JPS60219401A - Reheat fuel blow-off blade of gas turbine - Google Patents

Reheat fuel blow-off blade of gas turbine

Info

Publication number
JPS60219401A
JPS60219401A JP7569284A JP7569284A JPS60219401A JP S60219401 A JPS60219401 A JP S60219401A JP 7569284 A JP7569284 A JP 7569284A JP 7569284 A JP7569284 A JP 7569284A JP S60219401 A JPS60219401 A JP S60219401A
Authority
JP
Japan
Prior art keywords
blade
blowing
fuel
reheating
height direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7569284A
Other languages
Japanese (ja)
Other versions
JPH0222217B2 (en
Inventor
Teruo Morishita
森下 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ship Research Institute
Original Assignee
Ship Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ship Research Institute filed Critical Ship Research Institute
Priority to JP7569284A priority Critical patent/JPS60219401A/en
Publication of JPS60219401A publication Critical patent/JPS60219401A/en
Publication of JPH0222217B2 publication Critical patent/JPH0222217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/185Liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To promote the improvement of thermal efficiency, by providing reheat fuel blow-off holes in the trailing edge of a stationary blade and a moving blade to be unevenly distributed in a direction of height of the blade. CONSTITUTION:A gas turbine provides reheat fuel blow-off holes 2 in the trailing edge of a stationary blade and a moving blade to be unevenly distributed in a direction of height of the blade. Reheat fuel is fed into the blade from its inlet 1, and the fuel, after it is allowed to flow in a flow path in the blade so as to cool it, is blown off outside the blade from the blow-off holes 2 and brought into contact with working gas 5, performing combustion and reheating the working gas 5 by combustion heat of the fuel. In this way, thermal efficiency of the gas turbine can be improved by enabling the working gas to be reheated in an optional number of times.

Description

【発明の詳細な説明】 この発明は再熱サイクルガスタービンにおいて、再熱用
燃料をタービンと独立の再熱器を用いることなくタービ
ン内で燃焼させて作動ガスの再熱を行わせるための再熱
用燃料吹出し翼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reheat cycle gas turbine in which reheat fuel is combusted within the turbine without using a reheater independent of the turbine to reheat working gas. This invention relates to thermal fuel blowing blades.

従来の再熱サイクルガスタービンでは高圧タービンと低
圧タービンの間に独立した再熱用燃焼器を設けなければ
舛らない。このためタービンと再熱用燃焼器をつなぐ風
管は高温高圧に耐える構造を有しかつ圧力損失を少くす
るように配置しなければならない9又、再熱用燃焼器は
流入ガスの温度が高いためライナの冷却が著るしく困難
になる。従って再熱サイクルガスタービンは極めて復雑
な構造とならざるをえなくなり、従来の方式による再熱
タービンでは2回以上の再熱は事実上不可能に近い。
Conventional reheat cycle gas turbines will not run out unless an independent reheat combustor is provided between the high-pressure turbine and the low-pressure turbine. For this reason, the wind pipe that connects the turbine and the reheat combustor must have a structure that can withstand high temperatures and pressures, and must be arranged to minimize pressure loss. This makes cooling the liner significantly more difficult. Therefore, a reheat cycle gas turbine has to have an extremely complicated structure, and it is virtually impossible for a conventional reheat turbine to perform reheating more than once.

この発明は、復雑な構造を有する高温高圧ガス風管及び
再熱用燃焼器を設けることなく任意の回数の再熱を行い
、ガスタービンの熱効率及び比出力を大幅に向上させる
ことができるタービン内再熱装置を得ることを目的とし
ている。
The present invention provides a turbine that can perform reheating an arbitrary number of times without providing a high-temperature, high-pressure gas wind pipe and a reheating combustor that have a complicated structure, and can significantly improve the thermal efficiency and specific output of the gas turbine. The purpose is to obtain an internal reheating device.

この発明の構造及び機能を図面にもとづいて説明すれは
次の通りである。
The structure and function of this invention will be explained based on the drawings as follows.

