JPS60218890A - Manufacture of thin film for magnetoresistance element - Google Patents

Manufacture of thin film for magnetoresistance element

Info

Publication number
JPS60218890A
JPS60218890A JP59075366A JP7536684A JPS60218890A JP S60218890 A JPS60218890 A JP S60218890A JP 59075366 A JP59075366 A JP 59075366A JP 7536684 A JP7536684 A JP 7536684A JP S60218890 A JPS60218890 A JP S60218890A
Authority
JP
Japan
Prior art keywords
film
alloy
thin film
torr
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59075366A
Other languages
Japanese (ja)
Inventor
Kenji Hara
賢治 原
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP59075366A priority Critical patent/JPS60218890A/en
Publication of JPS60218890A publication Critical patent/JPS60218890A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Abstract

PURPOSE:To obtain a thin film having a large DELTAR effect, by evaporating Cu-Al alloy including 0.1-5wt% of at least one or more metals, which are selected from the group of transition metals and Sm, and forming a film on a substrate. CONSTITUTION:Cu-Sm alloy (0.07wt% Sm and Cu for remaining part) as an evaporating material is inputted to glass as a substrate material in an electron beam evaporating device. The inside of a vacuum tank is evacuated down to 5X10<-5>Torr or less. Then methane gas is introduced in the vacuum tank at the partial pressure of 0.8X10<-4>Torr, and the Cu-Sm alloy is evaporated. Thus a film having a thickness of 1,000Angstrom is formed. Within the range of the partial pressure or 1X10<-4>-5X10<-2>Torr, the DELTAR effect of Al-Cu alloy including 0.1- 5wt% of alloy elements is larger than that of Ni-Cu alloy regardless of the kind of gas and also regardless of the kind of alloy elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気抵抗効果が大きい磁気抵抗素子用金属膜
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a metal film for a magnetoresistive element having a large magnetoresistive effect.

〔従来技術とその問題点〕[Prior art and its problems]

近年、NC工作機械等に用いるサーボモータの回転数、
回転角度を正確に測定するのに回転磁気エンコーダが用
いられている。このエンコーダは磁気ドラムと磁気セン
サから構成されており、磁気センサには温度変化に対し
安定な金属性磁気抵抗素子が使用されている。
In recent years, the rotation speed of servo motors used in NC machine tools, etc.
Rotary magnetic encoders are used to accurately measure rotation angles. This encoder is composed of a magnetic drum and a magnetic sensor, and the magnetic sensor uses a metallic magnetoresistive element that is stable against temperature changes.

最近、エンコーダの高分解能化が進むに伴って磁気抵抗
素子材料の高性能化が要求されている。
Recently, as the resolution of encoders has become higher, there has been a demand for higher performance magnetoresistive element materials.

磁気抵抗素子の磁気抵抗効果(ΔR効果)が小さいとS
/N比が小さくなるのでセンサと磁気ドラムの距離をで
きるだけ近づける必要がある。その結果、高度な加工技
術を必要とするため高価格になる。現状の磁気抵抗素子
材料はΔR効果が4〜6%のNi−FeやNi−Coが
スパッタ法により薄膜化して使用されているが、特性と
しては不十分である。
If the magnetoresistive effect (ΔR effect) of the magnetoresistive element is small, S
Since the /N ratio becomes small, it is necessary to make the distance between the sensor and the magnetic drum as close as possible. As a result, it becomes expensive because it requires advanced processing technology. Current magnetoresistive element materials include Ni--Fe and Ni--Co, which have a ΔR effect of 4 to 6%, and are made into thin films by sputtering, but the characteristics are insufficient.

ΔR効果が11%という大きな数値の材料が、例えば「
粉末および粉末冶金、 27.6(1980) P2O
7(茅野、高木)」という文献に紹介されている。この
材料は遷移金属またはSmの炭化物をCuやAIの結晶
粒界に分散させたもので、焼結法でつくられるバルク材
であるが、その薄膜作成法は未だ確立されていない。
For example, a material with a large ΔR effect of 11% is
Powder and Powder Metallurgy, 27.6 (1980) P2O
7 (Chino, Takagi). This material is made by dispersing carbides of transition metals or Sm in the grain boundaries of Cu or AI, and is a bulk material made by a sintering method, but a method for making its thin film has not yet been established.

〔発明の目的〕[Purpose of the invention]

本発明は、この材料を薄膜化し、ΔR効果の大きい薄膜
を得るための製造方法を提供することを目的とするもの
である。
An object of the present invention is to provide a manufacturing method for making this material into a thin film and obtaining a thin film with a large ΔR effect.

