JPS60220893A - Control rod for nuclear reactor - Google Patents

Control rod for nuclear reactor

Info

Publication number
JPS60220893A
JPS60220893A JP59076489A JP7648984A JPS60220893A JP S60220893 A JPS60220893 A JP S60220893A JP 59076489 A JP59076489 A JP 59076489A JP 7648984 A JP7648984 A JP 7648984A JP S60220893 A JPS60220893 A JP S60220893A
Authority
JP
Japan
Prior art keywords
control rod
neutron
absorbing material
neutron absorption
neutron absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59076489A
Other languages
Japanese (ja)
Inventor
博見 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59076489A priority Critical patent/JPS60220893A/en
Publication of JPS60220893A publication Critical patent/JPS60220893A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Vibration Dampers (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、沸騰水型原子炉等において出力分布制御・反
応度制御に用いられる制御棒の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the configuration of control rods used for power distribution control and reactivity control in boiling water nuclear reactors and the like.

〔発明の背景〕[Background of the invention]

原子炉は燃料の燃焼による反応度低下などを見込んだ余
剰反応度?もっている。原子炉?十分制御された状態で
運転し、かつ確実に停止するために、制御棒が備えられ
ている。第1図に沸騰水型原子炉で使われている十字形
制御棒を示す。十字形制御棒lは、制御棒シース3と炭
化ホウ素(B4C)粉末を理論密度の約70%の密度で
ステンレス鋼管内に振動光てんした中性子吸収棒2から
構成されて−る。
Does a nuclear reactor have surplus reactivity, taking into account the reduction in reactivity due to fuel combustion? I have it. Reactor? Control rods are provided for well-controlled operation and reliable stopping. Figure 1 shows a cruciform control rod used in a boiling water reactor. The cruciform control rod 1 is composed of a control rod sheath 3 and a neutron absorption rod 2 in which boron carbide (B4C) powder is oscillated in a stainless steel tube at a density of about 70% of the theoretical density.

炭化ホウ素に約20%含まれているホウ素の同位置1O
Bは、熱中性子に対して約3800バーンという大きな
吸収断面積?有し、(n、α)反応により中性子全吸収
する。このため、炭化ホウ素ケ用いた制御棒は、大きな
反応度価値ケもち、また炭化ホウ素が比較的安価で軽い
ため制御棒価格も安く、重量も軽いという長所がある。
1O at the same position of boron, which is contained in about 20% of boron carbide
Does B have a large absorption cross section of about 3800 burns for thermal neutrons? and totally absorbs neutrons through the (n, α) reaction. Therefore, a control rod using boron carbide has the advantage of having a large reactivity value, and since boron carbide is relatively cheap and light, the control rod is cheap and light in weight.

しかし、10Bの中性子吸収反応で生じたリチウムやヘ
リウムは中性子吸収材が弱いのでIOBの燃焼に伴い急
速に反応度価値が低下し、また、ヘリウムガスが中性子
吸収棒の内圧?高めるため、核的にも機械的にも寿命が
比較的短い。
However, the lithium and helium produced by the neutron absorption reaction of 10B are weak neutron absorbers, so their reactivity value rapidly decreases as the IOB burns, and the helium gas increases the internal pressure of the neutron absorption rod. Because of its high performance, it has a relatively short nuclear and mechanical lifespan.

84Cの代替吸収材としては、ハフニウムやユーロピウ
ムなどが用いられる。これらは、中性子吸収反応により
生じる核種が再び中性子の強吸収体で、しかもガス状の
生成物を伴わないため寿命が長い。しかし、これらはI
OBに比べ中性子吸収断面積が小さく、高価で重い。
Hafnium, europium, etc. are used as alternative absorbing materials for 84C. These have long lifetimes because the nuclide produced by the neutron absorption reaction is again a strong neutron absorber and is not accompanied by gaseous products. However, these are I
It has a smaller neutron absorption cross section than OB, and is expensive and heavy.

