JPS6021772B2 - Method for producing nickel metal catalyst - Google Patents

Method for producing nickel metal catalyst

Info

Publication number
JPS6021772B2
JPS6021772B2 JP10691179A JP10691179A JPS6021772B2 JP S6021772 B2 JPS6021772 B2 JP S6021772B2 JP 10691179 A JP10691179 A JP 10691179A JP 10691179 A JP10691179 A JP 10691179A JP S6021772 B2 JPS6021772 B2 JP S6021772B2
Authority
JP
Japan
Prior art keywords
nickel
catalyst
metal catalyst
nickel metal
rolled plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10691179A
Other languages
Japanese (ja)
Other versions
JPS5631441A (en
Inventor
学 栗田
研二 豊田
誠二 佐藤
隆志 大浪
幸也 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10691179A priority Critical patent/JPS6021772B2/en
Publication of JPS5631441A publication Critical patent/JPS5631441A/en
Publication of JPS6021772B2 publication Critical patent/JPS6021772B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は比較的高純度のニッケル圧延板から高活性触媒
表面を有することに加えて伝熱特性がよく圧力損失が少
く、然かも取り扱い容易なニッケル金属触媒を得る製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a process for producing a nickel metal catalyst from a relatively high-purity rolled nickel plate that has a highly active catalytic surface, good heat transfer properties and low pressure loss, and is easy to handle. Regarding the method.

ここに、比較的高純度のニッケル圧延板とは、純度約9
5%以上の一般に市販されているニッケル板をいい、製
造時に除去できない徴量の不純物元素を含んでいる。
Here, relatively high-purity nickel rolled plate has a purity of about 9
It refers to a commercially available nickel plate with a content of 5% or more, and contains a certain amount of impurity elements that cannot be removed during manufacturing.

炭化水素の水蒸気改質等に用いられているニッケル系触
媒として、現在実用化されているものには次の二種類が
ある。
There are two types of nickel-based catalysts that are currently in practical use, such as those used in steam reforming of hydrocarbons:

その一つはニッケル系担持触媒である。この触媒は高活
性であるが、その担体がアルミナ・シリカ等であるため
伝熱特性が悪く、またその形態が粒状形をなしているた
め圧力損失が大きく然も充填又は取出し等での取り扱い
に不便であり、加うるに触媒ダストの飛散が問題になる
プロセスへの使用には不適である。この触媒は大きな吸
熱、増庄反応である水蒸気故質反応等での触媒としては
不向きである。もう一つはラネーニツケル系金属触媒で
、触媒活性が高く、その伝熱特性は良いのであるが、そ
の形態が製法上限られた形態しか取り得ず、従ってこの
触媒も水黍気改質反応等での触媒として要求される条件
を充分に備えていない。本発明の目的は任意の形状に加
工済みの比較的高純度のニッケル圧延板を高温酸化雰囲
気中で酸化しそれを高温還元ガス流中で還元することに
より、現在実用化されているこの主触媒の有する、欠点
の解決を図ったニッケル金属触媒の製造方法を提供する
にある。
One of them is a nickel-based supported catalyst. Although this catalyst has high activity, its carrier is made of alumina, silica, etc., so its heat transfer properties are poor, and its granular shape causes a large pressure loss, making it difficult to handle during filling or unloading. This is inconvenient and, in addition, is unsuitable for use in processes where scattering of catalyst dust is a problem. This catalyst is not suitable as a catalyst for a steam waste reaction, which is a large endothermic and bulk-enhancing reaction. The other is the Raney nickel metal catalyst, which has high catalytic activity and good heat transfer properties, but it can only take forms that are limited by manufacturing methods, and therefore this catalyst is also used in water mill reforming reactions, etc. It does not fully meet the conditions required as a catalyst. The purpose of the present invention is to oxidize a relatively high-purity rolled nickel plate that has been processed into an arbitrary shape in a high-temperature oxidizing atmosphere and reduce it in a high-temperature reducing gas stream. The object of the present invention is to provide a method for producing a nickel metal catalyst that solves the drawbacks of the nickel metal catalyst.