〔発明の構成〕[Structure of the invention]

本発明は、Cu又はAIに1遷移金属や5I11の炭化
物を分散させた磁気抵抗効果の大きい材料からなる膜を
製造するもので、以下実施例に基づいて説明する。
The present invention is to manufacture a film made of a material having a large magnetoresistive effect, in which a 1-transition metal or a 5I11 carbide is dispersed in Cu or AI, and will be described below based on Examples.

く第1実施例〉 電子ビーム蒸着装置内に基体物質としてガラスに蒸発物
質としてCu−3m 命命(Sm 0.07重量%、残
部Cu)を入れ、真空槽内を5 X 10−’Torr
以下に排気する。次にこの真空槽内にメタンガスを0.
8×10−’Torr分圧で導入し、Cu−5I11合
金を蒸発させた。
First Example> In an electron beam evaporation apparatus, glass as a base material and Cu-3m as an evaporator (Sm 0.07% by weight, balance Cu) were placed in an electron beam evaporation apparatus, and the vacuum chamber was heated to 5 x 10-'Torr.
Exhaust below. Next, 0.0% methane gas was introduced into this vacuum chamber.
The Cu-5I11 alloy was evaporated by introducing at a partial pressure of 8 x 10-'Torr.

厚さ1000人の皮膜を形成した後、1000eの磁界
中でΔR効果に及ぼす合金組成とガス分圧の影響を調べ
たところ6.0%のΔR値が測定された。またメタンガ
スの分圧をlXl0−’〜7X10−”に変化させてΔ
R値を測定した。次にSmを0.1重量%残部CuのC
u−5m合金についてもメタンガスを0.8×10−’
Torr〜7 X 10−、”Torr分圧で導入して
Cu−3+w合金を蒸発させ、厚さ1000人の皮膜を
形成した後、1000eの磁界中でΔR値を測定した。
After forming a film with a thickness of 1000 mm, the influence of alloy composition and gas partial pressure on the ΔR effect in a magnetic field of 1000 e was investigated, and a ΔR value of 6.0% was measured. Also, by changing the partial pressure of methane gas from lXl0-' to 7X10-'', Δ
The R value was measured. Next, add 0.1% by weight of Sm to C with the balance being Cu.
Also for u-5m alloy, methane gas is 0.8×10-'
The Cu-3+w alloy was introduced at a partial pressure of ~7 x 10 Torr to evaporate it to form a film with a thickness of 1000 mm, and the ΔR value was measured in a magnetic field of 1000 e.

これらの結果を第1表の上部←示す。These results are shown at the top of Table 1.

メタン以外の炭化水素系ガス(プロパン、エタン、ブタ
ン)について、またCu−3m以外の合金(Cu−Fe
+ CLI−Fe2C,’ AI−’Sm、Al−Fe
、八1−Fe5C)についてそれぞれ同様の実験を行な
ったところ、Cu−5e合金と同様の結果が得られた。
Regarding hydrocarbon gases other than methane (propane, ethane, butane), and alloys other than Cu-3m (Cu-Fe
+ CLI-Fe2C, 'AI-'Sm, Al-Fe
, 81-Fe5C), results similar to those of the Cu-5e alloy were obtained.

その外、Cu−Co、 Cu−Mn、 Cu−Ni、 
Al−Co、 Al−Ni+AI=Mnについても上記
と同様の実験を行なった。
In addition, Cu-Co, Cu-Mn, Cu-Ni,
Experiments similar to the above were also conducted for Al-Co and Al-Ni+AI=Mn.

その結果を第1表の下部に示す。The results are shown at the bottom of Table 1.

この第1実施例では、ガスの種類にかかわらず、分圧が
lXl0−’〜5XlO−”Torrの範囲で、合金元
素の種類にかかわらず、01.1〜5重量%の合金元素
を含む^1. Cu合金についてΔR効果がNi−Cu
合金より大きいことがわかった。なお、8ONi−20
C。
In this first example, regardless of the type of gas, the partial pressure is in the range of lXl0-' to 5XlO-'' Torr, and the alloying element is contained in an amount of 01.1 to 5% by weight, regardless of the type of alloying element. 1. Regarding Cu alloy, ΔR effect is different from Ni-Cu
It turned out to be larger than the alloy. In addition, 8ONi-20
C.

合金のΔR値は6.48%である。The ΔR value of the alloy is 6.48%.

