JPS60219540A - Corroded part measuring apparatus of radioactive member - Google Patents

Corroded part measuring apparatus of radioactive member

Info

Publication number
JPS60219540A
JPS60219540A JP59075585A JP7558584A JPS60219540A JP S60219540 A JPS60219540 A JP S60219540A JP 59075585 A JP59075585 A JP 59075585A JP 7558584 A JP7558584 A JP 7558584A JP S60219540 A JPS60219540 A JP S60219540A
Authority
JP
Japan
Prior art keywords
corrosion
sensor
channel
measured
fuel channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59075585A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hattori
服部 靖弘
Toshihiro Yasuda
年廣 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59075585A priority Critical patent/JPS60219540A/en
Publication of JPS60219540A publication Critical patent/JPS60219540A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/06Devices or arrangements for monitoring or testing fuel or fuel elements outside the reactor core, e.g. for burn-up, for contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To rapidly measure a corrosion state with high accuracy, by moving a corrosion sensor with respect to the core constitutional member, especially, a fuel channel of a nuclear reactor and allowing said sensor to accurately oppose to the measuring surface of the channel. CONSTITUTION:A fuel channel 10 made of a zirconium alloy is suspended in the pool water 2 of a nuclear reactor and the measuring head 8 supported by a support rod 7 is moved along the outer wall of the fuel channel 10. The measuring head 8 is constituted by supporting a corrosion sensor 14 by a spring box 18, a rigid cable 17 and a convolute support 21 and attaching a disc 16 to the leading end of said sensor 14. When the measuring head 8 is impinged to the fuel channel 10, the sensor 14 is contacted with the channel 10 so as to be accurately opposed thereto even if said channel 10 is inclined. Further, as the corrosion sensor 14, an eddy current type one is used. Therefore, because the measuring head moves to the wall surface of the fuel channel and is accurately opposed to the measuring surface thereof, corrosion can be measured with high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明はM躬性部材の腐食測定装置に係り、特に、原子
炉の炉心構成部材等の腐食を測定する放射性部材の腐食
測定装置の改良にPiJ?l’る。 [発明の技術的背景とその問題点] 一般に、原子炉の炉心構成部材の中にはジルコニウム台
金で構成された燃料チャンネル等IP!4食するものが
含まれていることが知られている。これら炉心構成部材
の腐食現象は原子炉の叶全性に小人な影響を与える因子
となる場合があり、次に、沸騰水型原子炉の燃料チャン
ネルの場合について説明する。 燃料チャンネルはジルカロイ−4により角筒状に形成さ
れてなり、多数の燃料棒を収容して燃料集合体の外套部
材をなし、燃料棒に剛性を与えると共に、冷却材の流路
を形成するように構成されている。このような燃料チャ
ンネルに著しい腐食が発生すると、その板厚が減少して
強度低下を来たし、原子炉の安全性を損う恐れが生ずる
。また、腐食に伴う酸化皮膜の膜厚が一定値を超えて成
長すると、この酸化皮膜が燃料チャンネル表面から原子
炉内下部へ剥落し、原子炉内下部の放射線量を増加させ
る原因となる。したがって、燃料チャンネルの腐食は、
燃料チャンネルの寿命を左右する要因の1つを形成して
おり、腐食の進行状況の把握は燃料の使用可能期間を判
断する際に極めて重要な作業となる。 そこで、従来から、燃料チャンネル等の被測定体を横置
きにした状態で腐食を測定する比較的簡単な装置や、腐
食センサを取り付番ノだ駆動部を長尺で強固な支持架台
に設け、被測定体の測定面に沿って腐食レンサをスキャ
ンさせる比較的大型の装置等が使用されていた。 しかし、多数の燃料棒を燃料チャンネル内に収容した燃
料集合体が横置きにできないために、燃料チャンネル等
被測定体を横置きにづる前各の装置では、このような燃
料集合体の腐食測定に適用することができず、また、他
の炉心構成部材の腐食測定も迅速に、かつ大量に行なう
ことができないという問題があった。また、後者は大型
装置を設置するための広い設置スペースを必要とし、こ
れを燃料貯蔵プールの周辺等に設置する場合は、この貯
蔵プール内設備の配置に影響を与える。さらに、測定時
には放射能を帯びた被測定物によりこの装置が汚染され
るために、装置の保守にも多大な経済的支出が余儀なく
されているという問題があった。 [発明の目的] 本発明は上述した事情に鑑みなされたものであり、簡単
な構成で操作性に優れ、被測定体のffl 食状態を迅
速かつ高vJ度に測定づることができる放射性部材の腐
食測定装置を提供することを目的とする。 [発明の概要] 上述した目的を達成するために本発明に係る放射性部材
の腐食測定装置は次のように構成される。 被測定体の腐食状態を検出する腐食センサを含む腐食検
出部と、この腐食検出部からの検出出力を適宜手段で表
示する表示部と、上記腐食検出部を支持してこの腐食検
出部を上記被測定体の測定面に沿って適宜移動せしめる
支持部とを有し、上記腐食センサが上記被測定体の測定
面に対し常に正対するように上記腐食検出部を構成して
いることを特徴としている。 し発明の実施例] 以下、本発明に係るfi射付性部材腐食測定装置の一実
施例について第1図ないし第4図を参照して説明する。 第1図は本発明に係る放射性部材の腐食測定装置の全体
構成を示す正面図であり、図中符?31はプール水2中
に燃料集合体を貯蔵づる燃料貯蔵プールである。この燃
料貯蔵プール1のコンクリート類の側壁4上には、燃料
貯蔵プール1の付帯設備としてチャンネル取り扱いブー
ム5がプール開口部上に若干張り出すように立設されて
おり、このチャンネル取り扱いブーム5の張り出し先葆
j部には巻上装置6が設置されて、その巻上ロープに結
着されたフックが吊り下げられている。 このフックにはヘッド支持棒7の上端に設置ノた係止部
(図示省略)が引掛