沸騰水型原子炉では燃料集合体間に制御棒?挿入するだ
めの間隙が設けられている。制御棒引抜き状態では、こ
の間隙(以下水ギャグと呼ぶ)は軽水で満たされ、中性
子の減速が活発になる。この結果水ギャップに近接した
燃料棒、すなわち燃料集合体外周部に位置する燃料棒は
ど高い出力を持ちやすくなるため、燃料集合体外周の燃
料棒の濃縮度ケ低くして出力分布の平坦化ケはかつてい
る。また、水ギャップは非沸騰領域であり、水素密度が
太きいため水素による中性子吸収が多い。
Control rods between fuel assemblies in boiling water reactors? A gap is provided for insertion. When the control rod is withdrawn, this gap (hereinafter referred to as the water gag) is filled with light water, which actively slows down neutrons. As a result, fuel rods close to the water gap, that is, fuel rods located on the outer periphery of the fuel assembly, tend to have higher output, so the enrichment of the fuel rods on the outer periphery of the fuel assembly is lowered to flatten the power distribution. Ke used to be there. In addition, the water gap is a non-boiling region and has a high hydrogen density, so hydrogen absorbs many neutrons.

このように、水ギャップは炉内の非均質性を強め、燃料
棒の濃縮度の均−化及び燃料経済性向上ケ阻害する装置
となっている。したがって、水ギヤツプ幅は可能な限り
狭くすることが望しいが、これ?実現するためには制御
棒翼厚?薄くすることが必要となる。この場合、十分な
反応度価値?有し、かつ長期間維持する制御棒構造?持
つことが重要である。
In this manner, the water gap serves as a device that increases non-homogeneity within the reactor and obstructs equalization of the enrichment of the fuel rods and improvement of fuel economy. Therefore, it is desirable to make the water gap width as narrow as possible, but is this? What is the thickness of the control rod blades to achieve this? It is necessary to make it thinner. In this case, sufficient reactivity value? A control rod structure that can be maintained for a long period of time? It is important to have

従来十字形制御棒で用いている中性子吸収棒は薄型化す
る上では適当な形状ではない。すなわち、等量の中性子
吸収材を丸棒状にして並べるのに比べ、平板状に形成し
た方が厚さを薄くすることができる。
The neutron absorption rods conventionally used in cruciform control rods are not suitable for thinning. That is, compared to arranging equal amounts of neutron absorbing material in the form of round rods, the thickness can be reduced by forming the same amount of neutron absorbing material into a flat plate.

ハフニウムは、金属で耐食性も良いため、薄板状で使用
できるなど薄型制御棒材料として必要な栄件?備えてい
る。しかし、前述したようにIOBに比べ吸収断面積が
小さいので、薄板化した場合十分な反応度価値が得られ
ないという欠点がある。
Hafnium is a metal with good corrosion resistance, so it can be used in thin plate form, making it a necessary material for thin control rods. We are prepared. However, as mentioned above, since the absorption cross section is smaller than that of IOB, it has the disadvantage that sufficient reactivity value cannot be obtained when the plate is made thinner.

一方、ホウ素は大きな反応度が得られる反面、薄板状で
使用する場合には十字型制御棒以上に寿命に対する対策
が必要となる。
On the other hand, although boron can provide a high reactivity, when used in the form of a thin plate, it requires more measures for life than a cruciform control rod.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、以上述べた従来技術の欠点?除き、制
御棒翼の薄型化に有効な制御棒の構成?提供することに
ある。
The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art. Is there a control rod configuration that is effective for making control rod blades thinner? It is about providing.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明の制御棒では平板状
の中性子吸収材全多層に重ねた中性子吸収板を制御棒翼
の全部または一部に用いたことを特徴とする。この際、
最外層の中性子吸収材としてはハフニウムなど全異性の
中性子吸収材とすることが好ましい。また、内層の中性
子吸収材は、従来の十字形制御棒とほぼ等しい十分な反
応度価値?得るため炭化ホウ素より大きい中性子吸収断
面積(Σa)k有する中性子吸収材?含む必要がある。
In order to achieve the above object, the control rod of the present invention is characterized in that a neutron absorbing plate stacked on all the layers of flat neutron absorbing material is used for all or part of the control rod blade. On this occasion,
The neutron absorbing material in the outermost layer is preferably a completely isomeric neutron absorbing material such as hafnium. Also, does the neutron absorbing material in the inner layer have sufficient reactivity value, which is approximately equal to that of a conventional cruciform control rod? To obtain a neutron absorber with a larger neutron absorption cross section (Σa)k than boron carbide? Must be included.

