JPS60217897A - Method for separating and purifying lactic acid - Google Patents

Method for separating and purifying lactic acid

Info

Publication number
JPS60217897A
JPS60217897A JP7544584A JP7544584A JPS60217897A JP S60217897 A JPS60217897 A JP S60217897A JP 7544584 A JP7544584 A JP 7544584A JP 7544584 A JP7544584 A JP 7544584A JP S60217897 A JPS60217897 A JP S60217897A
Authority
JP
Japan
Prior art keywords
lactic acid
crystals
solution
magnesium lactate
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7544584A
Other languages
Japanese (ja)
Other versions
JPS6338B2 (en
Inventor
Akiyoshi Komori
古森 尭喜
Yuzuru Nishii
西井 譲
Kensho Maesato
真栄里 健正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP7544584A priority Critical patent/JPS60217897A/en
Publication of JPS60217897A publication Critical patent/JPS60217897A/en
Publication of JPS6338B2 publication Critical patent/JPS6338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To separate lactic acid economically and efficiently from a fermentation liquor, by concentrating a magnesium lactate solution obtained by the fermentation method to deposit magnesium lactate crystals, separating the crystals, dissolving the separated crystals in water, and bringing the resultant solution into contact with an H-type ion exchange resin. CONSTITUTION:Lactic acid is formed by the fermentation method. After completing the fermentation, the lactic acid is neutralized with a magnesium compound to give a magnesium lactate solution, which is then fittered to afford a magnesium lactate solution. The resultant filtered solution is concentrated under heating at >=50 deg.C to deposit magnesium lactate crystals, which are then separated by a separation means, e.g. a centrifuge, filter press, etc. The separated crystals are dissolved in water to give a 5-20% aqueous solution is then passed through an H-type ion exchange resin to afford the aimed purified lactic acid.

Description

【発明の詳細な説明】 本発明は、醗酵法によって得られた乳酸塩を含有する醗
酵終了液から乳酸を分離精製する方法に関するものであ
り、殊に乳酸マグネシウム結晶を析出分離することによ
りH−型イオン交換樹脂を用いて乳酸を分離精製する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and purifying lactic acid from a fermentation-finished liquid containing lactate obtained by a fermentation method, and in particular, by precipitating and separating magnesium lactate crystals, H- The present invention relates to a method for separating and purifying lactic acid using a type ion exchange resin.

乳酸を製造する方法としては、化学合成法及び醗酵法が
工業的に確立されている。
Chemical synthesis methods and fermentation methods have been industrially established as methods for producing lactic acid.

化学合成法によって取得される乳酸は、光学的に不活性
なラセミ体であるから、これを光学的に活性なり型やL
型に分画することは、技術的、経済的に極めて困難であ
る。これに対し、醗酵法によるときは、使用菌種の選択
及び培贅条件の選定によってL型またはL型の乳酸を得
ることができ、その対糖収率は、例えば、ホモ型乳酸菌
では90%以上、リゾープス、オリーゼ(Rhizop
us oryzae)では約70%の高率となる利点が
ある。
Lactic acid obtained by chemical synthesis is an optically inactive racemic form, so it can be converted into an optically active form or L.
Fractionation into types is technically and economically extremely difficult. On the other hand, when using the fermentation method, L-type or L-type lactic acid can be obtained by selecting the bacterial species used and culture conditions, and the yield based on sugar is, for example, 90% for homozygous lactic acid bacteria. Above, Rhizops, Orise
US oryzae) has the advantage of having a high rate of about 70%.

然しなから、醗酵法では、醗酵終了液が残糖や各種無機
塩類のほか、アミノ酸類、蛋白質、色素その他の有機酸
等の不純物を多食するから、該液から純粋な乳酸を分離
精製するには数多くの工程が必要であ−て経済的で外い
However, in the fermentation method, the fermented liquid contains a lot of impurities such as residual sugar and various inorganic salts, as well as amino acids, proteins, pigments, and other organic acids, so pure lactic acid must be separated and purified from the liquid. It requires many steps and is economical.