第1表 〈第2実施例〉 電子ビーム蒸着装置内に基体物質としてガラス板に蒸発
物質として種々の組成からなるAl−Fe合金を入れ、
真空槽内を5X10−’Torr以下に排気し、次にこ
の真空槽内にプロパンガスを6X10−’〜7XIO−
”Torrの分圧で導入し、基体に負の電圧をかけると
槽内がプラズマ状態になる。この状態で合金を蒸発し、
厚さ1000人の皮膜を形成した。次にこの試料のΔR
効果を第1実施例と同様に調べ、ΔR効果に及ぼす合金
組成とガス分圧の影響を調べた。
Table 1 (Second Example) In an electron beam evaporation apparatus, Al-Fe alloys having various compositions were placed on a glass plate as a base material and as an evaporation material,
The inside of the vacuum chamber is evacuated to 5X10-' Torr or less, and then propane gas is evacuated to 6X10-' to 7XIO-
"Introducing at a partial pressure of Torr and applying a negative voltage to the substrate creates a plasma state in the tank. In this state, the alloy evaporates,
A film with a thickness of 1,000 people was formed. Next, ΔR of this sample
The effect was investigated in the same manner as in the first example, and the influence of alloy composition and gas partial pressure on the ΔR effect was investigated.

またプロパンガス以外の炭化水素系ガス(メタンガス、
エタンガス、ブタンガス)について、また^l−Fe以
外の合金についても同様の実験を行なった。その結果を
第2表に示す。
Hydrocarbon gases other than propane gas (methane gas,
Similar experiments were conducted for ethane gas, butane gas) and for alloys other than ^l-Fe. The results are shown in Table 2.

この実施例では、ガスの種類にかかわらず分圧が5xt
o−’ 〜5XlO−”Torrの範囲で、合金元素の
種類にかかわらず0.1〜5重量%の合金元素を含むA
1. Cu合金について、ΔR効果がNi−Co合金よ
り大きいことがわかった。
In this example, the partial pressure is 5xt regardless of the type of gas.
A containing 0.1 to 5% by weight of alloying elements regardless of the type of alloying elements, in the range of
1. It was found that the ΔR effect was larger for the Cu alloy than for the Ni-Co alloy.

第2表 ※ FoJCについてはPeの含イi’hlく第3実施
例〉 高周波スパッタ装置内にCu−Fe+C合金ターゲット
を配置し、真空槽内を2X 10−’Torr以下に排
気する。次にエタンガスを3 X 10− ”〜4 T
orrの分圧で導入し、RFパワー500Wの条件でス
パッタを行ない、厚さ1000人の皮膜を形成し、ΔR
効果に及ぼす合金組成とガス分圧の影響を調べた。
Table 2 *For FoJC, Pe is not included. Third Example> A Cu-Fe+C alloy target is placed in a high-frequency sputtering device, and the inside of the vacuum chamber is evacuated to 2X 10-'Torr or less. Next, add ethane gas to 3 x 10-” ~ 4 T
sputtering was carried out under the conditions of RF power of 500 W to form a film with a thickness of 1000 mm, and ΔR
The influence of alloy composition and gas partial pressure on the effectiveness was investigated.

エタンガス以外の炭化水素系ガス(メタンガス、プロパ
ンガス、ブタンガス)について、またCu−Fe5C以
外の合金についても同様の実験を行なった。その結果を
第3表に示す。
Similar experiments were conducted on hydrocarbon gases other than ethane gas (methane gas, propane gas, butane gas) and on alloys other than Cu-Fe5C. The results are shown in Table 3.

この実施例では、ガスの種類にかかわらず分圧が5X1
0−3〜3 Torrの範囲で、合金元素の種類にかか
わらず0.1〜5重量%の合金元素を含むAI。
In this example, the partial pressure is 5X1 regardless of the type of gas.
AI containing 0.1 to 5% by weight of alloying elements, regardless of the type of alloying element, in the range of 0-3 to 3 Torr.

Cu合金より大きいことがわかった。It was found that it was larger than the Cu alloy.

第3表 * pe3CについてはFeの含有■ く第4実施例〉 CVD装置における真空槽内に水素ガスを使ってSLl
(AA)gとCu(AA)z ((^A)はアセチルア
セトネートを示す)を0.0008〜0.06の配合比
で導入し、加熱した石英ガラス上に皮膜を析出させた。
Table 3 *For pe3C, the Fe content is
(AA)g and Cu(AA)z ((^A) represents acetylacetonate) were introduced at a blending ratio of 0.0008 to 0.06, and a film was deposited on heated quartz glass.

次にこの皮膜のΔR効果に及ぼ配合比と加熱温度の影響
を調べた。
Next, the effects of blending ratio and heating temperature on the ΔR effect of this film were investigated.