炭化ホウ素エリ大きいΣal有する中性子吸収材には、
′。Bの存在比が19.8%(天然存在比)以上の炭化
ホウ素やGdzOa 、 EuB6 、 Cd などが
ある。
Neutron absorbers with large Σal of boron carbide have
'. Examples include boron carbide, GdzOa, EuB6, and Cd in which the abundance ratio of B is 19.8% or more (natural abundance ratio).

沸騰水型原子炉における制御棒の核的寿命は、制御棒価
値劣化が燃焼初期の価値の10%に到る期間と定義され
ている。一般に、中性子照射量が一定の場合、中性子吸
収断面積の大きな物質程燃焼速度が速い。したがって、
本発明の制御棒のように内1慎に中性子吸収断面積の大
きい中性子吸収材ケ装置すれば、外層の中性子吸収材に
より中性子照射量?低減でき、燃焼を遅らせることがで
きる。たとえば、第2図は外層にハフニウム?用い、ハ
フニウムの厚さ金変えたときの内層の中性子吸収材の持
つ中性子吸収率の変化であるが、ハフニウム厚が約0.
8 ymの場合、内層中性子吸収材の中性子吸収率は約
50%に減少する。このように内層の中性子吸収材の燃
焼を遅らせることにより、制御棒反応度価値の劣化も遅
れ、核的寿命?延ばすことができる。さらに、核的寿命
に影響?及ぼす要因として制御棒翼長の実効的な減少か
める。
The nuclear life of a control rod in a boiling water reactor is defined as the period during which control rod value deterioration reaches 10% of its value at the initial stage of combustion. Generally, when the amount of neutron irradiation is constant, the burning rate of a substance with a larger neutron absorption cross section is faster. therefore,
If the control rod of the present invention uses a neutron absorbing material with a large neutron absorption cross section in the inner layer, the neutron absorbing material in the outer layer can reduce the amount of neutron irradiation. can be reduced and combustion can be delayed. For example, in Figure 2, is there hafnium in the outer layer? The graph shows the change in the neutron absorption rate of the neutron absorbing material in the inner layer when the hafnium thickness (gold) is changed when the hafnium thickness is approximately 0.
In the case of 8 ym, the neutron absorption rate of the inner layer neutron absorber decreases to about 50%. By delaying the combustion of the neutron absorbing material in the inner layer in this way, the deterioration of the control rod reactivity value is also delayed, leading to the nuclear lifespan? It can be extended. Furthermore, does it affect the nuclear lifetime? The effective reduction in control rod blade length can be seen as a contributing factor.

第3図に示すように、十字形制御棒の翼外端では平均に
比べ約1.7倍の中性子吸収率を持つ。この結果、翼外
端部の燃焼が速く進み、実効的に翼長が短かくなる。と
くに、炭化ホウ素のように比較的寿命の短い物質?用い
た薄型制御棒の場合は、これが顕著になる。したがって
、短寿命の中性子吸収材ケ用いる場合には、少なくとも
具外端部茫ハフニウムなど寿命の長い中性子吸収材との
混合物あるいは化合物?用いる必要がある。
As shown in Figure 3, the outer end of the blade of the cruciform control rod has a neutron absorption rate approximately 1.7 times higher than the average. As a result, combustion at the outer end of the blade progresses rapidly, effectively shortening the blade length. Especially for materials with relatively short lifetimes like boron carbide? This becomes more noticeable in the case of the thin control rods used. Therefore, when using a short-lived neutron absorbing material, at least the outer end of the material should be a mixture or compound with a long-lived neutron absorbing material such as tin hafnium. It is necessary to use it.

炭化ホウ素など(n+ α)反応に二ってヘリウムガス
ケ生成する中性子吸収材を用いる場合は、ヘリウムガス
によって局所的破損に到る期間、すなわち機械的寿命全
長期化することが重要である。
When using a neutron absorbing material such as boron carbide that generates helium gas due to the (n+α) reaction, it is important to lengthen the period until local damage occurs due to helium gas, that is, the overall mechanical life.