これまでに知られている乳酸精製方法としては、エーテ
/I/頬による抽出精製法、第6級アミンの乳酸塩を有
機溶媒によって抽出し、精製する方法、エステル化して
蒸留精製する方法、減圧蒸留法、乳酸カルシウム結晶と
して分離、精製する方法等がある。これらの方法は、そ
れぞれに長所を備えるものの、反面、不純物の除去が不
完全である、製品の収率が低い、或いはまた、操作上、
経済的に不利である等の短所を免れ得す、必ずしも満足
できるものではない。
So far known lactic acid purification methods include the ether/I/bucc extraction purification method, the method of extracting and purifying the lactate of a 6th class amine with an organic solvent, the method of esterification and distillation purification, and the method of purifying by distillation under reduced pressure. There are distillation methods, separation and purification methods as calcium lactate crystals, etc. Although these methods each have their own advantages, they also suffer from incomplete removal of impurities, low product yields, or operational problems.
However, it is not necessarily satisfactory as it can avoid disadvantages such as economic disadvantage.

現在、工業的に最も広く行われている乳酸カルシウム析
出による精製方法を例にとって説明すれば次の如くであ
る。即ち、該方法は、乳酸醗酵時に炭酸カルシウムを連
続的乃至半連続的に添加することによって生成乳酸を中
和して乳酸カルシウム含有液とし、該液について菌体分
離、脱蛋白、脱色等を行なった後、これを濃縮冷却して
乳酸カルシウムを析出、分離し、分離された乳酸カルシ
ウムを再溶解し、かつ析出することを繰り返すことによ
って純粋なる乳酸カルシウム結晶を得、これを硫酸と度
広させて乳酸溶液を得るものである。
The following is an explanation of the purification method using calcium lactate precipitation, which is currently the most widely used industrially. That is, in this method, calcium carbonate is continuously or semi-continuously added during lactic acid fermentation to neutralize the produced lactic acid to obtain a calcium lactate-containing liquid, and the liquid is subjected to bacterial cell isolation, deproteinization, decolorization, etc. After that, this is concentrated and cooled to precipitate and separate calcium lactate, and the separated calcium lactate is redissolved and precipitated repeatedly to obtain pure calcium lactate crystals, which are then diluted with sulfuric acid. A lactic acid solution is obtained.

この方法は、析出効率が悪く、さりとて析出効率を上げ
るべく濃縮度合を大きくすれば、上記冷却時の液全体が
固化現象を呈し、また、析出結晶量に対し液の割合が少
な(、結晶も針状化する。
This method has poor precipitation efficiency, and if the degree of concentration is increased in order to increase the precipitation efficiency, the entire liquid during cooling will solidify, and the ratio of liquid to the amount of precipitated crystals is small (crystals are also small). Becomes needle-like.

その結果、乳酸カルシウム結晶中の不義物量が多くなり
、精製効率も向上しない。それ故に再結晶を少くとも数
回は行なうことが必要となる。
As a result, the amount of impurities in the calcium lactate crystals increases, and the purification efficiency does not improve. Therefore, it is necessary to carry out recrystallization at least several times.

また、最近、各種のイオン交換樹脂法が提案されている
。例えば、乳酸カルシウム含有溶液或いは乳酸ナトリウ
ム含有溶液等をH−型強酸性カチオン交換樹脂と、OH
型または乳酸型強塩基性アニオン交換樹脂とによって処
理する方法(特開昭5+12990 )や両性イオン交
換樹脂によって処理する方法(特公昭57−53078
 )等の如きである。これら方法のいずれにも残糖等非
イオン性不純物の分離の不完全さ、或いは不純物による
イオン交換樹脂の劣化の問題がある。
Furthermore, various ion exchange resin methods have recently been proposed. For example, a calcium lactate-containing solution or a sodium lactate-containing solution is mixed with an H-type strongly acidic cation exchange resin and an OH
A method of treatment with a type or lactic acid type strongly basic anion exchange resin (Japanese Patent Publication No. 5+12990) and a method of treatment with an amphoteric ion exchange resin (Japanese Patent Publication No. 57-53078)
) etc. All of these methods have problems such as incomplete separation of nonionic impurities such as residual sugar, or deterioration of the ion exchange resin due to impurities.

かかる現状に鑑み、本発明者等は経済的かつ効率的に乳
酸を醗酵乳酸塩含有溶液から分離精製する方法について
、鋭意、研究を重ねた結果、次に詳記する乳酸の分離精
製方法を確立するに至ったものである。
In view of the current situation, the inventors of the present invention have conducted extensive research into an economical and efficient method for separating and purifying lactic acid from fermented lactate-containing solutions, and have established the method for separating and purifying lactic acid as detailed below. This is what I came to do.