5LIIJ?)Cu以外の錯化合物あるいはアルコキシ
ドとCuまたはAIの錯化合物、またはアルコキシドを
金属元素だけの重量比で0.001〜0.05の割合で
混合し、300〜950℃に加熱した基体上に析出させ
れば、ΔR効果の大きい膜が得られることがわかる。
5LIIJ? ) Complex compounds other than Cu or alkoxides and complex compounds of Cu or AI, or alkoxides are mixed at a weight ratio of 0.001 to 0.05 of only metal elements, and deposited on a substrate heated to 300 to 950°C. It can be seen that if this is done, a film with a large ΔR effect can be obtained.

300℃未満では熱分解が起こらないし、960℃以上
では膜が凝集してしまうためΔR値が測定できなかった
At temperatures below 300°C, thermal decomposition does not occur, and at temperatures above 960°C, the film aggregates, so the ΔR value could not be measured.

第4表 〔発明の効果〕 上述したように本発明によれば、ΔR効果の大きい磁気
抵抗素子用薄膜が得られるため、高性能磁気センサが可
能となるという効果を奏するものである。
Table 4 [Effects of the Invention] As described above, according to the present invention, a thin film for a magnetoresistive element having a large ΔR effect can be obtained, so that a high-performance magnetic sensor can be produced.

Claims (1)

【特許請求の範囲】 1、 1 X 10−’〜5 X 10−”Torrの
圧力に保持したメタン、プロパン、エタンおよびブタン
の群から選ばれたいずれかの単体ガスまたは二つ以上の
混合ガス中にて、遷移金属およびSvaの群から選ばれ
た少なくとも一つ以上の金属を0.1〜5重量%含むC
u+ A1合金を蒸発させることにより基体上に皮膜を
形成することを特徴とする磁気抵抗素子用薄膜の製造方
法。 2、遷移金属またはSLlが炭化物の形である特許請求
の範囲第1項記載の磁気抵抗素子用薄膜の製造方法。 3、 8 X 10−5〜5 X 10−”Torrの
圧力に保持したメタン、プロパン、エタンおよびブタン
の群から選ばれたいずれかの単体ガスまたは二つ以上の
混合ガス中にて、これらのガスの一部をイオン化した状
態で遷移金属およびSmの群から選ばれた少なくとも一
つ以上の金属を0.1〜5重量%含むCu、 A1合金
を蒸発させることにより基体上に皮膜を形成することを
特徴とする磁気抵抗素子用薄膜の製造方法。 4、遷移金属またはSLlが炭化物の形である特許請求
の範囲第3項記載の磁気抵抗素子用Wi膜の製造方法。 5、 5X10−”〜3 TOrrの圧力に保持したメ
タン。 プロパン、エタンおよびブタンの群から選ばれたいずれ
かの単体ガスまたは二つ以上の混合ガス中で、遷移金属
およびSmの群から選ばれた少なくとも一つ以上の金属
を0.1〜5重量%含むCu又はAIもしくはSm−C
o合金をターゲットに用いて、もしくはこの合金組成に
相当する金属単体の複数個をターゲットに用いてスパッ
タ法で基体上に皮膜を形成することを特徴とする磁気抵
抗素子用薄膜の製造方法。 6、遷移金属またはSLlが炭化物の形である特許請求
の範囲第5項記載の磁気抵抗素子用薄膜の製造方法。 7、遷移金属またはS−の錯化合物、アルコキシドのう
ち少なくとも一種以上を含む物質とCuまたはAIの錯
化合物、アルコキシド、アセテートのうちi種または二
種以上含む物質を金属成分に換算した重量比で0.00
1〜0.05の割合で、減圧した水素雰囲気中に導入し
、300℃〜950℃に加熱した基体上に熱分解させる
ことにより皮膜を形成することを特徴とする磁気抵抗素
子用薄膜の製造方法。
[Claims] 1. Any single gas or a mixture of two or more gases selected from the group of methane, propane, ethane and butane maintained at a pressure of 1 x 10-' to 5 x 10-' Torr. C containing 0.1 to 5% by weight of at least one metal selected from the group of transition metals and Sva.
A method for producing a thin film for a magnetoresistive element, comprising forming a film on a substrate by evaporating a u+ A1 alloy. 2. The method for producing a thin film for a magnetoresistive element according to claim 1, wherein the transition metal or SLl is in the form of a carbide. 3. In any single gas or mixture of two or more gases selected from the group of methane, propane, ethane and butane maintained at a pressure of 8 X 10-5 to 5 X 10-'' Torr. A film is formed on the substrate by evaporating Cu, A1 alloy containing 0.1 to 5% by weight of at least one metal selected from the group of transition metals and Sm while a part of the gas is ionized. 4. A method for manufacturing a Wi film for a magnetoresistive element according to claim 3, wherein the transition metal or SLl is in the form of a carbide. 5. 5X10-" Methane held at a pressure of ~3 Torr. 0.1 to 5% by weight of at least one metal selected from the group of transition metals and Sm in any single gas or mixed gas of two or more selected from the group of propane, ethane, and butane. Contains Cu or AI or Sm-C
1. A method for producing a thin film for a magnetoresistive element, comprising forming a film on a substrate by sputtering using an o alloy as a target or using a plurality of metal elements corresponding to the alloy composition as targets. 6. The method for producing a thin film for a magnetoresistive element according to claim 5, wherein the transition metal or SL1 is in the form of a carbide. 7. The weight ratio of a substance containing at least one of transition metals or S- complex compounds and alkoxides to a substance containing i or more of Cu or AI complex compounds, alkoxides, and acetates in terms of metal components. 0.00
Production of a thin film for a magnetoresistive element characterized by forming a film by introducing the film into a reduced pressure hydrogen atmosphere at a ratio of 1 to 0.05 and thermally decomposing it on a substrate heated to 300°C to 950°C. Method.
JP59075366A 1984-04-14 1984-04-14 Manufacture of thin film for magnetoresistance element Pending JPS60218890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075366A JPS60218890A (en) 1984-04-14 1984-04-14 Manufacture of thin film for magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075366A JPS60218890A (en) 1984-04-14 1984-04-14 Manufacture of thin film for magnetoresistance element