機械的寿命の長期化は、翼内のヘリウムガス生成量?均
一化することによって達成できる。これは、第4図に示
すように、B4Cの中性子吸収率の分布に応じてガス状
の生成物ケ生じないノ・フニウムなどの粉末とB、C粉
末との混合割合ケ変えることに工って簡単に実現できる
。たとえば、第4図において、制御棒翼中央部のIOB
燃焼割合が40チに達したとき真先端でもIOBの燃焼
割合は約40%になるので、ヘリウムの発生量は等しく
なる。
Does the length of mechanical life depend on the amount of helium gas generated within the blade? This can be achieved by equalization. As shown in Figure 4, this is done by changing the mixing ratio of B and C powders and powders such as No-funium, which do not produce gaseous products, depending on the distribution of the neutron absorption rate of B4C. It can be easily realized. For example, in Figure 4, the IOB at the center of the control rod wing
When the combustion rate reaches 40 inches, the combustion rate of the IOB will be about 40% even at the very tip, so the amount of helium generated will be equal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明全実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to all embodiments.

第5図は本発明になる原子炉用制御棒の第1の実施例を
示す。第6図は本実施例の制御棒翼の断面図である。制
御棒lは、長さ方向に複数の中性子吸収板6を配して構
成されている。制御棒シース3は、補強材7が溶接され
ており、中性子吸収板の変形による応力に耐え得る強度
?有している。
FIG. 5 shows a first embodiment of a control rod for a nuclear reactor according to the present invention. FIG. 6 is a sectional view of the control rod blade of this embodiment. The control rod 1 is configured by arranging a plurality of neutron absorption plates 6 in the length direction. The control rod sheath 3 has a reinforcing material 7 welded to it, and is strong enough to withstand stress caused by deformation of the neutron absorption plate. have.

中性子吸収板は、制御棒タイロッド4と制御棒シースお
よび補強材、さらに側縁材8に囲まれた空間に挿入され
ており、側縁材はノンドル部5と制御棒シースに溶接ま
たはビス止めされている。本実施例の中性子吸収板は、
箱型に構成されたノ・フニウムの内部に炭化ホウ素粉末
を充てんして成る2層構造である。炭化ホウ素は、ヘリ
ウムガスを発生し内圧ケ高めるので、第7図に示すよう
に制御棒翼方向にハフニウム板9に約2cm間隔の仕切
材11?を設け、これによって隔された各領域の炭化ホ
ウ素とハフニウム粉末の混合比を変えている。
The neutron absorption plate is inserted into a space surrounded by the control rod tie rod 4, the control rod sheath and reinforcing material, and the side edge material 8, and the side edge material is welded or screwed to the nondle portion 5 and the control rod sheath. ing. The neutron absorption plate of this example is
It has a two-layer structure consisting of a box-shaped no-funium filled with boron carbide powder. Since boron carbide generates helium gas and increases the internal pressure, as shown in FIG. 7, partition members 11 are placed on the hafnium plate 9 at intervals of about 2 cm in the direction of the control rod blade. are provided, thereby changing the mixing ratio of boron carbide and hafnium powder in each separated area.

このとき、ハフニウム粉末はホウ素粉末エリ大きな径と
して、比重が約7倍大きいノ・フニウム粉末の沈降が少
なくなるようにした。中性子吸収板の高さは、制御棒上
端で約2Crnとし仕切り間隔と高さがほぼ等しくなる
ように構成した。こうすることにより、制御棒上端部の
強度を増し、Lり多くのヘリウム発生量に耐える構造と
することが可能となる。たとえば、ノ為フニウム板厚0
.8 tarnの場合10B燃焼割合42多時の最大歪
量はIH以下であり、また上記燃焼割合に達するまでに
従来の約2倍の照射時間金製するので機械的寿命は長く
なる。
At this time, the diameter of the hafnium powder was made larger than that of the boron powder, so that the sedimentation of the hafnium powder, which has a specific gravity about 7 times larger, was reduced. The height of the neutron absorption plate was approximately 2 Crn at the upper end of the control rod, and the height was approximately equal to the partition interval. By doing so, it becomes possible to increase the strength of the upper end of the control rod and create a structure that can withstand a larger amount of helium generation. For example, nome funium plate thickness 0
.. In the case of 8 turns, the maximum strain at a 10B combustion rate of 42 is less than IH, and the irradiation time required to reach the above combustion rate is about twice that of the conventional metal, so the mechanical life is extended.