[Technical Field of the Invention] The present invention relates to a corrosion measuring device for M-prone members, and in particular, to improvement of a corrosion measuring device for radioactive members that measures corrosion of nuclear reactor core components, etc. l'ru. [Technical Background of the Invention and its Problems] In general, some of the core components of a nuclear reactor include fuel channels, etc. made of a zirconium base metal. It is known that it contains four meals. Corrosion phenomena of these core components can be a factor that has a small effect on the integrity of a nuclear reactor.Next, the case of a fuel channel of a boiling water reactor will be explained. The fuel channel is made of Zircaloy-4 and is formed into a rectangular tube shape, and accommodates a large number of fuel rods to form a mantle member of the fuel assembly, giving rigidity to the fuel rods, and forming a flow path for coolant. It is composed of If severe corrosion occurs in such a fuel channel, the thickness of the fuel channel decreases, resulting in a decrease in strength, which may impair the safety of the nuclear reactor. Furthermore, when the thickness of the oxide film due to corrosion grows beyond a certain value, this oxide film peels off from the surface of the fuel channel to the lower part of the reactor, causing an increase in the radiation dose in the lower part of the reactor. Therefore, fuel channel corrosion is
Corrosion is one of the factors that determines the lifespan of fuel channels, and understanding the progress of corrosion is an extremely important task when determining the usable period of fuel. Therefore, relatively simple devices have been developed that measure corrosion while the object to be measured, such as a fuel channel, is placed horizontally. , a relatively large device that scans a corrosion sensor along the measurement surface of the object to be measured has been used. However, since a fuel assembly containing a large number of fuel rods in a fuel channel cannot be placed horizontally, corrosion measurement of such a fuel assembly is There was a problem in that the method could not be applied to other reactor core components, and corrosion measurements of other core components could not be carried out quickly and in large quantities. In addition, the latter requires a large installation space for installing a large device, and when it is installed around a fuel storage pool, this affects the arrangement of equipment within the storage pool. Furthermore, since the apparatus is contaminated by radioactive objects during measurement, there is a problem in that a large amount of money is unavoidably spent on maintenance of the apparatus. [Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and provides a radioactive member that has a simple configuration, excellent operability, and can quickly measure the ffl eating state of a subject at a high vJ degree. The purpose is to provide a corrosion measuring device. [Summary of the Invention] In order to achieve the above-mentioned object, a radioactive member corrosion measuring apparatus according to the present invention is configured as follows. a corrosion detection section including a corrosion sensor that detects the corrosion state of the object to be measured; a display section that displays the detection output from the corrosion detection section by an appropriate means; and a support part that can be moved appropriately along the measurement surface of the object to be measured, and the corrosion detection section is configured such that the corrosion sensor always directly faces the measurement surface of the object to be measured. There is. Embodiments of the Invention] Hereinafter, an embodiment of the FI blastable member corrosion measuring apparatus according to the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is a front view showing the overall configuration of the corrosion measuring device for radioactive members according to the present invention, and the mark in the figure is ? 31 is a fuel storage pool in which fuel assemblies are stored in pool water 2; A channel handling boom 5 is erected on the concrete side wall 4 of the fuel storage pool 1 as an incidental equipment of the fuel storage pool 1 so as to slightly overhang the pool opening. A hoisting device 6 is installed at the end of the overhang j, and a hook tied to the hoisting rope is suspended. A locking part (not shown) installed at the upper end of the head support rod 7 is hooked onto this hook.