本発明の製造方法は前以つて任意の形状に加工*された
第1表に示す如き比較的高純度のニッケル圧延板を用意
し、又は徴量成分を含むニッケル圧延板を任意の形状に
成型加工し、その後アセトン、ギ酸/過酸化水素水溶液
で加工済みのニッケル圧延板表面を洗浄した後、120
0『0以上の酸素を含む酸化雰囲気中でニッケル圧延板
を数時間以上の間酸化処理し、次いで高温の還元ガス気
流中で比較的短時間の間還元処理してニッケル金属触媒
を得る方法である。
The manufacturing method of the present invention involves preparing a relatively high-purity nickel rolled plate as shown in Table 1 that has been previously processed* into an arbitrary shape, or forming a nickel rolled plate containing characteristic components into an arbitrary shape. After processing and cleaning the surface of the processed nickel rolled plate with acetone and formic acid/hydrogen peroxide aqueous solution,
A method of obtaining a nickel metal catalyst by oxidizing a rolled nickel plate for several hours or more in an oxidizing atmosphere containing 0 or more oxygen, and then reducing it in a high-temperature reducing gas stream for a relatively short period of time. be.

第1表 本発明の製造方法で製造されたニッケル金属触媒は高活
性触媒表面を有するばかりでなく、主成分をニッケルと
していることからその伝熱特性に優れ、又その形態も酸
化還元処理に先立って予め任意の形状に加工しうるもの
であるからその形状に制限なく任意の形状の触媒を製造
しうる。
Table 1 The nickel metal catalyst produced by the production method of the present invention not only has a highly active catalytic surface, but also has excellent heat transfer properties because the main component is nickel, and its morphology is also excellent prior to redox treatment. Since the catalyst can be processed into any desired shape in advance, catalysts having any desired shape can be manufactured without any restrictions on the shape.

実施例 ‘11第1表のサンプルDに示される板圧2柳
のニッケル圧延板を空気中で酸化温度及び酸化時間を変
えて酸化し、水素気流中で還元する,ことにより、ニッ
ケル金属触媒を得た。
Example '11 A nickel rolled plate with a plate thickness of 2 Yanagi shown in Sample D in Table 1 was oxidized in air by changing the oxidation temperature and oxidation time, and then reduced in a hydrogen stream to produce a nickel metal catalyst. Obtained.

第2表 第2表に示す如く、還元ニッケル層は、従釆知られてい
る高触媒活性を呈する繊密な結晶粒の集合体を形成して
いる。
As shown in Table 2, the reduced nickel layer forms an aggregate of dense crystal grains exhibiting a known high catalytic activity.

このような高活性触媒表面(還元ニッケル層)を有する
ニッケル金属触媒の触媒としての優秀性は実施例■の記
載とその比較とから明らかである。実施例■ 幅8肋、長さ10Q舷、厚さ2肌の寸法の、サンプルD
のニッケル圧延板を螺旋状に加工し、この加工品をアセ
トンで脱脂し、ギ酸/過酸化水素水溶液で洗浄した後、
1200qCの空気中で酸化し、860℃の水蒸気流中
で1時間還元して本発明方法によるニッケル金属触媒を
得た。
The superiority of the nickel metal catalyst having such a highly active catalyst surface (reduced nickel layer) as a catalyst is clear from the description of Example (2) and the comparison thereof. Example ■ Sample D with dimensions of 8 ribs in width, 10Q in length, and 2 skins in thickness.
After processing a rolled nickel plate into a spiral shape, degreasing the processed product with acetone and washing it with a formic acid/hydrogen peroxide aqueous solution,
A nickel metal catalyst according to the method of the present invention was obtained by oxidizing in air at 1200 qC and reducing in a steam stream at 860°C for 1 hour.

この触媒を用いて第3表の最左欄から教えて4つの欄に
示す如き反応条件でメタンの水蒸気改質を行ったところ
、第3表の最右欄に示す如きメタンの転化率(%)が得
られた。
When steam reforming of methane was carried out using this catalyst under the reaction conditions shown in the four columns starting from the leftmost column of Table 3, the conversion rate of methane (%) was as shown in the rightmost column of Table 3. )was gotten.

上記実施例■における加工品に対し、高温酸化処理を行
うことないこ、洗浄後直ちに実施例{21におけると同
じ還元条件により高温還元処理して得た参考品を触媒と
し、次の反応条件則ち空筒速度=1060(1/時間)
、(水蒸気ノメタン)比率=3、反応温度=86ぴ0、
反応圧力=ok9/鮒Gでメタンの水蒸気改質を行った
ところ転化率は数%にも至らなかった。
The processed product in Example ① above was not subjected to high-temperature oxidation treatment. Immediately after washing, a reference product obtained by performing high-temperature reduction treatment under the same reduction conditions as in Example {21] was used as a catalyst, and the following reaction conditions were applied. Empty cylinder speed = 1060 (1/hour)
, (steam nomethane) ratio = 3, reaction temperature = 86 pi 0,
When steam reforming of methane was carried out at a reaction pressure of OK9/Funa G, the conversion rate did not even reach several percent.