第8図は本発明になる原子炉用制御棒の第2の実施例で
ある。第9図は本実施例の制御棒諷断面図である。本実
施例では外層にノ・フニウム、内層にガドリニア(Gd
zOs)kl”用いている。GdO中性子吸収反応は(
n、r)反応であり、ガス状の放生物を伴わないので強
度を考えた構造は不要である。したがって、中性子吸収
板の構造も第1O図に示すように箱型のハフニウム9の
内にGd20312耐充てんした簡単な構成である。し
かし、Gdは中性子吸収断面積が犬きく十分な制御棒価
値ケ有する反面、制御棒寿命は短くなるので、本実施例
の制御棒はおもに炉停止を目的として用いる。
FIG. 8 shows a second embodiment of a control rod for a nuclear reactor according to the present invention. FIG. 9 is a cross-sectional view of the control rod of this embodiment. In this example, the outer layer is made of feronium, and the inner layer is made of gadolinium (Gd).
The GdO neutron absorption reaction is (
n, r) reaction, and does not involve gaseous radioactive substances, so there is no need for a structure that takes strength into account. Therefore, the structure of the neutron absorption plate is also simple, as shown in FIG. 1O, in which a box-shaped hafnium 9 is filled with Gd20312. However, although Gd has a large neutron absorption cross section and has sufficient control rod value, the control rod life is shortened, so the control rod of this embodiment is mainly used for the purpose of reactor shutdown.

以上の実施例では内層の中性子吸収材として粉末状の物
質を用いたが、金属にホウ素やガドリニア等?分散させ
た中性子吸収材?使用する場合にはさらに中性子吸収板
の構造は簡単になる。たとえば、外層にハフニウム、内
層にt(fBヶ用いた場合は各々の中性子吸収板を溶接
して重ね合せることが可能である。また、外層tハフニ
ウム、中間層ケアモルファス状のホウ素、内層IGdの
ように中性子吸収断面積のより大きいもの全内層にした
3R以上の構成も容易に実現できる。このような多層構
造のものは制御棒反応度価値をより長期間維持できる。
In the above examples, a powdered substance was used as the neutron absorbing material in the inner layer, but the metal may be boron, gadolinia, etc. Dispersed neutron absorber? When used, the structure of the neutron absorbing plate is further simplified. For example, if hafnium is used in the outer layer and t(fB) is used in the inner layer, it is possible to weld and stack the respective neutron absorption plates.Also, the outer layer t hafnium, the middle layer care amorphous boron, and the inner layer IGd. Thus, a configuration of 3R or more in which all the inner layers have larger neutron absorption cross sections can be easily realized. Such a multilayer structure can maintain control rod reactivity value for a longer period of time.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、本発明によればハフニウムのよう
に中性子吸収率の減損の小さな中性子吸収材の反応度価
値が小さいという欠点を内層の中性子吸収材で補い、逆
に内層の中性子吸収材の中性子吸収率の低下を外層中性
子吸収材で補いながら、平板状に重ね合せることにエリ
核的寿命の長い薄型制御棒を構成することが可能になる
。さらに、炭化ホウ素のようにガス状の主成物?伴う吸
収材についてはノ・フニウムなど中性子吸収率の減損の
小さいガス状の生成物ケ伴なわない物質との混合物ケ用
いることにより機械的寿命ケ延ばすことができる。この
ように、本発明により制御棒の薄型化が可能になり、水
ギヤツブ幅?狭くすることができる。この結果、炉心の
非均質性が少なくなり、燃料の単純化と燃料経済性の向
上tはかることが可能となる。
As explained above, according to the present invention, the disadvantage that the reactivity value of a neutron absorbing material with a small loss of neutron absorption rate, such as hafnium, is compensated for by the neutron absorbing material in the inner layer, and conversely, the neutron absorbing material in the inner layer While compensating for the decrease in absorption rate with the outer layer neutron absorbing material, it becomes possible to construct a thin control rod with a long nuclear life by stacking them in a flat plate shape. Furthermore, is the main component gaseous like boron carbide? As for the accompanying absorbing material, the mechanical life can be extended by using a mixture of a gaseous product such as neutronium, which has a small loss in neutron absorption rate, and a substance that does not. In this way, the present invention makes it possible to make the control rod thinner, making it possible to reduce the width of the water gear. It can be made narrower. As a result, the non-homogeneity of the core is reduced, making it possible to simplify the fuel and improve fuel economy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰水型原子炉で用いられている十字形制御棒
紮示す斜視図、第2図は外層部のハフニウム厚さケ変え
た場合の内層中性子吸収材の中性子吸収率変化図、第3
図は十字形制御棒翼方向の中性子吸収率分布図、第4図
はIOB燃焼によるヘリウムガス発生量が一定となるよ
うに混合した炭化ホウ素とハフニウムの分布図、第5図
は本発明になる原子炉用制御棒の第1の実施例ケ示す図
、第6図は第5因に示した実施例の制御棒翼断面図、第
7図は第1の実施例の中性子吸収板内の中性子吸収材分
布図、第8図は本発明になる原子炉用制御棒のM2の実
施例?示す図、第9図は第8因に示した実施例の制御棒
翼断面図、第1O図は第2の実施例の中性子吸収板の構
成?示す図である。 l・・・制御棒、2・・・中性子吸収棒、3・・・制御
棒シース、4・・・制御棒タイロッド、5・・・ハンド
ル部、6・・・中性子吸収板、7・・・制御棒シース補
強材、8・・・側縁材、9・・・ハフニウム板(外層中
性子吸収材)、10・・・内層中性子吸収材、11・・
・仕切材、12・・・率2図 八つニウム湧−ざ(mT11) も3図 率な図 も5図 も6図 も1図 領域
Figure 1 is a perspective view showing a cruciform control rod used in boiling water reactors, Figure 2 is a diagram of changes in neutron absorption rate of the inner layer neutron absorber when the hafnium thickness of the outer layer is changed, and 3
The figure is a neutron absorption rate distribution diagram in the direction of the cruciform control rod blade, Figure 4 is a distribution diagram of boron carbide and hafnium mixed so that the amount of helium gas generated by IOB combustion is constant, and Figure 5 is the present invention. A diagram showing the first embodiment of a control rod for a nuclear reactor, FIG. 6 is a cross-sectional view of the control rod blade of the embodiment shown in factor 5, and FIG. 7 is a diagram showing neutrons in the neutron absorption plate of the first embodiment. Is the absorption material distribution diagram, Figure 8, an example of M2 of the nuclear reactor control rod according to the present invention? Figure 9 is a sectional view of the control rod blade of the embodiment shown in factor 8, and Figure 1O is the configuration of the neutron absorption plate of the second embodiment. FIG. l... Control rod, 2... Neutron absorption rod, 3... Control rod sheath, 4... Control rod tie rod, 5... Handle portion, 6... Neutron absorption plate, 7... Control rod sheath reinforcing material, 8... Side edge material, 9... Hafnium plate (outer layer neutron absorbing material), 10... Inner layer neutron absorbing material, 11...
・Partition material, 12...rate 2 figure octium spring (mT11), 3 figure rate, 5 figure, 6 figure, 1 figure area