【プられ、巻上装置6の巻上操作に
より燃料貯蔵プール1のプール水2中でヘッド支持棒7
が吊り上げられるようになっている。この測定支持棒7
の下端には測定ヘッド8が取着され、燃料貯蔵プール1
に付設されたチャンネル着脱機9によりプール水2中で
直立状態で保持された燃料チャンネル10の外側壁に治
って、この測定ヘッド8が上下方向に移動できるように
なっている。ずなわち、巻上装置6の巻上操作によりヘ
ッド支持棒7を介して測定ヘッド8を上方へ移動せしめ
ることができる。 測定ヘッド8は主に燃料チャンネル10等の放射性部材
の腐食状態を検出するセンリアセンブリ11を組み込ん
でおり、このセンサアセンブリ11は後述するケヘブル
を介して腐食表示器12に電気的に接続されている。こ
の腐食表示器12は測定ヘッド8から出力される検出出
力を適宜手段で表示J−るものであり、第1図に示すよ
うに燃料貯蔵プール1の側壁上面の床等に配置される。 第2図は第1図のA部拡大斜視図であり、測定ヘッド8
が燃料チャンネル10の外側壁面に押圧されている状態
を示している。測定ヘッド8はヘッド支持棒7に対し、
測定ヘッド8の重心がヘッド支持棒7の吊り上げ部の重
心から偏心するように固着されており、測定ヘッド8の
自Φにより燃料チャンネル10に一定の押圧力を生じ、
測定ヘッド8が押圧されるようになっている。そして、
測定ヘッド8は平面が口字形に形成された移動ガイド1
3を有し、この口字形のウェブ上面にヘッド支持棒7が
直立覆るように固着され、口字形の対向辺部は燃料チャ
ンネル10の左右両側壁までそれぞれ延びて、この燃料
チPンネル10の左右両側壁を摺動するようになってい
る。移動ガイド13の口字形のウェブ内面には第2図に
示すように複数、例えば3本のセンサアセンブリ11が
互いにほぼ平行に並設され、これらセンサアレンブリ1
1の先端面が燃料チャンネル10の腐食測定面に所要の
接触圧で、それぞれ面接触覆るようになっている。 センサアセンブリ11は第3図に示すように構成され、
腐食センサ14の一端部は円筒状のカバー15内に挿入
される。このカバー15の前、後両端部には軸心と同軸
状に穿設された前端挿通孔15aど後端挿通孔15bと
を有し、この前端挿通孔゛15aには腐食センサ14の
挿入端部が遊嵌されている。腐食センサ14の挿入端の
外周には外側に突出する外フランジ14aが周設され、
カバー15の前端挿通孔15aをこの外フランジ14a
により内側から閉塞づるようになっている。 一方、腐食センサ14の前端部はカバー15より外部へ
延出して、非電導体よりなる固定ディスク16を固着せ
しめ、腐食センサ14の前部を絶縁している。腐食セン
サ14の前端部は固定ディスク16の前端面より僅かに
後退してa3す、子の後退部は固定ディスク16の前端
部の四部に形成されている。固定ディスク16はカバー
15の前端挿通孔15aを閉塞するに足る径に形成され
、その前端部外周には所要幅の外フランジが一体に周設
されて、固定ディスク16の前端面に十分な広さの接触
面積を確保している。カバー15の前端部には固定ディ
スク16の外フランジを収容するための凹所が形成され
、腐食センサ14がカバー15内方向へ後退した際に、
固定ディスク16の前端部とカバー15の前端部とがほ
ぼ一平面となるように形成されている。 腐食センサ14は放射性部材の腐食状態を検出するセン
サであり、ジルコニウム合金よりなる燃料チャンネル1
0の腐食測定には渦電流型センサが好適である。すなわ
ち、ジルコニウム合金が腐食すると酸化ジルコニウムが
生ずるが、この酸化ジルコニウムは非電導体であるので
、渦電流型センサを接触させてこのセンサに通電するこ
とにより酸化膜の厚さを検出することができる。腐食セ
ンサ14に電気的に接続されたケーブル17は、適度の
剛性を有し、その一端はカバー15の後端挿通孔15b
を経てスプリングボックス18を同軸状に用通してその
外部へ延出し、上)ボのam表示器12に電気的に接続
されて、腐食ヒンリ14から出力される検出出力を適宜
手段で表承り−るにうになっている。上記スプリングボ
ックス18は剛性のケーブル17の外周に同軸状に装着
されたコイルスプリング19を内部に収容して、ケーブ
