JPS6021925B2 - Method for producing gamma type ferric oxide - Google Patents

Method for producing gamma type ferric oxide

Info

Publication number
JPS6021925B2
JPS6021925B2 JP56091184A JP9118481A JPS6021925B2 JP S6021925 B2 JPS6021925 B2 JP S6021925B2 JP 56091184 A JP56091184 A JP 56091184A JP 9118481 A JP9118481 A JP 9118481A JP S6021925 B2 JPS6021925 B2 JP S6021925B2
Authority
JP
Japan
Prior art keywords
ferric oxide
mol
producing gamma
type ferric
gamma type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56091184A
Other languages
Japanese (ja)
Other versions
JPS57205325A (en
Inventor
政行 界
誠一 中谷
吉彦 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56091184A priority Critical patent/JPS6021925B2/en
Publication of JPS57205325A publication Critical patent/JPS57205325A/en
Publication of JPS6021925B2 publication Critical patent/JPS6021925B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】 本発明はFe304とy−AI2Q及びLa,Ce,P
r,Ndの一種以上を含有する混合粉を10G分以上粉
砕し熱処理後、酸化することによってa−Fe203へ
の転移温度を著しく向上せしめたことに特徴を有するy
−Fe2Qの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides Fe304 and y-AI2Q and La, Ce, P
It is characterized in that the transition temperature to a-Fe203 is significantly improved by pulverizing 10G or more of mixed powder containing at least one of r, Nd, heat treatment, and oxidizing it.
-This invention relates to a method for producing Fe2Q.

ッ−Fe2Qは強磁性の粉末であって、磁気記憶材料お
よび電子材料を中心に広く用いられている。通常、この
y−Fe203を得る方法としては、Fe304を40
0つ0程度で熱して酸化する方法、y−Fe00日を加
熱脱水する方法などがあげられる。これらの方法によっ
て得られるy−Fe203は、その粒度や含まれる不純
物、格子欠陥などにより影響を受けるが、おおむね30
0〜500q○でa一Fe203に変態する。このため
、電子材料等としてy−Fe203を用いる場合、その
使用温度はごく限られた範囲に限られるものであった。
本発明は、Fe304とy−山203及びLa,Ce.
Pr,Ndの一種以上とを10■ご以上混合粉砕するこ
とによって、y−Fe203のa−Fe203への転移
温度を著しく高めることの出来るy−Fe203の製造
方法を提供するものである。
-Fe2Q is a ferromagnetic powder and is widely used mainly in magnetic storage materials and electronic materials. Usually, to obtain this y-Fe203, Fe304 is
Examples include a method of oxidizing by heating at about 0 to 0, and a method of heating and dehydrating y-Fe00 days. The y-Fe203 obtained by these methods is affected by its particle size, impurities contained, lattice defects, etc., but approximately 30
Transforms into a-Fe203 at 0 to 500q○. For this reason, when y-Fe203 is used as an electronic material, the temperature at which it can be used is limited to a very limited range.
The present invention combines Fe304, Y-mount 203 and La, Ce.
The purpose of the present invention is to provide a method for producing y-Fe203 in which the transition temperature of y-Fe203 to a-Fe203 can be significantly increased by mixing and pulverizing 10 cm or more of Pr, Nd or more.

以下、その実施例について説明する。Examples thereof will be described below.

実施例 1 塩化第二鉄(FeC13・母LO)と硫酸第一鉄(Fe
S04・7山0)をそれぞれ667モル%と33.3モ
ル%の組成比になるように採取し、それを水に溶解させ
た。
Example 1 Ferric chloride (FeC13/mother LO) and ferrous sulfate (Fe
S04 and 7 mountains 0) were collected at composition ratios of 667 mol% and 33.3 mol%, respectively, and dissolved in water.

