B or higher. Therefore, in the optical switch having this type of structure, it is possible to form an element that is smaller in size with more margin in dimensional tolerance than the conventional one, has excellent branching ratio characteristics, and therefore has a good extinction ratio.

本発明の動作原理の詳細は明確でないが、上記の結果か
ら、マルナモード導波路内を低次モード導波光を交差部
に導波させるが、交差部の外周線を双曲線状であるため
、導波光は準静的に導波路の拡がりに対応する同じ低次
モー動゛導波光に変遍する。また、この場合交差路中央
部で導波路幅は10〜40μm程度となるため光波の自
然人がシが小さくなるので、漏洩が少なく導波すると考
えられる。さらに、交差路中央部への光波の導入と同様
に、準静的に導波光は細くなりつつ導波路へ伝搬するの
で良好な分岐比が得られたと考えられる。
The details of the operating principle of the present invention are not clear, but from the above results, the lower-order mode waveguide light is guided in the Maruna mode waveguide to the intersection, but since the outer circumferential line of the intersection is hyperbolic, the guided light transforms quasi-statically into the same low-order motive waveguide light corresponding to the expansion of the waveguide. In addition, in this case, since the waveguide width at the center of the intersection is about 10 to 40 μm, the natural width of the light wave is small, so it is thought that the waveguide can be guided with less leakage. Furthermore, it is considered that a good branching ratio was obtained because the guided light propagated to the waveguide while becoming narrower in a quasi-static manner, similar to the introduction of the light wave into the center of the intersection.

以下本発明の内容をよシよ〈理解できるように具体的な
実施例をあけて説明する。
The content of the present invention will be explained below with reference to specific embodiments for better understanding.

(実施例1) 本発明の実施例を第3図により具体的に説明する。例え
ば、基板の表面31をα−ム1205とし、電気光学効
果の大きい材料として知られるPLZT(2810/1
00)薄膜轡例えば、スパッタ、マグネトロンスパッタ
、イオンビームスパッタで、基板温度550〜660℃
で蒸着すると、(111)面エピタキシ+ル単結晶膜が
形成され、光伝搬損失が36B/1Mのものが得られる
。例えば、形成された膜厚0.3μmのPLZT薄膜上
に第3図に示す構造を通常の半導体プロセスに使用され
るフォトリソ技術を使用し、形成する。例えば、フォリ トリソ技術のうちアト法を用い、ネガパターン形成され
たム2レジヌト上に膜厚0,2μmのTa205膜を例
えばマグネトロンスパッタで蒸着し、アセトンでムクレ
ジストを除去することによシ、ロード装置型光導波路が
形成できる。この構造において、光は’I’a20s膜
下に閉じ込められて伝搬する。
(Example 1) An example of the present invention will be specifically described with reference to FIG. For example, the surface 31 of the substrate is made of α-mu1205, and PLZT (2810/1
00) Thin film, e.g. sputtering, magnetron sputtering, ion beam sputtering, substrate temperature 550-660°C
When vapor-deposited, a (111) plane epitaxial single crystal film is formed, and a light propagation loss of 36B/1M is obtained. For example, the structure shown in FIG. 3 is formed on the formed PLZT thin film with a thickness of 0.3 μm using a photolithography technique used in a normal semiconductor process. For example, a Ta205 film with a thickness of 0.2 μm is deposited by magnetron sputtering on a negative patterned M2 resist by using the atto method of the follitolithography technique, and the M205 film is removed by acetone using a loading device. type optical waveguide can be formed. In this structure, light is confined and propagated under the 'I'a20s film.

交差部近傍での構造は、例えば第3図に示すように光導
波路の線幅W1 を4μm、交差角θ1での場合、交差
部中央での輻W2を40μmとして、交差部近傍の長さ
Llの長さ211Mの間で徐々に線幅を広け、又交差部
中心から徐々に線幅を狭くし、かつ滑らかに接続させる
構造とする。
The structure near the intersection is, for example, as shown in FIG. 3, when the line width W1 of the optical waveguide is 4 μm and the intersection angle θ1, the convergence W2 at the center of the intersection is 40 μm, and the length Ll near the intersection is The line width is gradually widened between the length 211M, and the line width is gradually narrowed from the center of the intersection, and the connection is made smoothly.

以上の構成にすると、例えば光導波路321の伝搬光は
1e aBの分岐比の得られることを確認した。
With the above configuration, it has been confirmed that, for example, the light propagating through the optical waveguide 321 can have a branching ratio of 1e aB.

特にこのような構造ではτi−拡散型Li−NbO5光
導波路よシ光導波路と周辺部の屈折率の差が太き艷ので
、第2図の構成の精度はかなり要求される。しかし、本
発明の構成においてはそのような必要は少なく信頼性よ
く形成することができることを本発明者らは確認した。
In particular, in such a structure, the difference in refractive index between the optical waveguide and the peripheral portion is larger than that of the τi-diffusion type Li--NbO5 optical waveguide, so the configuration shown in FIG. 2 requires considerable accuracy. However, the present inventors have confirmed that in the configuration of the present invention, such a need is small and can be formed with high reliability.