即ち、本発明は醗酵法による乳酸の製造に於て乳酸マグ
ネシウム塩溶液を生成せしめ、該液を50℃以上に加熱
濃縮して乳酸マグネシウム結晶を析出させ、乳酸マグネ
シウムを分離した後、水に溶解してH−型カチオン交換
樹脂と接触させ、乳酸水溶液を得ることからなる乳酸の
分離精製方法に関する。
That is, the present invention produces a magnesium lactate salt solution in the production of lactic acid by a fermentation method, heats and concentrates the solution to 50°C or higher to precipitate magnesium lactate crystals, separates the magnesium lactate, and then dissolves it in water. The present invention relates to a method for separating and purifying lactic acid, which comprises contacting with an H-type cation exchange resin to obtain an aqueous lactic acid solution.

醗酵法による乳酸の製造は、乳酸菌、叡類、或いは好熱
性の有胞子細菌等を使用し、これらを培養液、即ち、炭
素源としてグルコース、糖室、澱粉等を、窒素源として
尿素、硫安、酵母エキス、ペプトン等を、その他必要に
応じ無機栄養源として、K 、 MjF s Zn、、
 So、 、 PO,等の各種塩類を含んだ培養液の中
で培養し、乳酸を醗酵せしめることにより行われる。
The production of lactic acid by the fermentation method uses lactic acid bacteria, bacteria, thermophilic spore-forming bacteria, etc., and uses a culture medium containing glucose, sugar, starch, etc. as a carbon source, and urea, ammonium sulfate, etc. as a nitrogen source. , yeast extract, peptone, etc., and other inorganic nutritional sources as necessary, K , MjF s Zn, .
It is carried out by culturing in a culture medium containing various salts such as So, PO, etc., and fermenting lactic acid.

かようにして得られた醗酵終了液に於て、中和物質とし
てマグネシウム化合物を使用するときは、醗酵終了後の
溶液は乳酸マグネシウム塩溶液となるから、そのまま次
工程に委ねればよい。他方、マグネシウム化合物以外の
中和物質を使用するときは、醗酵終了後の乳酸塩溶液に
マグネシウム化合物を添加して、乳酸マグネシウム塩溶
液とする。かかる場合に於けるマグネシウム化合物とし
ては、前記マグネシウム化合物のほか、塩化マグネシウ
ム、硫酸マグネシウム等の水可溶性マグネシウム塩を使
用することができる。マグネシウム化合物の添加量は、
wOとして乳酸とほぼ当量程度である。
When a magnesium compound is used as a neutralizing substance in the fermentation-finished liquid thus obtained, the solution after completion of fermentation becomes a magnesium lactate salt solution, and can be left as is to the next step. On the other hand, when using a neutralizing substance other than a magnesium compound, the magnesium compound is added to the lactate solution after fermentation to obtain a magnesium lactate solution. As the magnesium compound in such a case, in addition to the above-mentioned magnesium compounds, water-soluble magnesium salts such as magnesium chloride and magnesium sulfate can be used. The amount of magnesium compound added is
It is approximately equivalent to lactic acid in terms of wO.

さて、前記の如くして得られた乳酸マグネシウム塩溶液
は、次いで加熱濃縮される。加熱温度は、50℃以上、
好ましくは70℃以上がよい。50℃を下廻ると乳酸マ
グネシウム結晶は針状となり、不純物の除去性が悪くな
る。濃縮液PHとしては4〜9、好ましくは5〜6が良
い。
Now, the magnesium lactate salt solution obtained as described above is then heated and concentrated. The heating temperature is 50℃ or higher,
Preferably the temperature is 70°C or higher. When the temperature is lower than 50°C, the magnesium lactate crystals become needle-shaped, and the ability to remove impurities becomes poor. The pH of the concentrate is preferably 4 to 9, preferably 5 to 6.