ル17に固着されたストッパ20をその前方へ押圧して
、このケーブル17およびこのケーブル17に接続され
た腐食センサ14を常時前方へ何方している。また、ケ
ーブル17の前端部は、ばね部材により渦巻状に形成さ
れた渦巻→ノーポーl〜21によりカバー15内にて同
軸状に、かつ弾性的に支持されている。すなわち、渦巻
Vボー1〜21の渦巻中心部はケーブル17の前端部外
周に固着され、その渦巻外径端部はカバ−15内周壁に
凹設された環状溝内に埋込固着されている。したが・−
】て、ケーブル17の前端部が常にカバー15の軸心に
位置するように保持される。また、ケーブル17はコイ
ルスプリング19にても弾性支持されているので、この
ケーブル17に接続された腐食レン勺14が軸心方向の
後方へ後退した場合でもそのばねツノにより、再び、原
位置へ復帰ざlることができる。 そして、この秤の測定では、一般に被測定体の酸化被膜
の厚さが数十ミクロンの微小単位であり、腐食センサに
は極めて高い測定精度が要求されている。そのために、
測定の際には腐食センサが被測定体に対し常に正面に向
いて、対向することが必要となり、腐食センサが被測定
体に対し傾斜して面接触り−る場合には測定誤差が生ず
る。しかし、本発明の一実施例による腐食測定装置では
第4図に示づように、腐食センサ14が被測定体である
燃料チャンネル10の測定面に対し、常に正面に向いて
対向するので、非常に高い測定精度を得ることができる
。すなわち、第4図に示すように被測定体の燃料チャン
ネル10の測定面が何らかの事情により、測定ヘッド8
に対し、傾斜している場合には、固定ディスク16の前
端面が傾斜している測定面に対し垂直方向から所要の接
触圧で密に面接触するという接触状態を常に保持づ゛る
ために、ケーブル17、渦巻→ノボート21、コイルス
プリング19が弾性変形し、これら傾斜に伴う歪みを吸
収する。これにより、固定ディスク16が燃料チャンネ
ル10の測定面に常に面接触するので、この固定ディス
ク16に固定された腐食センサ14の前端面はその測定
面に対し、常に正面を向いて対向することができる。そ
の結果、常に高い測定精度を得ることができる。また、
固定ディスク16の前端面と燃料チャンネル10等の測
定面との接触圧も測定精度を左右する原因の1つである
が、この接触圧は被測定面側に測定ヘッド8全体が押圧
される押圧力とは関係がなく、ケーブル17およびこの
ケーブル17を弾性支に−1−るコイルスプリング19
、渦巻サポート21の弾性力により固定ディスク16の
前端面を測定面に抑圧づる押圧ノjにより決定されるの
で、常に安定した測定値を得ることができる。 なお、上述の実施例では、腐食センサ14の前端面が固
定ディスク16の前端面よりも僅かに後退した例につい
て述べたが、両者14.16の前端面を同一平面とし、
いわゆる面一としてもよい。 [発明の効果] 以上説明したように本発明に係る放射性部材の腐食測定
装置は、放射性部材等の被測定体の測定面に対し、常に
所要の接触圧で密に面接触する固定ディスクに、上記被
測定体の腐食状態を検出する腐食センサを固定した。し
たがって、本発明によれば腐食センサの検出面である前
端面が被測定体の測定面に常に正面に向いて対向するの
で、被測定体が傾斜している場合でも腐食センサの検出
面は被測定体の測定面に対し、常に正対し、極めて精度
の高い腐食測定結果を得ることができる。 測定精度については被測定体の据付精度には拘らず、極
めて高い信頼性が得られ、実際の原子炉における測定結
果でも、±3μの精度が確認されている。 また、本発明の実施例によれば構造が簡単であり、操作
が容易で操作性に優れ、しかも軽量小型に構成すること
ができる。 さらに、燃料チャンネルの腐食測定の際は、燃料着脱機
等、既存の設備を大いに活用りることかできるという効
果を有する。その結果、多数の放射性部材を迅速に腐食
測定することができる。
[The head support rod 7 is lifted into the pool water 2 of the fuel storage pool 1 by the hoisting operation of the hoisting device 6.