本構造において、基板の表面はMgO,スピネル。In this structure, the surface of the substrate is MgO and spinel.

SiTiO3のうち少なくとも一種であれば、BaTi
Os。
If it is at least one type of SiTiO3, BaTi
Os.

PbTi0g 、 PLZT系化合物を例えばスパッタ
法で形成し、本構成を形成すれば分岐比の良好な交差導
波路を形成することができる。
If a PbTi0g, PLZT-based compound is formed by, for example, a sputtering method and this configuration is formed, a crossed waveguide with a good branching ratio can be formed.

この交差導波路上に厚さ0.1μm、空隙2〜6μmの
制御電極361と352を、例えば蒸着ムlで形成する
と光スィッチが形成でき、消光比20dBの光スイツチ
ング動作を確認した。
An optical switch can be formed by forming control electrodes 361 and 352 with a thickness of 0.1 μm and a gap of 2 to 6 μm using, for example, vapor deposition on this crossed waveguide, and an optical switching operation with an extinction ratio of 20 dB was confirmed.

(実施例2) 本構造の光スィッチにおいて、基板の表面31をLiT
a03とし、0.574771のLiNbO5を例えば
マグネトロンスパッタで蒸着すると、LiNb0 s層
を光導波路とすることができ、LiNbO5層をイオン
シリングでエツチングを施こすことによシ膜厚に差を設
けると膜厚の厚い領域に光波が閉じ込められ、いわゆる
リッジ型導波路が形成される。この場合、交差する2本
のりッジ型導波路の交差部を本発明の構成とすると、分
岐比15 dBであシ、電極のオン、オフによるスイッ
チングの消光比18 dBを得ることができた。
(Example 2) In the optical switch of this structure, the surface 31 of the substrate is LiT.
If LiNbO5 with a thickness of 0.574771 is deposited using magnetron sputtering, the LiNb0s layer can be used as an optical waveguide, and if the LiNbO5 layer is etched with ion spooling to create a difference in film thickness, the film can be formed. Light waves are confined in the thick region, forming a so-called ridge waveguide. In this case, if the intersection of the two intersecting ridge-type waveguides is configured according to the present invention, a branching ratio of 15 dB can provide an extinction ratio of 18 dB for switching by turning the electrodes on and off. .

又、本発明の構成は、基板の表面をBGO(Bi+2G
e02o) テ構成し、光導波路をBTO(B1+2T
iO20)あルイはB S O(Bi12SiO2o)
 テも同等の効果が得られる。さらに、基板の表面をα
−ム1205 で構成し、光導波路ヲZnO、ZnS 
Moreover, the structure of the present invention is such that the surface of the substrate is made of BGO (Bi+2G
e02o) Configure the optical waveguide as BTO (B1+2T
iO20) Alui is B SO (Bi12SiO2o)
The same effect can be obtained with Te. Furthermore, the surface of the substrate is α
1205, and the optical waveguide is made of ZnO, ZnS.
.

CdS・Zn5e 、 ZnTeで構成してもよい。あ
るいは、基板の表面を半導体のGaPで構成し、光導波
路をGaAsなどの化合物で構成した場合も同等の効果
の得られることを本発明者らは確認した。
It may also be composed of CdS.Zn5e or ZnTe. Alternatively, the present inventors have confirmed that the same effect can be obtained when the surface of the substrate is made of semiconductor GaP and the optical waveguide is made of a compound such as GaAs.

なお、本発明の効果は本発明の構造において、光導波路
は電気光学効果の大きい利料であればよく、上記の材料
に限定されるもので力い。
In addition, the effect of the present invention is strong even if the optical waveguide in the structure of the present invention is limited to the above-mentioned materials as long as the optical waveguide has a large electro-optic effect.

発明の効果 以上のように、本発明は電気光学効果の大きい材料で形
成される光スィッチの交差部の構造変化を緩、やかにし
た構成であシ、伝搬光が他の導波路に漏洩することが少
なく伝搬するので分岐比が良好となる効果がある。この
ため、この構成の光スィッチではオン−オフ時の消光比
が良好となる。
Effects of the Invention As described above, the present invention has a configuration in which the structural change at the intersection of an optical switch made of a material with a large electro-optic effect is slowed down, and propagating light leaks into other waveguides. This has the effect of improving the branching ratio because it propagates with less interference. Therefore, the optical switch with this configuration has a good extinction ratio during on-off.

したがって、本発明の光スィッチを用いると小型であり
且つ伝搬光の漏洩が少なく、スイッチング特性の優れた
光スィッチが実現できるものである。
Therefore, by using the optical switch of the present invention, it is possible to realize an optical switch that is small in size, has little leakage of propagated light, and has excellent switching characteristics.