かかる条件で加熱濃縮することによって得られた結晶を
遠心分離、フィルタープレス等任意の分離手段によって
液と分離し、乳酸マグネシウム結晶を取得する。この結
晶は必要に応じて溶解し、再度、加熱濃縮することによ
って、即ち、通常の再結晶法を繰り返すことによって、
さらに結晶の純度を上げることができる。また、醗酵終
了液は、常法の如く、菌体分離乃至除蛋白工程を晶析に
先立って行なうことができること、活性炭による脱色工
程を適当な工程に繰み入れることができることは当然で
ある。
The crystals obtained by heating and concentrating under these conditions are separated from the liquid by any separation means such as centrifugation or filter press to obtain magnesium lactate crystals. The crystals are dissolved as necessary and heated and concentrated again, that is, by repeating the usual recrystallization method.
Furthermore, the purity of the crystal can be increased. Furthermore, it is a matter of course that the fermentation-finished liquid can be subjected to bacterial cell isolation and protein removal steps prior to crystallization as in conventional methods, and that a decolorization step using activated carbon can be incorporated into an appropriate step.

かよう番・こして高純度とした乳酸マグネシウム結晶は
、再溶解後、H−型カチオン交換樹脂と接触させ、高純
度乳酸溶液として回収する。即ち、本発明によるときは
、極めて経済的に効率よく高純度の乳酸を得ることがで
きるのである。
After being redissolved, the magnesium lactate crystals made highly pure by straining and straining are brought into contact with an H-type cation exchange resin and recovered as a high purity lactic acid solution. That is, according to the present invention, highly purified lactic acid can be obtained extremely economically and efficiently.

今、本発明についての理解を容易にするため従来から行
われている乳酸カルシウム精製方法と本発明とを具体的
に比較すれば次の通りである。
Now, in order to facilitate understanding of the present invention, the present invention will be specifically compared with a conventional calcium lactate purification method as follows.

乳酸醗酵によって得られた醗酵終了液は、通常、乳酸菌
による場合は乳酸として10〜12%→、リゾープス・
オリーゼ(RhizOpus oryzae )6〜1
0 による場合は同じく和な呻孝% ゛ を含む。該液はこの後、脱蛋白、脱色各工程を経て晶析
工程に移行される。即ち、##終了液は前記濃度で冷却
することによって結晶が析出され、残液はこれを濃縮後
、さらに冷却して晶析する。晶析度を上げるべく醗酵終
了液を加熱濃縮すれば、乳酸カルクウムの高温での溶解
度が著しく高いために、濃縮時には結晶は析出せず、冷
却後は、液全体が固化してしまう。
The fermented liquid obtained by lactic acid fermentation usually contains 10-12% of lactic acid when using lactic acid bacteria, and Rhizopus.
RhizOpus oryzae 6-1
If it is based on 0, it also includes a Japanese koan %. The liquid is then subjected to deproteinization and decolorization steps, and then transferred to a crystallization step. That is, the ## completed liquid is cooled to the above concentration to precipitate crystals, and the remaining liquid is concentrated and further cooled to crystallize. If the fermented liquid is heated and concentrated to increase the degree of crystallization, since the solubility of calcium lactate is extremely high at high temperatures, no crystals will precipitate during concentration, and the entire liquid will solidify after cooling.

従って、乳酸カルシウム晶析では、通常の室温乃至これ
を若干下廻る温度であって、かつ、それ程高濃度でない
条件にて晶析しなければ、液との分離は困難である。
Therefore, in crystallizing calcium lactate, it is difficult to separate it from the liquid unless the crystallization is performed at normal room temperature or at a temperature slightly lower than normal room temperature, and at a not very high concentration.

かようにして得られる結晶は、針状結晶の集合体となり
、不純物を多く包含する。
The crystals thus obtained are aggregates of needle-like crystals and contain many impurities.

また、高温から冷却して晶析ざ盲と場合に於ても、殆ん
ど結晶性を改善することはできない。
Furthermore, even when cooling from a high temperature results in no crystallization, the crystallinity can hardly be improved.

このため、許過分離した結晶は、含水率が高く、かつ、
不純物含量が多く、例えば、ヌッチェによって減圧許過
した結晶の含水率は50〜90%にも及ぶ。
For this reason, the crystals that have been allowed to separate have a high water content and
The content of impurities is high, for example, the water content of crystals allowed to be reduced under reduced pressure by Nutsche ranges from 50 to 90%.