第1図及び第2図(第1図中の翼のエーエ線に沿う横断
面図)において、高温高圧の作動ガスはタービン内の翼
列をグからjへと通過する間に膨張しその温度が下がる
。温度か下った作動ガスを再熱するのに必要な可燃性ガ
スは翼の入0/から翼内に送り込まれ、翼内に設けられ
た流路3を通って翼を冷却するのと同時に自らも燃焼し
やすいように加熱された後、諷の後縁に設けられた吹き
出し孔ノを通って翼列に吹き出される。吹き出された可
燃性ガスは可燃性ガスの自然着火温度以上の作動ガスj
に触れて燃。翼後縁の吹き出し孔は翼の高さ方向に不均
一に分布するよう設りであるので、再熱用燃料ガスの吹
き出し量は翼高さ方向に変化させることができる。従っ
て、設計上必要なタービンの゛半径方向の温度分布かえ
られるように作動流体の再熱を行わせることができる。
In Figures 1 and 2 (cross-sectional views of the blades along line A in Figure 1), high-temperature, high-pressure working gas expands while passing through the blade rows in the turbine from G to J, and its temperature increases. goes down. The combustible gas necessary to reheat the working gas whose temperature has dropped is fed into the blade from the blade entrance, passes through the flow passage 3 provided in the blade, and cools the blade at the same time. After being heated so that it is easily combusted, it is blown out to the blade rows through the blow-off holes provided at the trailing edge of the tail. The blown out flammable gas is a working gas whose temperature is higher than the spontaneous ignition temperature of the combustible gas.
Touch and burn. Since the blow-off holes at the trailing edge of the blade are arranged to be distributed non-uniformly in the height direction of the blade, the amount of reheating fuel gas blown out can be varied in the blade height direction. Therefore, the working fluid can be reheated so as to change the radial temperature distribution of the turbine as required by design.

第3図は、翼後縁の吹出し孔の配置においてタービンの
回転軸に近い内径側に吹き出し孔を設けない場合の実施
態様の一例を示すものである。この図は第1図に示した
翼の■−■線に沿う縦断面図である。可燃性ガスは翼の
入口/から入り流路3を通って後縁に流れるが、翼後縁
の冷却をよくするため最後の流路乙は可燃性ガスが内径
側から外径側にむかって流れるように設けてあり、吹き
出し孔はこの最後の流路乙の外径側部分にのみ設けであ
る。この構造により再熱用ガスは翼後縁の冷却効果を損
うことなく翼の高さ方向において外径側のみから吹き出
すことができる。
FIG. 3 shows an example of an embodiment in which the blow-off holes are arranged on the trailing edge of the blade and the blow-off holes are not provided on the inner diameter side near the rotating shaft of the turbine. This figure is a longitudinal cross-sectional view of the blade shown in FIG. 1 along the line ■-■. The flammable gas enters from the inlet of the blade and flows through the flow path 3 to the trailing edge.In order to improve the cooling of the trailing edge of the blade, the combustible gas flows from the inner diameter side toward the outer diameter side in the last flow path A. It is provided so that it flows, and the blowout hole is provided only on the outer diameter side portion of this last flow path B. This structure allows reheating gas to be blown out only from the outer diameter side in the height direction of the blade without impairing the cooling effect of the trailing edge of the blade.

第q図、第5図及び第を図はそれぞれ翼後縁の外観図で
ある。
Figures q, 5 and 5 are external views of the trailing edge of the wing, respectively.

第1図は翼高さ方向に吹き出し孔の幅を変化させ、かつ
翼高さ方向に連続した吹き出し孔を設けた場合の実施態
様を示したものである。吹き出し孔が連続しているため
、翼を精密鋳造法で製作する場合に中子の取扱いが容易
になる。
FIG. 1 shows an embodiment in which the width of the air outlet holes is varied in the blade height direction and continuous air outlet holes are provided in the blade height direction. Since the blowholes are continuous, the core can be easily handled when manufacturing the blades by precision casting.