Claims (1)

【特許請求の範囲】 1、原子炉の制御棒において、中性子吸収部の一部また
は全部?少なくとも2種類以上の中性子吸収材ケ平板・
多層に重ね合せた中性子吸収板としたこと全特徴とする
原子炉用制御棒。 2、特許請求の範囲第1項において、上記中性子吸収板
の内層には炭化ホウ素より中性子吸収断面積の大きな中
性子吸収材を少なくとも1種類含み、かつ外層にむかう
ほど中性子吸収率減損の小さい中性子吸収材?配したこ
とを特徴とする原子炉用。 制御棒。 3、特許請求の範囲第1項において、内層の中性子吸収
材として中性子吸収率減損の大きい物質全使用する場合
は、少なくとも制御棒翼先端部では中性子吸収率減損の
小さな中性子吸収材との混合物または化合物を用いたこ
とを特徴とする原子炉用制御棒。 4、特許請求の範囲第3項において、炭化ホウ素と中性
子吸収率の減損の小さな吸収材との混合物では、該中性
子吸収材の粒子径は炭化ホウ素の粒子径エリも大きいこ
とを特徴とする原子炉用制御棒。
[Claims] 1. Part or all of the neutron absorption part in the control rod of a nuclear reactor? At least two or more types of neutron absorbing material
A nuclear reactor control rod characterized by a multi-layered neutron absorption plate. 2. In claim 1, the inner layer of the neutron absorbing plate contains at least one kind of neutron absorbing material having a larger neutron absorption cross section than boron carbide, and the neutron absorbing material has a smaller neutron absorption loss toward the outer layer. Material? For use in nuclear reactors, which is characterized by the following: control rod. 3. In claim 1, if all substances with large neutron absorption loss are used as the neutron absorbing material in the inner layer, at least at the control rod blade tip, a mixture with a neutron absorbing material with small neutron absorption loss or A nuclear reactor control rod characterized by using a compound. 4. In claim 3, in the mixture of boron carbide and an absorbing material with a small loss of neutron absorption rate, the particle diameter of the neutron absorbing material is an atom characterized in that the particle diameter of the boron carbide is also large. Furnace control rod.
JP59076489A 1984-04-18 1984-04-18 Control rod for nuclear reactor Pending JPS60220893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076489A JPS60220893A (en) 1984-04-18 1984-04-18 Control rod for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076489A JPS60220893A (en) 1984-04-18 1984-04-18 Control rod for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS60220893A true JPS60220893A (en) 1985-11-05