この水溶液を50℃に加熱保持し、pH9になるまでア
ンモア水(NH40H)を加えた。これを吸引ろ過し、
9000で乾燥させた。これによって得られた粉体はF
e304である。このFe304に対して市販のy−A
I2Qとじ203を第1表に示す組成比になるよう配合
し、らし、かし、機で10〜1び分間粉砕した。その時
の粉砕条件と試料舷.の関係を第2表に示した。そして
、得られたそれぞれの粉体を真空中で50〜1200午
○で1時間熱処理した。その時の熱処理条件と試料M.
の関係を第3表に示した。そして、得られたそれぞれの
粉体を空気中において100つ0/時の昇温速度で40
0つ0まで熱し、40ぴ○で1時間保持してy−Fe2
03粉体を得た。この粉体のそれぞれについて示差熱分
析を行ないy−Fe203からa−Fe203に転移す
るときの発熱ピークから、その転移温度を求めた。各試
料の発熱ピークから転移温度を求めた結果を第4−1表
〜4−5表と第1図〜第6図に示す。第1表 *は比較例 第2表 *は比較例 第3表 *は比較例 第4−1表 *は比較例 第4−2表 *は上 l 4−3表 *は上 l 第4−4表 *は比較例 第4−5表 *は l 図のA−1〜M−1は、y−AI2QとLa203の配
合量を種々変えさらに粉砕時間も変えたときの特性であ
る。
This aqueous solution was heated and maintained at 50°C, and ammour water (NH40H) was added until the pH reached 9. Suction filter this,
It was dried at 9000 °C. The powder obtained by this is F
It is e304. Commercially available y-A for this Fe304
I2Q Toji 203 was blended to have the composition ratio shown in Table 1, and ground for 10 to 1 minute using a mustard grinder. Grinding conditions and sample ship at that time. The relationship is shown in Table 2. Then, each of the obtained powders was heat treated in vacuum at 50 to 1200 pm for 1 hour. Heat treatment conditions and sample M.
The relationship is shown in Table 3. Then, each of the obtained powders was heated in air at a heating rate of 100 powders per hour.
Heat to 0x0 and hold at 40p○ for 1 hour to form y-Fe2
03 powder was obtained. Differential thermal analysis was performed on each of these powders, and the transition temperature was determined from the exothermic peak when y-Fe203 transitions to a-Fe203. The results of determining the transition temperature from the exothermic peak of each sample are shown in Tables 4-1 to 4-5 and FIGS. 1 to 6. Table 1 * is a comparative example Table 2 * is a comparative example Table 3 * is a comparative example Table 4-1 * is a comparative example Table 4-2 * is above l Table 4-3 * is above l 4- Table 4 * is Comparative Example Table 4-5 * is l Figure A-1 to M-1 show the characteristics when the blending amounts of y-AI2Q and La203 were varied and the grinding time was also varied.

A−D〜M−0‘ま配合組成と熱処理温度を変え時の特
性である。以上の結果より、y−AI203を10〜6
0モル%、Fe304を89.95〜25モル%および
La203を0.05〜1モル%の割合で含む混合物を
1び〜1び分間粉砕後、真空中600〜1200午0で
熱処理し、さらに酸化して得られたy−Fe203のa
−Fe203への転移温度を最高204℃(A−3とM
−3の比較)も高温側へシフトできることがわかる。
A-D to M-0' are the characteristics when the blending composition and heat treatment temperature are changed. From the above results, y-AI203 is 10-6
A mixture containing Fe304 in a proportion of 0 mol%, 89.95 to 25 mol% and La203 in a proportion of 0.05 to 1 mol% was ground for 1 to 1 minute, then heat treated in vacuum at 600 to 1200 pm, and further a of y-Fe203 obtained by oxidation
-The maximum transition temperature to Fe203 is 204℃ (A-3 and M
-3 comparison) can also be shifted to the high temperature side.

またLa203の混合前と比べると50〜620(B−
3とE−3,F−3と1一3およびJ一3とM−3の比
較)も高温側へシフトできることがわかる。また第4一
1〜4−5表および第1図〜第6図から、単にFe30
4だけを粉砕しても、この効果は現われず、必ずy−山
203とともに、粉砕しなければならないことがわかる
。さらにその効果を顕著にするために凶203の混合が
極めて有効であるということがわかる。特許請求の範囲
で粉砕時間を100分以上としたのは第4−1〜4−5
表及び第1図〜第3図にある様に粉砕時間が100分未
満の場合は本発明の方法の効果が顕著でない為である。
また熱処理温度を600〜1200ooとしたのは、第
4−1〜4−5表及び第4図〜第6図にある様に熱処理
温度が600oo未満の場合は本発明の方法の効果が顕
著でないためである。
Also, compared to before mixing La203, it is 50 to 620 (B-
3 and E-3, F-3 and 1-3, and J-3 and M-3) can also be shifted to the high temperature side. Also, from Tables 4-1 to 4-5 and Figures 1 to 6, it is clear that simply Fe30
It can be seen that this effect does not appear even if only 4 is crushed, and that it must be crushed together with the Y-mount 203. Furthermore, it can be seen that the mixture of Aku 203 is extremely effective in making the effect more noticeable. Claims 4-1 to 4-5 set the crushing time to 100 minutes or more.
This is because, as shown in the table and FIGS. 1 to 3, when the grinding time is less than 100 minutes, the effect of the method of the present invention is not significant.
Furthermore, the heat treatment temperature was set at 600 to 1200 oo because as shown in Tables 4-1 to 4-5 and Figures 4 to 6, the effect of the method of the present invention is not significant when the heat treatment temperature is less than 600 oo. It's for a reason.