これに対して、乳酸マグネシウムは高温での溶解度が約
30%であり、加熱濃縮するのみで冷却せずとも、即ち
、加熱濃縮工程で51〜sonμにも及ぶ良質粗大な結
晶が析出し始める。従って、乳酸マグネシウム溶液にあ
っては、濃縮後そのまま析出した結晶を分離することも
できる。また、加熱濃縮後、冷却した場合に於ても、過
飽和状態であるにも拘らず、乳酸カルシウムの如く液全
体が固化するようなことはない。故に、結晶析出と不純
物の除去は、極めて効率よく行なうことが可能で、その
結晶は良質粗大であるから減圧濾過によっても5〜15
%の含水率となる。
On the other hand, magnesium lactate has a solubility of about 30% at high temperatures, and even if it is heated and concentrated without cooling, high-quality coarse crystals with a diameter of 51 to sonμ begin to precipitate during the heating and concentration step. Therefore, in the case of a magnesium lactate solution, it is also possible to separate the precipitated crystals directly after concentration. Furthermore, even when the solution is cooled after being heated and concentrated, the entire solution does not solidify unlike calcium lactate, even though it is in a supersaturated state. Therefore, crystal precipitation and impurity removal can be carried out extremely efficiently, and since the crystals are of good quality and coarse, even by vacuum filtration, 5 to 15
% moisture content.

このように、本発明方法にあっては、p過分離が極めて
容易であり、従って、不純物含量も極少となる。
As described above, in the method of the present invention, p-separation is extremely easy, and therefore, the impurity content is also extremely small.

さて、乳酸マグネシウム結晶分離後のF液及び洗液は、
更に加熱濃縮して、結晶を析出させ再結晶後に生成する
p液は、廃棄等任意に処分する。一方、分離した乳酸マ
グネシウム結晶は、最初に析出した結晶と合一してもよ
いし、最初の濃縮液に溶解してもよい。最初の乳酸マグ
ネシウム溶液の濃縮率及びその後の乳酸マグネシウム溶
液の濃縮率は、乳酸マグネシウム溶液に共存する塩の種
類、乳酸の種類等により異なるが、最も好ましい濃縮率
は、結晶対液が1=2〜2:1(重量比)であり、かが
る範囲に於て、結晶性状、p過操作が最良となる。尚、
乳酸マグネシウム溶液中に副生塩類が共存する場合、即
ち、Na0J、 NH,Ct1caaムが共存している
場合、これら塩類の結晶が析出し始めるまで濃縮しても
p過分離性は書されない。
Now, the F solution and washing solution after magnesium lactate crystal separation are as follows:
Further heating and concentration are performed to precipitate crystals, and the p-liquid produced after recrystallization is disposed of as desired, such as by disposal. On the other hand, the separated magnesium lactate crystals may be combined with the first precipitated crystals, or may be dissolved in the first concentrated solution. The initial concentration ratio of the magnesium lactate solution and the subsequent concentration ratio of the magnesium lactate solution vary depending on the type of salt coexisting in the magnesium lactate solution, the type of lactic acid, etc., but the most preferable concentration ratio is that crystals to liquid are 1 = 2. ~2:1 (weight ratio), and within this range, crystallinity and p-overoperation are best. still,
When by-product salts coexist in the magnesium lactate solution, that is, when Na0J, NH, and Ct1caam coexist, even if the solution is concentrated until the crystals of these salts begin to precipitate, no p overseparability is recorded.

結晶析出した乳酸マグネシウムは、これを約5〜20%
水溶液にして、H−型イオン交換樹脂に通液し、精製乳
酸を得る。他方、樹脂に吸着したマグネシウムイオンは
、塩酸、硫酸等により樹脂を再生することによって回収
しマグネシウム化合物として再利用する。
The crystallized magnesium lactate is about 5-20%
The solution is made into an aqueous solution and passed through an H-type ion exchange resin to obtain purified lactic acid. On the other hand, magnesium ions adsorbed on the resin are recovered by regenerating the resin with hydrochloric acid, sulfuric acid, etc., and reused as a magnesium compound.

以上、詳記したように本発明方法によれば、最初の加熱
濃縮操作で、70〜90%乳酸を回収することができる
As described in detail above, according to the method of the present invention, 70 to 90% of lactic acid can be recovered by the initial heating concentration operation.