第3表 本発明の効果は第1図及び第2図により、更に明確とな
る。
Table 3 The effects of the present invention will become clearer from FIGS. 1 and 2.

すなわち、第1図はニッケル圧延板の酸化処理時間をパ
ラメータとして改質反応時間とC比転化率との関係を示
すグラフであり、上述の如く高温酸化処理を行ったニッ
ケル金属触媒は酸化処理時間(第2表参照)にあまり関
係なく、酸化処理を行った触媒は全て非常に高い活性を
示す。これに対して、高温酸化処理を行わないで単に還
元処理のみ行ったニッケル金属触媒(図中eを示す)は
活性が非常に低い。また、第2図はニッケル圧延板の酸
化処理温度をパラメータとして故質反応時間とCA転化
率との関係を示すグラフであり、ニッケル圧延板を12
00ooで酸化処理を行った場合の触媒は長時間にわた
ってCH4転化率ほぼ100%を示すに対して、110
000で酸化処理を行った場合の触媒は一時的にはCH
4転化率ほぼ100%近傍まで達成するが平均値では約
80%前後とあまり十分ではなく、更に、770ooで
酸化処理した場合の触媒及び全く酸化処理を行わなかっ
た場合の触媒は共に転化率が低く触媒としては全く不十
分であることが判明する。本発明の製造方法で得られる
ニッケル金属触媒は炭化水素の水蒸気改質・水素添加等
、従来のニッケル系触媒を使用する化学反応に使用出来
る。
That is, FIG. 1 is a graph showing the relationship between the reforming reaction time and the C ratio conversion rate using the oxidation treatment time of the nickel rolled plate as a parameter, and the nickel metal catalyst subjected to the high temperature oxidation treatment as described above is (see Table 2), all oxidized catalysts exhibit very high activity. On the other hand, a nickel metal catalyst (indicated by e in the figure) which was simply subjected to a reduction treatment without being subjected to a high-temperature oxidation treatment had a very low activity. In addition, Fig. 2 is a graph showing the relationship between the waste material reaction time and the CA conversion rate using the oxidation treatment temperature of the nickel rolled plate as a parameter.
The catalyst when oxidized at 00oo shows almost 100% CH4 conversion over a long period of time;
When oxidizing with 000, the catalyst temporarily becomes CH
4 A conversion rate of nearly 100% is achieved, but the average value is around 80%, which is not very sufficient. Furthermore, the conversion rate of both the catalyst when oxidized at 770 oo and the catalyst when no oxidation treatment is performed is low. It turns out that it is completely insufficient as a catalyst. The nickel metal catalyst obtained by the production method of the present invention can be used in chemical reactions that use conventional nickel-based catalysts, such as steam reforming and hydrogenation of hydrocarbons.

以上の説明から明らかなように、本発明によれば、ニッ
ケル圧延板を120ぴ○以上の高温で酸化処理し、その
後この圧延板を約850qoの高温還元ガス気流中で還
元するようにしたので、高活性のニッケル金属触媒を得
ることができる。その触媒はニッケル圧延板の主成分を
その主成分としているから、高伝熱特性を有し、従って
高吸、発熱反応例えば水蒸気改質の触媒として有利性を
有する。
As is clear from the above description, according to the present invention, a rolled nickel plate is oxidized at a high temperature of 120 qo or more, and then this rolled plate is reduced in a high-temperature reducing gas stream of about 850 qo. , a highly active nickel metal catalyst can be obtained. Since the catalyst is mainly composed of rolled nickel plate, it has high heat transfer properties and is therefore advantageous as a catalyst for high absorption, exothermic reactions such as steam reforming.