第5図は吹き出し孔の幅は一定で、翼高さ方向に不連続
な吹き出し孔を設けた場合の実施a様を示したものであ
る。吹き゛出し孔が各々独立しているので、翼製造後に
吹き出し量を調整するために吹き出し孔の孔うめ加工が
容易になる。
FIG. 5 shows embodiment a in which the width of the air outlet holes is constant and the air outlet holes are provided discontinuously in the blade height direction. Since each blowout hole is independent, it is easy to fill the blowholes in order to adjust the blowout amount after manufacturing the blade.

第6図は吹き出し孔の幅を変化させ、かつ翼高さ方向に
不連続な吹き出し孔をもつ場合の実施態様を示したもの
である。この方式によれば吹き出し孔のピッチを変えず
に可燃性ガスの吹き出し量分布を任意に作ることができ
る。
FIG. 6 shows an embodiment in which the width of the air outlet holes is varied and the air outlet holes are discontinuous in the blade height direction. According to this method, it is possible to arbitrarily create the distribution of the amount of flammable gas blown out without changing the pitch of the blowing holes.

上記のように構成された翼から可燃性ガスを吹き出させ
ると、翼の後縁の吹出し孔の面積及 。−ひピッチが翼
の高さ方向に不均一に分布させであるため、翼列後方の
作動ガスの半径方向(翼の高さ方向)の圧力分布に合わ
せた可燃性ガスの所要流量を流すことができる。
When flammable gas is blown out from the blade configured as described above, the area of the blowout hole at the trailing edge of the blade increases. - Since the pitch is unevenly distributed in the height direction of the blade, the required flow rate of combustible gas must be flowed in accordance with the pressure distribution of the working gas in the radial direction (in the height direction of the blade) behind the blade row. I can do it.

とくに翼列から流出する作動ガスjがタービンの周方向
(翼列のピッチ方向)の速度成分をもつ場合、即ち旋回
流となるときは翼列後方のガスはガスの密度と旋回速度
の2乗の積に比例する遠心力をうける。通常、翼列後方
のカスの中に4tt1の遠心力に釣合うようにターヒン
ノ内径側から外径側に向って高くなるような圧力分布か
発生する。可燃性ガスが吹き出されるとその燃焼によっ
て翼列後方のガス中に局所的な高温部ができ、この部分
の密度は低くなる。従ってこの高温部分に働らく遠心力
は密度の低い分たけ小さくなり、高温部分以外のガスに
働らく遠心力と差が生じる。その結果、可燃性ガスの7
燃焼による高温部分のガスは遠心力の差に応じた内径側
に向かう力を受け、高温ガスはタービンの内径側へむけ
て流れる。この作用があるため、可燃性ガスの吹出し孔
を翼高さ方向に均一に設けたりすると翼列後方の環状カ
ス流路の内径側壁面に火炎が接触し壁面を焼損するおそ
れがある。従って、吹き出し孔を外径側に片寄らせて設
け、且つ吹き出し孔の翼高さ方向の配置を前記実施態様
のように分布させることにより、ガス流路内壁面の焼損
を防ぐとともに遠心力の差によって生じる内向き流れを
利用して再熱用燃料吹き出し翼列の後方の流れに半径方
向に沿う所要の温度分布を作ることができる。
In particular, when the working gas j flowing out from the blade row has a velocity component in the circumferential direction of the turbine (the pitch direction of the blade row), that is, when it becomes a swirling flow, the gas behind the blade row has a velocity component equal to the density of the gas and the square of the swirling speed. is subjected to a centrifugal force proportional to the product of Normally, a pressure distribution is generated in the scum behind the blade row that increases from the inner diameter side toward the outer diameter side to balance the centrifugal force of 4tt1. When flammable gas is blown out, its combustion creates a localized high-temperature area in the gas behind the blade row, and the density of this area becomes low. Therefore, the centrifugal force acting on this high-temperature portion is smaller as the density is lower, and there is a difference from the centrifugal force acting on gases other than the high-temperature portion. As a result, 7
The gas in the high-temperature part due to combustion receives a force directed toward the inner diameter side according to the difference in centrifugal force, and the high-temperature gas flows toward the inner diameter side of the turbine. Because of this effect, if the blow-off holes for flammable gas are provided uniformly in the blade height direction, there is a risk that the flame will come into contact with the inner diameter side wall surface of the annular waste flow path at the rear of the blade row and burn out the wall surface. Therefore, by providing the blow-off holes offset toward the outer diameter side and distributing the blow-off holes in the blade height direction as in the embodiment described above, burnout of the inner wall surface of the gas flow path can be prevented and the difference in centrifugal force can be prevented. By using the inward flow generated by this, it is possible to create a desired temperature distribution along the radial direction in the flow behind the row of reheating fuel blowing blades.