以下に本発明の実施例を掲げて更に説明する。The present invention will be further explained below with reference to Examples.

実施例1゜ 常法に従ったリゾーゲス・オリーゼ(Rhizopus
Oryzae )による醗酵に於て、酸化マグネシウム
を連続的に添加し、得られた菌体分離後の醗酵終了液(
乳酸として83り/d ) 5 Jを+02容器に移し
、ウォーターバス中で攪拌しながら80〜90℃で加熱
濃縮した。結晶が析出し、全容積が約11になったとぎ
、加熱を中止し、放冷後ヌラリーをヌノチェで濾過した
。結晶は蒸留水100−で洗浄した。
Example 1゜Rhizopus oryzae (Rhizopus) according to conventional methods
During the fermentation with Oryzae), magnesium oxide was continuously added, and the resulting fermentation-finished liquid after bacterial cell isolation (
83 l/d) 5 J as lactic acid was transferred to a +02 container and heated and concentrated at 80 to 90°C while stirring in a water bath. When crystals precipitated and the total volume became about 11, heating was stopped, and after cooling, the nullary was filtered through Nunoche. The crystals were washed with 100% distilled water.

結晶の収量は554 f、水分72%、結晶平均粒径6
0〜200μ、収率87%であり、105℃、2時間乾
燥後の結晶分析結果は、My+0.2%、乳酸725%
であった。この結晶200yを蒸留水11に加熱溶解さ
せ、H−型イオン交換樹脂カラム(アンパライト+RI
20B +000d)に通液し、500−の蒸留水−で
抽出した。通液151を加熱濃縮して、乳酸濃度503
%の L−乳酸水溶液285yを得た。
Crystal yield: 554 f, moisture: 72%, average crystal grain size: 6
0 to 200μ, yield 87%, crystal analysis results after drying at 105°C for 2 hours: My+0.2%, lactic acid 725%
Met. This crystal 200y was heated and dissolved in distilled water 11, and the H-type ion exchange resin column (amparite + RI
20B +000d) and extracted with 500-distilled water. Heat and concentrate the passed liquid 151 to a lactic acid concentration of 503
% L-lactic acid aqueous solution 285y was obtained.

実施例2゜ 常法に従った乳酸菌(Lact−DeJbruckii
 )による醗酵に於て、培養液PHが55〜60になる
ように自動的に水酸化すl−Uラム水溶液を添加し、得
られた菌体分離後の醗酵終了液(乳酸として108〜/
1 )に水酸化マグネシウムを加え7ルカリ性とし、5
0分煮沸後、活性炭処理して濾過し、得られた乳酸す)
 IJウム溶液(乳酸として++2 q/l )5 l
にM5’Q4 ・6 Hz 0665yを溶解し、90
〜95°Cで加熱濃縮して結晶を析出させた後、放冷し
、ヌッチェで濾過し+ 00 meの蒸留水で洗浄した
。得られた結晶は860yて、含水率125%、粒径2
o〜120μの棒状結晶であり、105℃、2時間乾燥
後の結晶分析結果は、My8.9%、乳酸64.4%で
あった。
Example 2 lactic acid bacteria (Lact-DeJbruckii)
), a hydroxylated 1-U rum aqueous solution was automatically added so that the pH of the culture solution was 55 to 60, and the resulting fermentation-finished liquid after bacterial cell separation (108 to 60% as lactic acid)
Add magnesium hydroxide to 1) to make it 7 alkaline, and make 5
After boiling for 0 minutes, the lactic acid obtained was treated with activated carbon and filtered.
IJum solution (++2 q/l as lactic acid) 5 l
Dissolve M5'Q4 ・6 Hz 0665y in 90
After heating and concentrating at ~95°C to precipitate crystals, the crystals were allowed to cool, filtered through a Nutsche filter, and washed with +00 me distilled water. The obtained crystals were 860y, water content 125%, and particle size 2.
It was a rod-shaped crystal with a diameter of 0 to 120 μm, and the crystal analysis results after drying at 105° C. for 2 hours were 8.9% My and 64.4% lactic acid.