又、ニッケル圧延板を任意に加工した後のニッケル圧延
板の表面に触媒活性化処理をなしてニッケル金属触媒を
得るので、粒状触媒の如き取り扱い難さはなく、又取り
扱い中若しくは反応中にダストが飛散してしまうという
危険性はない。以上の如き各種優れた点を併有すること
から、例えば反応管を用いる装置においては反応管座の
増大が可能となり、装置コストの低廉化に寄与するとこ
ろが大きい。
In addition, since the nickel metal catalyst is obtained by catalytically activating the surface of the nickel rolled plate after the nickel rolled plate has been arbitrarily processed, it is not difficult to handle unlike granular catalysts, and there is no dust during handling or reaction. There is no risk of it being blown away. Because of the various advantages mentioned above, it is possible to increase the number of reaction tube seats in, for example, an apparatus using reaction tubes, which greatly contributes to reducing the cost of the apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はニッケル圧延板の酸化処理時間をパラメータと
して改質反応時間とCH4転化率との関係を示すグラフ
、第2図はニッケル圧延板の酸化処理温度をパラメータ
として改質反応時間とCH4転化率との関係を示すグラ
フである。 第1図 第2図
Figure 1 is a graph showing the relationship between the reforming reaction time and CH4 conversion rate using the oxidation treatment time of the nickel rolled plate as a parameter, and Figure 2 is a graph showing the relationship between the reforming reaction time and the CH4 conversion rate using the oxidation treatment temperature of the nickel rolled plate as a parameter. It is a graph showing the relationship with the rate. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 比較的高純度のニツケル圧延板の表面を洗浄し、次
いで、該ニツケル圧延板を1200℃以上の酸素を含む
酸化雰囲気中で酸化し、爾後、酸化処理された上記ニツ
ケル圧延板を約850℃の高温の還元ガス気流中で還元
してニツケル金属触媒を得ることを特徴とするニツケル
金属触媒の製造方法。
1. The surface of a relatively high-purity nickel rolled plate is cleaned, then the nickel rolled plate is oxidized in an oxidizing atmosphere containing oxygen at 1200°C or higher, and then the oxidized nickel rolled plate is heated at about 850°C. A method for producing a nickel metal catalyst, the method comprising obtaining a nickel metal catalyst by reducing the catalyst in a high-temperature reducing gas stream.
JP10691179A 1979-08-22 1979-08-22 Method for producing nickel metal catalyst Expired JPS6021772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10691179A JPS6021772B2 (en) 1979-08-22 1979-08-22 Method for producing nickel metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10691179A JPS6021772B2 (en) 1979-08-22 1979-08-22 Method for producing nickel metal catalyst

Publications (2)

Publication Number Publication Date
JPS5631441A JPS5631441A (en) 1981-03-30
JPS6021772B2 true JPS6021772B2 (en) 1985-05-29

Family

ID=14445614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10691179A Expired JPS6021772B2 (en) 1979-08-22 1979-08-22 Method for producing nickel metal catalyst

Country Status (1)

Country Link
JP (1) JPS6021772B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829890U (en) * 1981-08-20 1983-02-26 未来工業株式会社 appliance mounts
DE4332473C2 (en) * 1993-09-24 1995-09-14 Krupp Vdm Gmbh Catalyst for the hydro-refining of hydrocarbon mixtures and its use
WO2004087312A1 (en) * 2003-03-31 2004-10-14 Forschungszentrum Jülich GmbH Method for coating a metallic nickel-containing carrier material with a nickel catalyst

Also Published As

Publication number Publication date
JPS5631441A (en) 1981-03-30

Similar Documents

Publication Publication Date Title
US4422961A (en) Raney alloy methanation catalyst
CN110270367B (en) In-situ packaged noble metal Pd molecular sieve catalyst and preparation method and application thereof
JPH03150210A (en) Catalyst for selectively oxidizing sulfur compound into single sulfur, method for preparing said catalyst and method for selectively oxidizing sulfur compound into single sulfur
JPS6328450A (en) Catalyst for selective oxidation of sulfur-containing compound, especially hydrogen sulfide to elemental sulfur, preparation thereof and selective oxidation method
CN102275963B (en) Preparation method of aluminium oxide material
CN111013598A (en) Catalyst for preparing H2 through methanol steam conversion and application thereof
US4043945A (en) Method of producing thin layer methanation reaction catalyst
JPH0230740B2 (en)
CN112619675A (en) Preparation method of composite piezoelectric catalyst and method for preparing hydrogen peroxide
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
JPS6021772B2 (en) Method for producing nickel metal catalyst
JP2007075799A (en) Catalyst for hydrogen production, and its production method
CN107754815B (en) Regeneration method of copper/ferroferric oxide water gas shift catalyst
CN111215077A (en) Catalyst for synthesizing isopropanol and preparation method and application thereof
JPH04331704A (en) Production of synthetic gas containing both carbon monoxide and hydrogen
USRE32104E (en) Raney alloy methanation catalyst
US4491564A (en) Reactor containing a methanation catalyst
US2103221A (en) Oxidation catalysts and process
US2111469A (en) Manufacture of formaldehyde
JP3292251B2 (en) Steam purification method
JP3154340B2 (en) Method for purifying germanium hydride
US3578608A (en) Regenerating a platinum oxide deactivated catalyst resulting from use in eliminating oxides of nitrogen from gases
JPH06256001A (en) Production of hydrogen-containing gas
JP3522785B2 (en) Purification method of carbon dioxide
JP2019514688A (en) Catalyst composition for conversion of sulfur trioxide and method of hydrogen generation