次に凶203の他にCe203,Pr203及びN40
3の一種以上を混合した例について述べる。
Next, in addition to Aku 203, Ce203, Pr203 and N40
An example in which one or more types of 3 are mixed will be described.

実施例 2 実施例1と同様にして作成したFe304に対して市販
のッーN203とLa203,Ce2Q,Pr203お
よびNq03を第5表に示す組成比になるよう配合し、
らし、かし、機で1ぴ〜1『分間粉砕した。
Example 2 Commercially available N203, La203, Ce2Q, Pr203, and Nq03 were blended to Fe304 prepared in the same manner as in Example 1 at a composition ratio shown in Table 5,
The mustard was crushed in a machine for 1 to 1 minute.

その時の粉砕条件と試料M.の関係を第6表に示した。
そして、得られたそれぞれの粉体を真空中で60ぴ0で
1時間熱処理した。そして実施例1と同様の方法で酸化
し、同様の方法で転移温度を求めた。その結果を第7一
1〜7−2表に示した。第5表 第6表 第7−1表 第7−2表 以上の結果より、Fe304とy−N203を加えたも
のに更にCe203,Pr203およびNd203より
選ばれた少くとも一種を総量で0.05〜15モル%の
割合で含む混合物を100分以上粉砕して非酸化性雰囲
気で熱処理後、酸化することによって、y−Fe203
のa−Fe203への転移温度を大中に高温側にシフト
し得ることがわかる。
Grinding conditions and sample M. The relationship is shown in Table 6.
Then, each of the obtained powders was heat treated in vacuum at 60 mm for 1 hour. Then, it was oxidized in the same manner as in Example 1, and the transition temperature was determined in the same manner. The results are shown in Tables 7-1 to 7-2. Table 5, Table 6, Table 7-1, Table 7-2 From the above results, in addition to Fe304 and y-N203, at least one selected from Ce203, Pr203 and Nd203 was added in a total amount of 0.05 By pulverizing a mixture containing ~15 mol% for over 100 minutes, heat-treating it in a non-oxidizing atmosphere, and then oxidizing it, y-Fe203
It can be seen that the transition temperature of a-Fe203 to a-Fe203 can be shifted to a high temperature side.

ここでい,Ce,PrおよびNdの混合割合を0.05
〜1流ol%と限定したのは、0.08hol%未満で
は本発明の方法の効果が顕著でない為である。また18
hol%を越えると、バラッキが大きく、再現性に乏し
いため実用に供し得ないものとなるためである。実施例
2においても実施例1と同様に必ずy−山203ととも
に混合しなければ効果がなく、その粉砕時間も100分
以上が顕著であった。
Here, the mixing ratio of Ce, Pr and Nd is 0.05
The reason for limiting the amount to 1 flow ol% is that the effect of the method of the present invention is not significant below 0.08 hol%. Also 18
This is because if it exceeds hol%, there will be large variations and poor reproducibility, making it impossible to put it to practical use. In Example 2, as in Example 1, there was no effect unless the mixture was mixed together with the Y-mount 203, and the grinding time was significantly longer than 100 minutes.

実施例では粉砕手段として、らし、かし、機を用いたが
、別にこれに限るわけではなく、たとえばボールミルな
どのように粉砕が行なえるものであれば全て有効である
In the examples, a pulverizing means is used as a pulverizing means, but the method is not limited to these, and any means capable of pulverizing, such as a ball mill, can be used.

以上、本発明の方法によれば、y−Fe203のa−F
e2Qへの転移温度を大中に高めることができる。
As described above, according to the method of the present invention, a-F of y-Fe203
The transition temperature to e2Q can be greatly increased.