したがって、集積化を計ることが可能で、光IC化の可
能性が犬であり、光エレクトロニクスに与える寄与は大
きいものである。
Therefore, it is possible to achieve integration, and there is great potential for optical ICs, making a large contribution to optical electronics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の全反射型光スイッチの要部平面図、第2
図は従来の他の全反射型光スイッチの要部平面図、第3
図は本発明の光スィッチの一実施例の概略平面図である
。 31・・・・・・基板表面、32.33・・・・・・光
導波路、、321.322,331.332 ・・・・
・・光導波路、34・・・・・・交差部、351.35
2・・・・・・制御電極、32.11゜3221.33
11.3321−・・・・・先導波路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 16 第2図 第3図
Figure 1 is a plan view of the main parts of a conventional total reflection type optical switch, Figure 2
The figure is a plan view of the main parts of another conventional total internal reflection type optical switch.
The figure is a schematic plan view of an embodiment of the optical switch of the present invention. 31... Substrate surface, 32.33... Optical waveguide, 321.322, 331.332...
...Optical waveguide, 34...Intersection, 351.35
2...Control electrode, 32.11°3221.33
11.3321--...Leading wavepath. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 16 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 基板の表面に互いに交差する導波路を設け、上記交差部
の表面に光伝搬路を選択させる制御電極を設け、上記導
波路の交差部の近傍における導波路の線路幅を交差部中
心に向かって増加させ、かつ滑らかに接続させ、上記交
差部近傍の導波路の外周線を双曲線状としたことを特徴
とする光スィッチ。
Waveguides that intersect each other are provided on the surface of the substrate, a control electrode for selecting an optical propagation path is provided on the surface of the intersection, and the line width of the waveguide near the intersection of the waveguides is directed toward the center of the intersection. An optical switch characterized in that the outer circumferential line of the waveguide near the intersection has a hyperbolic shape.
JP13123883A 1983-02-10 1983-07-18 Optical switch Granted JPS6022120A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13123883A JPS6022120A (en) 1983-07-18 1983-07-18 Optical switch
PCT/JP1984/000039 WO1984003155A1 (en) 1983-02-10 1984-02-10 Optical switch
EP84900750A EP0137851B1 (en) 1983-02-10 1984-02-10 Optical switch
US06/667,480 US4715680A (en) 1983-02-10 1984-02-10 Optical switch
DE8484900750T DE3482287D1 (en) 1983-02-10 1984-02-10 OPTICAL SWITCH.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13123883A JPS6022120A (en) 1983-07-18 1983-07-18 Optical switch

Publications (2)

Publication Number Publication Date
JPS6022120A true JPS6022120A (en) 1985-02-04
JPH045174B2 JPH045174B2 (en) 1992-01-30

Family

ID=15053232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13123883A Granted JPS6022120A (en) 1983-02-10 1983-07-18 Optical switch

Country Status (1)

Country Link
JP (1) JPS6022120A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290395A (en) * 1985-06-24 1987-04-24 ニッタ株式会社 Filter paper and its production
JPS6462602A (en) * 1987-09-02 1989-03-09 Mitsubishi Electric Corp Bent waveguide for optical integrated circuit
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341425B2 (en) 2008-08-08 2013-11-13 ステラケミファ株式会社 Method for producing fluoride gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290395A (en) * 1985-06-24 1987-04-24 ニッタ株式会社 Filter paper and its production
JPH0443684B2 (en) * 1985-06-24 1992-07-17 Nitta Kk
JPS6462602A (en) * 1987-09-02 1989-03-09 Mitsubishi Electric Corp Bent waveguide for optical integrated circuit
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides

Also Published As

Publication number Publication date
JPH045174B2 (en) 1992-01-30

Similar Documents

Publication Publication Date Title
US10359684B2 (en) Optical waveguide element and optical modulator using the same
US7177490B2 (en) Optical waveguide, optical device, and method of manufacturing optical waveguide
US10585328B2 (en) Optical waveguide element and optical modulator using the same
JP2894735B2 (en) Optical circuit
US4818063A (en) Optical modulating/switching device
US4983006A (en) Polarization-independent optical waveguide switch
US5255334A (en) Directional coupler type optical device and a driving method therefor
JPS6022120A (en) Optical switch
US20230069468A1 (en) Optical waveguide element and optical modulation element
JPH05297332A (en) Optical modulator
JPS58147710A (en) Waveguide type optical control device
Chen et al. Integrated optical beam splitters formed in glass channel waveguides having variable weighting as determined by mask dimensions
US20230057036A1 (en) Optical modulation element
JPS63254404A (en) Optical multiplexer/demultiplexer
JPS58173704A (en) Optical focusing device
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JPS59214020A (en) Optical switch
JPS61231522A (en) Optical control type optical switch device
JPS6269247A (en) Optical switch
JPH04258918A (en) Light control circuit
JPS63221306A (en) Light guide type optical control device
JPH0361932B2 (en)
JPS61134731A (en) Production of optical control circuit
JPH02157730A (en) Base plate type optical switch
JPS61162030A (en) Optical switch element