この発明は以上説明したように、再熱用の可燃性ガスを
吠き出すタービン翼の吹き出し孔を翼の高さ方向に不均
一に分布させて設けるkいう簡単な構造で、ガスタービ
ンのノズル翼々動翼の間の環状ガス流路・あるいは動翼
と次段のノズル翼の間の環状ガス流路において、流路の
内径側壁面を過熱させることなく且つ半径方向に所要の
温度分布かえられるように作動ガスを再熱することがで
きる。
As explained above, this invention has a simple structure in which the blow-off holes of the turbine blade for blowing out combustible gas for reheating are unevenly distributed in the height direction of the blade. In the annular gas flow path between the rotor blades or between the rotor blade and the next stage nozzle blade, the required temperature distribution can be changed in the radial direction without overheating the inner diameter side wall surface of the flow path. The working gas can be reheated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって構成したガスタービンの再熱用
燃料吹き出し翼の外形図、第2図および第3図はそれぞ
れ第1図の横断面図と縦断面図、第を図ないし第を図は
本発明によって構成した後縁吹き出し孔の実施例の外形
図である。/は再熱用燃料の入口、λは後縁に設けた燃
料ガス吹き出し孔、3は翼の冷却を兼ねた燃料ガス流路
、弘、jは翼列を通る作動ガスの流れの向きを示す矢印
、乙は後縁吹き出し孔底前の燃料ガス流路である。 第1図 第213d 第3図 第41図 第5図 第61閉
FIG. 1 is an external view of a reheating fuel blowing blade of a gas turbine constructed according to the present invention, FIGS. 2 and 3 are a cross-sectional view and a vertical cross-sectional view of FIG. 1, respectively, and FIGS. FIG. 1 is an outline view of an embodiment of a trailing edge blow-off hole constructed according to the present invention. / indicates the reheating fuel inlet, λ indicates the fuel gas blowout hole provided at the trailing edge, 3 indicates the fuel gas flow path that also serves as blade cooling, and j indicates the direction of the flow of working gas through the blade row. Arrow B indicates the fuel gas flow path in front of the bottom of the trailing edge blowout hole. Figure 1 Figure 213d Figure 3 Figure 41 Figure 5 Closed 61

Claims (1)

【特許請求の範囲】 l 作動ガスをタービン外の再熱器に導くことなくター
ビン内で再熱用燃料を燃焼させて再熱を行えるようにし
たガスタービンにおいて、再熱用燃料を吹き出す静翼及
び動翼の後縁に翼高さ方向に不均一に分布させた吹出し
孔を設けたことを特徴とする再熱用燃料吹出し翼 2 内径側に吹出し部分を設けない特許請求の範囲第1
項記載の再熱用燃料吹出し翼 3 翼高さ方向に吹出し孔の幅を変化させ、かつ翼高さ
方向に連続した吹出し孔をもつ特許請求の範囲第2項記
載の再熱用−燃料吹出し翼4 翼高さ方向に吹出し孔の
幅を一定にし、かつ翼高さ方向に不連続な吹出し孔をも
つ特許請求の範囲第2項記載の再熱用燃料吹出し翼5、
 翼高さ方向に吹出し孔の幅を変化させ、かつ翼高さ方
向に不連続な吹出し孔をもつ特許請求の範囲第2項記載
の再熱用燃料吹出し翼
[Scope of Claims] l In a gas turbine capable of reheating by burning reheating fuel within the turbine without guiding working gas to a reheater outside the turbine, a stationary blade that blows out reheating fuel. and a reheating fuel blowing blade 2 characterized in that blowing holes are provided on the trailing edge of the rotor blade and blowing holes are distributed non-uniformly in the blade height direction. Claim 1: No blowing portion is provided on the inner diameter side.
Reheating fuel blowing blade 3 according to Claim 2 Reheating fuel blowing blade according to Claim 2, which has a blowing hole whose width is changed in the blade height direction and which is continuous in the blade height direction Blade 4 A fuel blowing blade 5 for reheating according to claim 2, which has a constant width of the blowing hole in the blade height direction and has blowing holes that are discontinuous in the blade height direction.
The reheating fuel blowing blade according to claim 2, wherein the width of the blowing hole is changed in the blade height direction and the blowing hole is discontinuous in the blade height direction.
JP7569284A 1984-04-17 1984-04-17 Reheat fuel blow-off blade of gas turbine Granted JPS60219401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7569284A JPS60219401A (en) 1984-04-17 1984-04-17 Reheat fuel blow-off blade of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7569284A JPS60219401A (en) 1984-04-17 1984-04-17 Reheat fuel blow-off blade of gas turbine