これにより、電子材料等として、y−Fe203を使用
する場合の使用温度域が大中に広がり、そのため、安定
性、信頼性が数段改善されることになり、またその応用
分野も広がるものである。
As a result, the temperature range in which y-Fe203 can be used as an electronic material will be greatly expanded, and its stability and reliability will be improved by several steps, and its application fields will also expand. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の方法により得られた粉体の粉
砕時間とy−Fe203からa−Fe203への転移温
度との関係を示す図、第4図〜第6図は同様の方法で得
られた粉体の熱処理温度とy−Fe2Qからa−Fe2
03への転移温度との関係を示す図である。 第「図 第2図 第3図 第4図 第5図 第6図
Figures 1 to 3 are diagrams showing the relationship between the grinding time of the powder obtained by the method of the present invention and the transition temperature from y-Fe203 to a-Fe203, and Figures 4 to 6 are similar diagrams. The heat treatment temperature of the powder obtained by the method and the change from y-Fe2Q to a-Fe2
FIG. 3 is a diagram showing the relationship with the transition temperature to 03. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 四三酸化鉄(Fe_3O_4)89.95〜25モ
ル%、ガンマ型酸化アルミニウム(γ−Al_2O_3
)を10〜60%、および、ランタン(La)、セリウ
ム(Ce)、プラセオジム(Pr)ならびにネオジム(
Nd)の4種から選ばれた少なくとも一種をそれぞれL
a_2O_3,Ce_2O_3,Pr_2O_3,Nd
_2O_3の形に換算して、この添加総量で0.05〜
15モル%の割合で含有する混合粉を100分間以上粉
砕した後、非酸化性雰囲気で600〜1200℃で熱処
理後、酸化することを特徴とするガンマ型酸化第二鉄の
製造方法。
1 Triiron tetroxide (Fe_3O_4) 89.95-25 mol%, gamma type aluminum oxide (γ-Al_2O_3
), and lanthanum (La), cerium (Ce), praseodymium (Pr) and neodymium (
L) at least one selected from the four types of Nd)
a_2O_3, Ce_2O_3, Pr_2O_3, Nd
In terms of _2O_3 form, this total amount added is 0.05~
A method for producing gamma-type ferric oxide, which comprises pulverizing a mixed powder containing 15 mol% for 100 minutes or more, heat-treating it at 600 to 1200°C in a non-oxidizing atmosphere, and then oxidizing it.
JP56091184A 1981-06-12 1981-06-12 Method for producing gamma type ferric oxide Expired JPS6021925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56091184A JPS6021925B2 (en) 1981-06-12 1981-06-12 Method for producing gamma type ferric oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56091184A JPS6021925B2 (en) 1981-06-12 1981-06-12 Method for producing gamma type ferric oxide

Publications (2)

Publication Number Publication Date
JPS57205325A JPS57205325A (en) 1982-12-16
JPS6021925B2 true JPS6021925B2 (en) 1985-05-30

Family

ID=14019357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56091184A Expired JPS6021925B2 (en) 1981-06-12 1981-06-12 Method for producing gamma type ferric oxide

Country Status (1)

Country Link
JP (1) JPS6021925B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044838C (en) * 1993-06-09 1999-08-25 中国科学技术大学 Making method for rare-earth doped magnetic powder
CN112058295B (en) * 2020-08-14 2022-12-09 浙江工业大学 Diaminopyridine sinter composite praseodymium oxide and ferroferric oxide heterogeneous catalyst, application thereof and in-situ preparation method

Also Published As

Publication number Publication date
JPS57205325A (en) 1982-12-16

Similar Documents

Publication Publication Date Title
Buschow Phase relations and intermetallic compounds in the systems neodymium-aluminium and gadolinium-aluminium
EP0105375B1 (en) Oxide-containing magnetic material capable of being sintered at low temperatures
JPS6021925B2 (en) Method for producing gamma type ferric oxide
GB823971A (en) Improvements in or relating to ferromagnetic ferrite materials
CN108822796A (en) A kind of method and absorbing material preparing absorbing material using nickel slag
JPS5852950B2 (en) Method for manufacturing silicon nitride sintered body
JPS6021924B2 (en) Method for producing gamma type ferric oxide
GB842005A (en) Improvements in or relating to ferromagnetic materials
US4117058A (en) Method of making boron containing strontium ferrite
JPH01122924A (en) Superconductive powder, sintered body and production thereof
CN115424757B (en) Method for solidifying iodine-containing waste with high iodine retention rate
JPS56134522A (en) Preparation of magnetic powder for magnetic recording use
EP0425469B1 (en) Permanent magnet (material) and production process
Ishigaki et al. Rare earth alloy powders and process of producing same
JP2689251B2 (en) Magnetic fluid manufacturing method
DE1085085B (en) Process for increasing the density of ferromagnetic ceramic ferrite bodies
JP2871002B2 (en) Manufacturing method of ferrite fine powder
JPS63278307A (en) Manufacture of magnetic fluid
JPH02289429A (en) Production of iron-based multiple oxide
JPS63164403A (en) Rare earth permanent magnet and manufacture of the same
JPS6097294A (en) Manufacture of oxide group nuclear fuel sintered body
JPH06279106A (en) Production of high density polycrystalline yig ferrite
Ramsey Jr et al. A study of neodymium substituted yttrium iron garnet
Villers et al. Magnetic Oxides Crystallizing in the Rutile Structure
JPS63252929A (en) Coprecipitation ferrite material