can be lifted. This measurement support rod 7
A measuring head 8 is attached to the lower end of the fuel storage pool 1.
The measurement head 8 is attached to the outer wall of the fuel channel 10, which is held upright in the pool water 2, by a channel attachment/detachment device 9 attached thereto, so that the measurement head 8 can be moved in the vertical direction. That is, the measuring head 8 can be moved upward via the head support rod 7 by the hoisting operation of the hoisting device 6 . The measurement head 8 incorporates a sensor assembly 11 that mainly detects the corrosion state of radioactive members such as the fuel channel 10, and this sensor assembly 11 is electrically connected to a corrosion indicator 12 via a cable to be described later. . This corrosion indicator 12 displays the detection output output from the measuring head 8 by appropriate means, and is arranged on the floor or the like on the upper surface of the side wall of the fuel storage pool 1, as shown in FIG. FIG. 2 is an enlarged perspective view of section A in FIG. 1, and shows the measuring head 8.
is shown being pressed against the outer wall surface of the fuel channel 10. The measuring head 8 is connected to the head support rod 7.
The center of gravity of the measuring head 8 is fixed so as to be eccentric from the center of gravity of the lifting part of the head support rod 7, and the self-Φ of the measuring head 8 produces a certain pressing force on the fuel channel 10.
The measuring head 8 is pressed. and,
The measuring head 8 has a movable guide 1 whose flat surface is formed into a mouth shape.
3, a head support rod 7 is fixed upright and covering the upper surface of the mouth-shaped web, and the opposite sides of the mouth-shape extend to the left and right side walls of the fuel channel 10, respectively. It is designed to slide on both the left and right walls. As shown in FIG. 2, a plurality of sensor assemblies 11, for example three sensor assemblies 11, are arranged in parallel to each other on the inner surface of the mouth-shaped web of the moving guide 13, and these sensor assemblies 1
The tip surfaces of the fuel channels 10 are brought into surface contact with the corrosion measurement surface of the fuel channel 10 at the required contact pressure. The sensor assembly 11 is constructed as shown in FIG.
One end of the corrosion sensor 14 is inserted into a cylindrical cover 15. The front and rear ends of this cover 15 have a front end insertion hole 15a and a rear end insertion hole 15b that are bored coaxially with the axis, and the insertion end of the corrosion sensor 14 is provided in the front end insertion hole 15a. The parts are loosely fitted. An outer flange 14a projecting outward is provided around the outer periphery of the insertion end of the corrosion sensor 14,
The front end insertion hole 15a of the cover 15 is inserted into the outer flange 14a.