実施例6゜ 常法に従っ□たりシーゲス・オリーゼ(Rhizopu
sOryzae )による醗酵に於て、炭酸カルシウム
をして、92〜/d含有)を除蛋白、脱色せずに、該溶
液5/!にMyal+・6HzO535fを溶解し、9
2〜95℃で実施例2と同様に結晶を析出させた後、直
ちにp過、水洗して、粒径100〜SOOμの棒状結晶
545yを得た。
Example 6゜According to a conventional method, Siges oryzae (Rhizopu)
In the fermentation with sOryzae), calcium carbonate was added to remove the protein (containing 92~/d) without decolorizing the solution 5/! Dissolve Myal+・6HzO535f in 9
After crystals were precipitated at 2 to 95°C in the same manner as in Example 2, they were immediately filtered through p filter and washed with water to obtain rod-shaped crystals 545y with a particle size of 100 to SOOμ.

105℃、2時間乾燥後の結晶分析結果はMy9.72
%、乳酸657%であった。 この乾燥結晶500yを
蒸留水 21に加熱溶解させた後、活性炭o、syを加
えて60分間攪押抜濾過し、90℃以上に加熱濃縮して
、再結晶させた。放冷後ヌソチェで乳酸マグネシウム結
晶を濾過分11ffiL水洗し、粒径5o〜200μの
棒状結晶を得た。
Crystal analysis result after drying at 105℃ for 2 hours is My9.72
%, lactic acid 657%. After heating and dissolving 500 y of this dry crystal in distilled water 21, activated carbon o and sy were added, stirring and extrusion filtration were carried out for 60 minutes, and the mixture was heated and concentrated to 90° C. or higher for recrystallization. After cooling, the magnesium lactate crystals were washed with 11 ffiL of water using a Nusoche to obtain rod-shaped crystals with a particle size of 5o to 200μ.

得られた結晶は420p、乾燥後の分析結果はMy+o
、s%、乳e y 25%であった。尚最初の結晶と本
結晶はX線的に全く同一であった。本結晶2001を蒸
留水11に加熱溶解させ、実施例1で用いた樹脂カラム
に通液し、500−の蒸留水で抽出した。抽出液を減圧
濃縮して、乳酸濃度87%のL−乳酸水溶液+so p
を得た。
The obtained crystal was 420p, and the analysis result after drying was My+o.
, s%, milk e y 25%. The first crystal and this crystal were completely identical in terms of X-rays. This crystal 2001 was heated and dissolved in distilled water 11, passed through the resin column used in Example 1, and extracted with 500-g distilled water. The extract was concentrated under reduced pressure to obtain an aqueous L-lactic acid solution with a lactic acid concentration of 87% + so p
I got it.

この乳酸水溶液は局方規格に合格するものであった。This lactic acid aqueous solution passed the pharmacopeia standards.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は乳酸マグネシウム結晶の顕微鏡写罠第2図は乳
酸カルシウム結晶の顕微鏡写真をそれぞれ示す。 出願人 : 多木化学株式会社
FIG. 1 shows a microscopic photograph of magnesium lactate crystals. FIG. 2 shows a microscopic photograph of calcium lactate crystals. Applicant: Taki Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 醗酵法による乳酸の製造において、乳酸マグネシウム塩
溶液を生成せしめ、これを50℃以上で加熱濃縮して乳
酸マグネシウム結晶を析出させ、これを分離後、水に溶
解してH−型イオン交換樹脂と接触させ、乳酸水溶液を
得ることからなる乳酸の分離精製方法。
In the production of lactic acid by the fermentation method, a magnesium lactate salt solution is generated, and this is heated and concentrated at 50°C or higher to precipitate magnesium lactate crystals. After separation, this is dissolved in water to form an H-type ion exchange resin. A method for separating and purifying lactic acid, which comprises contacting and obtaining an aqueous lactic acid solution.
JP7544584A 1984-04-13 1984-04-13 Method for separating and purifying lactic acid Granted JPS60217897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7544584A JPS60217897A (en) 1984-04-13 1984-04-13 Method for separating and purifying lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7544584A JPS60217897A (en) 1984-04-13 1984-04-13 Method for separating and purifying lactic acid

Publications (2)

Publication Number Publication Date
JPS60217897A true JPS60217897A (en) 1985-10-31
JPS6338B2 JPS6338B2 (en) 1988-01-05

Family

ID=13576456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7544584A Granted JPS60217897A (en) 1984-04-13 1984-04-13 Method for separating and purifying lactic acid