Family

ID=13606627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076489A Pending JPS60220893A (en) 1984-04-18 1984-04-18 Control rod for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS60220893A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180186A (en) * 1985-02-06 1986-08-12 株式会社東芝 Control rod for nuclear reactor
JPS62187284A (en) * 1986-02-14 1987-08-15 株式会社東芝 Control rod for nuclear reactor
US4876060A (en) * 1986-06-30 1989-10-24 Kabushiki Kaisha Toshiba Control blade for nuclear reactor
US4882123A (en) * 1988-03-01 1989-11-21 General Electric Company Hafnium control rod for nuclear reactors
US5592522A (en) * 1995-06-09 1997-01-07 General Electric Company Control rod for a nuclear reactor
US5706318A (en) * 1996-05-31 1998-01-06 General Electric Company Rectangular absorber tube for a control rod in a nuclear reactor
US6973866B2 (en) 2003-06-25 2005-12-13 Volvo Construction Equipment Holding Sweden Ab Hydraulic circuit for option tool of heavy equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180186A (en) * 1985-02-06 1986-08-12 株式会社東芝 Control rod for nuclear reactor
JPS62187284A (en) * 1986-02-14 1987-08-15 株式会社東芝 Control rod for nuclear reactor
US4876060A (en) * 1986-06-30 1989-10-24 Kabushiki Kaisha Toshiba Control blade for nuclear reactor
US4882123A (en) * 1988-03-01 1989-11-21 General Electric Company Hafnium control rod for nuclear reactors
US5592522A (en) * 1995-06-09 1997-01-07 General Electric Company Control rod for a nuclear reactor
US5706318A (en) * 1996-05-31 1998-01-06 General Electric Company Rectangular absorber tube for a control rod in a nuclear reactor
US6973866B2 (en) 2003-06-25 2005-12-13 Volvo Construction Equipment Holding Sweden Ab Hydraulic circuit for option tool of heavy equipment

Similar Documents

Publication Publication Date Title
US4671927A (en) Nuclear fuel rod containing a hybrid gadolinium oxide, boron carbide burnable absorber
US3147191A (en) Nuclear reactor fuel
US3042598A (en) Shielded thorium fuel element
JPS6337290A (en) Fuel aggregate and boiling water type reactor
US5034185A (en) Control blade for nuclear reactor
JPH04301593A (en) Fuel assembly
US4683113A (en) Nuclear fuel assembly
JPS60220893A (en) Control rod for nuclear reactor
RU2691628C1 (en) Nuclear fuel element of nuclear reactor
JPH1010257A (en) Fuel assembly and manufacture of channel box therefor
JPS58135989A (en) Fuel assembly for bwr type reactor
JP2000241582A (en) Fuel assembly, fuel rod and reactor core
US3024181A (en) Fuel element
US4832906A (en) Fuel assembly
JPH0345354B2 (en)
JP2000019282A (en) Fuel assembly for light-water reactor
JP2735211B2 (en) Reactor control rod
JP2003248079A (en) Fuel assembly
JPS58142293A (en) Nuclear fuel rod
JPH06342091A (en) Fuel assembly
JPH04301592A (en) Fuel assembly
JPH041593A (en) Fuel assembly
JPH01202691A (en) Nuclear reactor control rod
JPS6046488A (en) Control rod for nuclear reactor
JPS60196696A (en) Nuclear fuel aggregate