Publications (1)

Publication Number Publication Date
JPS60218890A true JPS60218890A (en) 1985-11-01

Family

ID=13574147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075366A Pending JPS60218890A (en) 1984-04-14 1984-04-14 Manufacture of thin film for magnetoresistance element

Country Status (1)

Country Link
JP (1) JPS60218890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017471A3 (en) * 2004-08-06 2007-04-19 Williams Advanced Materials In Copper based alloys and optical media containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017471A3 (en) * 2004-08-06 2007-04-19 Williams Advanced Materials In Copper based alloys and optical media containing same

Similar Documents

Publication Publication Date Title
JP3039381B2 (en) Method of forming composite hard coating with excellent high temperature oxidation resistance
Hotový et al. Deposition and properties of nickel oxide films produced by DC reactive magnetron sputtering
Pyeon et al. Highly sensitive flexible NO 2 sensor composed of vertically aligned 2D SnS 2 operating at room temperature
Hotový et al. Characterization of NiO thin films deposited by reactive sputtering
Kissine et al. A comparative study of SnO2 and SnO2: Cu thin films for gas sensor applications
Schiller et al. Deposition of hard wear-resistant coatings by reactive dc plasmatron sputtering
Van Steenberge et al. Influence of oxygen flow and film thickness on the texture and microstructure of sputtered ceria thin films
US4623408A (en) Nitrogen-containing amorphous alloy
JPH0247253A (en) Method for formation of a black coating and a coating formed thereby
Pachlhofer et al. Industrial-scale sputter deposition of molybdenum oxide thin films: Microstructure evolution and properties
Hapase et al. The oxidation of vacuum deposited films of copper
Vlček et al. Influence of nitrogen–argon gas mixtures on reactive magnetron sputtering of hard Si–C–N films
Chuang et al. Morphology control of conductive TiN films produced by air-based magnetron sputtering
Ulrich et al. Variation of carbon concentration, ion energy, and ion current density of magnetron-sputtered boron carbonitride films
Donovan et al. Ion-beam-assisted deposition of molybdenum nitride films
JP2009114538A (en) Target for ion plating for producing zinc oxide-based thin film
Groudeva‐Zotova et al. Phase composition of Cr–C thin films deposited by a double magnetron sputtering system
JPS60218890A (en) Manufacture of thin film for magnetoresistance element
Lin et al. A study on the NiCrMnZr thin film resistors prepared using the magnetron sputtering technique
Chen et al. Characterization of cosputtered NbTaMoW films
Sindhu et al. Growth mechanism and angle-resolved photoemission spectra of cobalt oxide (CoO) thin films on Ag (1 0 0)
Bulyarskiy et al. Thermodynamic Analysis of Stoichiometric Composition Changes in the Ti x O y Films at RF Magnetron Sputtering and Modeling of Their Conductivity
Chen et al. Ni-Cr-Mn-Y-Nb resistive thin film prepared by co-sputtering
Thomas et al. Microstructure and phase formation of Heusler thin film compounds
Agouram et al. Characterisation of reactive unbalanced magnetron sputtered chromium oxynitride thin films with air