Country Status (1)

Country Link
JP (1) JPS60217897A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191788A (en) * 1987-09-30 1989-04-11 Shimadzu Corp Method for purifying lactic acid
WO2012081533A1 (en) 2010-12-13 2012-06-21 東レ株式会社 Method for producing lactate
JP2014530636A (en) * 2011-10-25 2014-11-20 ピュラック バイオケム ビー. ブイ. Method for converting lignocellulosic material to organic acid
JP2015523968A (en) * 2012-05-24 2015-08-20 ピュラック バイオケム ビー. ブイ. Recovery of carboxylic acid from magnesium carboxylate mixture
JP2019513379A (en) * 2016-04-12 2019-05-30 ピュラック バイオケム ビー. ブイ. Magnesium lactate fermentation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231498A (en) * 1988-07-21 1990-02-01 Nippon Sanmou Senshoku Kk Static electricity removal mat
US7705180B2 (en) 2004-06-17 2010-04-27 Purac Biochem B.V. Process for the preparation of lactic acid or lactate from a magnesium lactate comprising medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191788A (en) * 1987-09-30 1989-04-11 Shimadzu Corp Method for purifying lactic acid
WO2012081533A1 (en) 2010-12-13 2012-06-21 東レ株式会社 Method for producing lactate
JP2014530636A (en) * 2011-10-25 2014-11-20 ピュラック バイオケム ビー. ブイ. Method for converting lignocellulosic material to organic acid
JP2015523968A (en) * 2012-05-24 2015-08-20 ピュラック バイオケム ビー. ブイ. Recovery of carboxylic acid from magnesium carboxylate mixture
US9422217B2 (en) 2012-05-24 2016-08-23 Purac Biochem Bv Carboxylic acid recovery from magnesium carboxylate mixture
JP2017071621A (en) * 2012-05-24 2017-04-13 ピュラック バイオケム ビー. ブイ. Carboxylic acid recovery from magnesium carboxylate mixture
US10040746B2 (en) 2012-05-24 2018-08-07 Purac Biochem B.V. Carboxylic acid recovery from magnesium carboxylate mixture
JP2019513379A (en) * 2016-04-12 2019-05-30 ピュラック バイオケム ビー. ブイ. Magnesium lactate fermentation method

Also Published As

Publication number Publication date
JPS6338B2 (en) 1988-01-05

Similar Documents

Publication Publication Date Title
AU2011214268B2 (en) Process for manufacturing succinic acid
EP0007116B1 (en) Method for resolving racemic 6-methoxy-alpha-methyl-2-naphthalene acetic acid into its enantiomers and resolving medium
US5352825A (en) Recovery of organic acid salts from impure process streams by addition of bases
HU202282B (en) Process for separating 2-keto-l-gulonic acid from fermentation juice
JPS60217897A (en) Method for separating and purifying lactic acid
JP2008043327A (en) Method for producing succinic acid
JP4361641B2 (en) Separation and recovery method of optically active amino acid and optically active amino acid amide
JP2668956B2 (en) Method for purifying L-glutamine
JP2646343B2 (en) Method for producing L-aspartic acid from ammonium aspartate
KR940000810B1 (en) Process for the preparation of crystallized glutamic acid
JPH0739385A (en) Production of l-3,4-dihydroxyphenylalanine
JPS60169451A (en) Separation and purification of l-phenylalanine
CA1274250A (en) Purification and recovery of phenylalanine with calcium salts
JPS59118735A (en) Manufacture of pure aqueous solution of l-malic acid
CN113402572A (en) Process for refining glucosamine composite salt prepared by microbial fermentation method
JPH0272887A (en) Separation and purification of citric acid
US1634221A (en) Manufacture of betaine hydrochloride, etc.
JPH034532B2 (en)
JPS5886090A (en) Separation of dicarboxylic acid
JP2951785B2 (en) Crystallization method of L-phenylalanine
US6316615B1 (en) Process for the recovery of potassium bitartrate and other products from tamarind pulp
JP2502990B2 (en) <1> -Process for producing malic acid
US2796434A (en) Recovery of glutamic acid values
JPS5857420B2 (en) DL- Phenylglycinno Kogakubunkatsuhouhou
JPWO2023276980A5 (en)