Publications (2)

Publication Number Publication Date
JPS60219401A true JPS60219401A (en) 1985-11-02
JPH0222217B2 JPH0222217B2 (en) 1990-05-17

Family

ID=13583504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7569284A Granted JPS60219401A (en) 1984-04-17 1984-04-17 Reheat fuel blow-off blade of gas turbine

Country Status (1)

Country Link
JP (1) JPS60219401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847682A1 (en) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Method for supplying a fluid to the main gas stream in a turbine and associated turbine blade.
JP2007321766A (en) * 2006-06-05 2007-12-13 General Electric Co <Ge> System and method for secondary fuel injection from first stage nozzle
EP2116768A1 (en) * 2008-05-09 2009-11-11 ALSTOM Technology Ltd Burner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847682A1 (en) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Method for supplying a fluid to the main gas stream in a turbine and associated turbine blade.
JP2007321766A (en) * 2006-06-05 2007-12-13 General Electric Co <Ge> System and method for secondary fuel injection from first stage nozzle
EP2116768A1 (en) * 2008-05-09 2009-11-11 ALSTOM Technology Ltd Burner
US8528313B2 (en) 2008-05-09 2013-09-10 Alstom Technology Ltd Burner for a second chamber of a gas turbine plant

Also Published As

Publication number Publication date
JPH0222217B2 (en) 1990-05-17

Similar Documents

Publication Publication Date Title
CA1245869A (en) Cooling scheme for combustor vane interface
US10012106B2 (en) Enclosed baffle for a turbine engine component
US5027604A (en) Hot gas overheat protection device for gas turbine engines
US3628880A (en) Vane assembly and temperature control arrangement
US4153386A (en) Air cooled turbine vanes
US11448076B2 (en) Engine component with cooling hole
JP6602094B2 (en) Combustor cap assembly
US6019572A (en) Gas turbine row #1 steam cooled vane
US20080131260A1 (en) Method and system to facilitate cooling turbine engines
US20140373504A1 (en) Gas turbine having an exhaust gas diffuser and supporting fins
EP3156597B1 (en) Cooling holes of turbine
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
EP2847435B1 (en) Convective heat removal cooling hole pattern
EP3537047A1 (en) Slot arrangements for an impingement floatwall film cooling of a turbine engine
JP2015224634A (en) Rotor blade coolant flow
KR20210148971A (en) Combustion liner cooling
US6584766B1 (en) Methods and apparatus for minimizing thermal stresses in a centerbody
US11098602B2 (en) Turbine vane equipped with insert support
US4098075A (en) Radial inflow combustor
US20150159513A1 (en) Bi-cast turbine nozzles and methods for cooling slip joints therein
JPS60219401A (en) Reheat fuel blow-off blade of gas turbine
US6544001B2 (en) Gas turbine engine system
KR102433516B1 (en) Nozzle cooling system for a gas turbine engine
US10344599B2 (en) Cooling passage for gas turbine rotor blade
US10968778B2 (en) Gas turbine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term