It is now blocked from the inside. On the other hand, the front end of the corrosion sensor 14 extends outward from the cover 15, and a fixed disk 16 made of a non-conductor is fixed thereto to insulate the front end of the corrosion sensor 14. The front end of the corrosion sensor 14 is slightly recessed a3 from the front end surface of the fixed disk 16, and the child retracted portions are formed at four parts of the front end of the fixed disk 16. The fixed disk 16 is formed to have a diameter sufficient to close the front end insertion hole 15a of the cover 15, and an outer flange of a required width is integrally provided around the outer periphery of the front end, so that the front end surface of the fixed disk 16 is sufficiently wide. Ensures a contact area of A recess for accommodating the outer flange of the fixed disk 16 is formed at the front end of the cover 15, so that when the corrosion sensor 14 is retracted inward from the cover 15,
The front end of the fixed disk 16 and the front end of the cover 15 are formed so as to be substantially coplanar. The corrosion sensor 14 is a sensor that detects the corrosion state of a radioactive member, and the fuel channel 1 made of zirconium alloy
An eddy current sensor is suitable for measuring zero corrosion. In other words, when a zirconium alloy corrodes, zirconium oxide is produced, but since this zirconium oxide is a non-conductor, the thickness of the oxide film can be detected by contacting it with an eddy current sensor and energizing the sensor. . The cable 17 electrically connected to the corrosion sensor 14 has appropriate rigidity, and one end thereof is inserted into the rear end insertion hole 15b of the cover 15.
It coaxially passes through the spring box 18 through the spring box 18 and extends to the outside thereof, and is electrically connected to the AM display 12 of the upper part, and receives the detection output output from the corrosion hinge 14 by appropriate means. It's turning into a sea urchin. The spring box 18 accommodates therein a coil spring 19 coaxially attached to the outer circumference of the rigid cable 17, and presses the stopper 20 fixed to the cable 17 forward so that the cable 17 and the cable Corrosion sensor 14 connected to 17 is always facing forward. Further, the front end portion of the cable 17 is coaxially and elastically supported within the cover 15 by a spiral-shaped spiral formed by a spring member. That is, the spiral centers of the spiral V bows 1 to 21 are fixed to the outer periphery of the front end of the cable 17, and the outer diameter ends of the spirals are embedded and fixed in an annular groove recessed in the inner peripheral wall of the cover 15. . However...
] Thus, the front end of the cable 17 is always held at the center of the axis of the cover 15. Furthermore, since the cable 17 is also elastically supported by the coil spring 19, even if the corrosion support 14 connected to the cable 17 retreats backward in the axial direction, its spring horn will return it to its original position. It is possible to return. In measurement using this scale, the thickness of the oxide film on the object to be measured is generally a microscopic unit of several tens of microns, and extremely high measurement accuracy is required of the corrosion sensor. for that,
During measurement, it is necessary for the corrosion sensor to always face the object to be measured and face it, and if the corrosion sensor is brought into surface contact with the object at an angle, a measurement error will occur. However, in the corrosion measuring device according to the embodiment of the present invention, as shown in FIG. 4, the corrosion sensor 14 always faces the measurement surface of the fuel channel 10 which is the object to be measured, so High measurement accuracy can be obtained. That is, as shown in FIG.
On the other hand, when the measuring surface is inclined, the front end surface of the fixed disk 16 is always maintained in a close surface contact with the inclined measurement surface from the perpendicular direction with the required contact pressure. , cable 17, spiral → no boat 21, and coil spring 19 are elastically deformed to absorb the strain caused by these inclinations. As a result, the fixed disk 16 is always in surface contact with the measurement surface of the fuel channel 10, so that the front end surface of the corrosion sensor 14 fixed to the fixed disk 16 can always face the measurement surface. can. As a result, high measurement accuracy can always be obtained. Also,
The contact pressure between the front end surface of the fixed disk 16 and the measurement surface such as the fuel channel 10 is also one of the factors that affects measurement accuracy. The cable 17 and the coil spring 19 that elastically supports the cable 17 are independent of pressure.
, is determined by the pressure nozzle j that presses the front end surface of the fixed disk 16 against the measurement surface by the elastic force of the spiral support 21, so that stable measurement values can always be obtained. Incidentally, in the above embodiment, an example was described in which the front end surface of the corrosion sensor 14 was slightly set back from the front end surface of the fixed disk 16.
It may be so-called flush. [Effects of the Invention] As explained above, the radioactive member corrosion measuring device according to the present invention has a fixed disk that is always in close surface contact with the measurement surface of the object to be measured, such as a radioactive member, with a required contact pressure. A corrosion sensor was fixed to detect the corrosion state of the object to be measured. Therefore, according to the present invention, the front end surface, which is the detection surface of the corrosion sensor, always faces the measurement surface of the object to be measured, so that even if the object to be measured is tilted, the detection surface of the corrosion sensor is It always faces the measurement surface of the object to be measured, allowing extremely accurate corrosion measurement results to be obtained. Regarding measurement accuracy, extremely high reliability is obtained regardless of the installation accuracy of the object to be measured, and an accuracy of ±3μ has been confirmed in measurement results in actual nuclear reactors. Further, according to the embodiments of the present invention, the structure is simple, the operation is easy, and the operability is excellent, and the device can be constructed to be lightweight and small. Furthermore, when measuring corrosion of the fuel channel, existing equipment such as a fuel loading/unloading machine can be utilized to a large extent. As a result, corrosion of a large number of radioactive members can be quickly measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明に係る放射性部材の腐食測
定装置の実施例の構成をそれぞれ示し、第1図はその全
体構成を表わ4ために一部を断面で示す側面図、第2図
は第1図のΔ部を拡大して示す部分拡大斜視図、第3図
はセンサアレンブリの縦断面図、第4図は傾斜した被測
定体の測定面に対し腐食センサが正対する状態を示ずセ
ン4ノアセンブリの縦断面図Cある。 1・・・燃料貯蔵プール、2・・・プール水、4・・・
プール側壁、5・・・チャンネル取扱いブーム、6・・
・巻」装置、7・・・ヘッド支持棒、8・・・測定ヘッ
ド、9・・・チャンネル着脱機、10・・・燃料ヂトン
ネル、11・・・センサアセンブリ、12・・・腐食表
示器、13・・・移動ガイド、14・・・腐食セン→ノ
、15・・・)Jバー、16・・・固定ディスク、17
・・・ケーブル、18・・・スプリングボックス、19
・・・コイルスプリング、20・・・ストッパ、21・
・・渦巻サポート。 出願人代理人 波多野 久
1 to 4 respectively show the configuration of an embodiment of the radioactive member corrosion measuring device according to the present invention, and FIG. Figure 2 is a partially enlarged perspective view showing the Δ section of Figure 1, Figure 3 is a vertical sectional view of the sensor assembly, and Figure 4 shows the corrosion sensor directly facing the measurement surface of the inclined object. There is a vertical sectional view C of the assembly without showing the state. 1...Fuel storage pool, 2...Pool water, 4...
Pool side wall, 5...Channel handling boom, 6...
・Volume" device, 7... Head support rod, 8... Measuring head, 9... Channel attachment/detachment machine, 10... Fuel tunnel, 11... Sensor assembly, 12... Corrosion indicator, 13...Movement guide, 14...Corrosion sensor→ノ, 15...) J bar, 16...Fixed disk, 17
... Cable, 18 ... Spring box, 19
...Coil spring, 20...Stopper, 21.
...Vortex support. Applicant's agent Hisashi Hatano

Claims (1)

【特許請求の範囲】 1、被測定体の腐食状態を検出する腐食センサを含む腐
食検出部と、この腐食検出部からの検出出力を適宜手段
で表示する表示部と、上記腐食検出部を支持してこの腐
食検出部を上記被測定体の測定面に沿って適宜移動せし
める支持部とを有し、上記腐食センサが上記被測定体の
測定面に対し常に正対するように上記腐食検出部を構成
したことを特徴とする放射性部材の腐食測定装置。 2、rg4食センセン、軸方向おJ:び径方向にそれぞ
れ弾性支持されると共に、その前端部外周に固定ディス
クを同軸状に固定せしめ、この固定ディスクの接触面を
被測定体の測定面に面接触可能に形成し、この固定ディ
スクの接触面を腐食センサの検出面と平行となるように
形成した特許請求の範囲第1項に記載の11i射性部材
の腐食測定装置。 3、支持部は巻上ロープを介して巻上装置に連結され、
この巻上装置の巻上操作により上方へ吊り上げられるよ
うに構成された特許請求の範囲第1項に記載の放射性部
材の腐食測定装置。
[Scope of Claims] 1. A corrosion detection section including a corrosion sensor that detects the corrosion state of the object to be measured, a display section that displays the detection output from the corrosion detection section by appropriate means, and a support for the corrosion detection section. and a support part for appropriately moving the corrosion detection section along the measurement surface of the object to be measured, and the corrosion detection section is arranged so that the corrosion sensor always faces the measurement surface of the object to be measured. A corrosion measuring device for a radioactive member, characterized by comprising: 2. The rg4 food sensor is elastically supported in the axial and radial directions, and a fixed disk is fixed coaxially to the outer periphery of the front end, and the contact surface of the fixed disk is attached to the measurement surface of the object to be measured. 11. The apparatus for measuring corrosion of a 11i radioactive member according to claim 1, wherein the fixing disk is formed so as to be able to make surface contact, and the contact surface of the fixed disk is formed to be parallel to the detection surface of the corrosion sensor. 3. The support part is connected to the hoisting device via the hoisting rope,
The radioactive member corrosion measuring device according to claim 1, which is configured to be lifted upward by a hoisting operation of the hoisting device.
JP59075585A 1984-04-14 1984-04-14 Corroded part measuring apparatus of radioactive member Pending JPS60219540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075585A JPS60219540A (en) 1984-04-14 1984-04-14 Corroded part measuring apparatus of radioactive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075585A JPS60219540A (en) 1984-04-14 1984-04-14 Corroded part measuring apparatus of radioactive member

Publications (1)

Publication Number Publication Date
JPS60219540A true JPS60219540A (en) 1985-11-02

Family

ID=13580416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075585A Pending JPS60219540A (en) 1984-04-14 1984-04-14 Corroded part measuring apparatus of radioactive member

Country Status (1)

Country Link
JP (1) JPS60219540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337563A (en) * 1989-07-05 1991-02-18 Hitachi Ltd Foreign-material inspecting apparatus
US8699654B2 (en) 2008-06-09 2014-04-15 Westinghouse Electric Sweden Ab Method comprising measurement on fuel channels of fuel assemblies for nuclear boiling water reactors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337563A (en) * 1989-07-05 1991-02-18 Hitachi Ltd Foreign-material inspecting apparatus
US8699654B2 (en) 2008-06-09 2014-04-15 Westinghouse Electric Sweden Ab Method comprising measurement on fuel channels of fuel assemblies for nuclear boiling water reactors

Similar Documents

Publication Publication Date Title
US4605531A (en) Process for examining a fuel assembly of a nuclear reactor and an examining machine for performing this process
US4983352A (en) Closure system for a spent fuel storage cask
JPS5842404B2 (en) Method and device for measuring the internal gap of nuclear reactor fuel rods
JPS60219540A (en) Corroded part measuring apparatus of radioactive member
US3929570A (en) Failed fuel detection for PWR
US4862079A (en) Magnetic method and apparatus for measuring and locating wear of control rods in nuclear reactors
US5809100A (en) Apparatus for detecting changes in preload on a tie rod installed as part of a core shroud repair in a boiling water reactor
EP0251822B1 (en) Apparatus and method for customizing replacement upper core plate inserts of a nuclear reactor
JP2637697B2 (en) Inspection instrument calibration apparatus and method
JP3522842B2 (en) Measuring device
JPH0476596B2 (en)
JP3544065B2 (en) Simple burnup monitor
JPH0227296A (en) Method and apparatus for monitoring side wall of storage container for fuel assembly
JP5957174B2 (en) Radiation measurement equipment for spent fuel
US4216376A (en) Neutron interface detector
US4410484A (en) Process and apparatus for acoustic and ultrasonic detection of defective nuclear reactor fuel assemblies
JPH085778A (en) Dimension and shape measuring device for control rod drive mechanism housing placement part and the like
JPH0634788A (en) Burn-up measuring device
JPH0225795A (en) Shape measuring device for fuel channel
US4748647A (en) Fuel tube barrier gauge
Tarvainen et al. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual
EP0143542B1 (en) Apparatus for detecting defective nuclear reactor fuel rods
JP3002384B2 (en) Contact-type displacement measurement mechanism for fuel assemblies in reactors
KR830002596B1 (en) Acoustic and Ultrasonic Testing for Fuel Assembly
JPS60219590A (en) Measuring device for fuel channel box