JPS60216808A - Process for preventing reverse contamination - Google Patents

Process for preventing reverse contamination

Info

Publication number
JPS60216808A
JPS60216808A JP7002384A JP7002384A JPS60216808A JP S60216808 A JPS60216808 A JP S60216808A JP 7002384 A JP7002384 A JP 7002384A JP 7002384 A JP7002384 A JP 7002384A JP S60216808 A JPS60216808 A JP S60216808A
Authority
JP
Japan
Prior art keywords
pump
water
main pressurizing
pressurizing pump
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7002384A
Other languages
Japanese (ja)
Other versions
JPH0351455B2 (en
Inventor
Tatsuo Goto
後藤 達乎
Akiyoshi Kamida
紙田 章義
Naotake Motoi
許斐 尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP7002384A priority Critical patent/JPS60216808A/en
Publication of JPS60216808A publication Critical patent/JPS60216808A/en
Publication of JPH0351455B2 publication Critical patent/JPH0351455B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent back flow of bacteria while reducing electric power consumption and load on the machineries by driving a small capacity pump provided in parallel to a main pressurizing pump during suspension of the main pressurizing pump so as not to stop the flow of liquid. CONSTITUTION:A main pressurizing pump 2-2 and a small capacity pump 4-4 are provided in parallel in a water treating system installed with a reverse osmotic device and an ultrafiltration device. During a stationary operation, water flows from a feed water feeding line 1-1, to a main pressurizing pump 2-2, check valve 3, membrane module 5 in order, but the water is passed in an order from a small capacity pump 4-4 to a check valve 3', and the membrane module 5 when the main pressurizing pump is suspended so as not to interrupt the liquid flow in the liquid feed piping and in the treating devices.

Description

【発明の詳細な説明】 (技術の背景) 本発明は水処理システムの逆汚染防止方法に関するもの
であり、各種の液体処理システムに適用することにより
省エネルギー特性、品質の保持特性に秀れたシステムを
製作することを可能ならしめる。
[Detailed Description of the Invention] (Technical Background) The present invention relates to a method for preventing back contamination of water treatment systems, and provides a system with excellent energy saving characteristics and quality maintenance characteristics by applying it to various liquid treatment systems. make it possible to produce.

(産業上の利用分野) 本発明は水処理分野、特に医療・製薬用、電子工業用な
どで用いられる無菌パイロンエンフリー水、超純水など
を製造するシステムに適用することにより後述するよう
な種々の効果が得られる。
(Industrial Application Field) The present invention can be applied to a system for producing sterile pylon-enfree water, ultrapure water, etc. used in the water treatment field, particularly in the medical/pharmaceutical and electronic industries. Various effects can be obtained.

無菌パイロジエンフリー水、超純水などを製造するシス
テムとしては蒸発装置、イオン交換樹脂装置、活性炭装
置などを組合わせたものから最近では半透膜を利用した
逆浸透装置、限外濾過装置とイオン交換樹脂装置、紫外
線殺菌装置、精密濾過装置など金組みあわせたものへ移
行しつつあるのが業界の実情である。
Systems for producing sterile pyrogen-free water, ultrapure water, etc. include those that combine evaporation equipment, ion exchange resin equipment, activated carbon equipment, etc., and more recently, reverse osmosis equipment that uses semipermeable membranes, ultrafiltration equipment, etc. The reality in the industry is that there is a shift to metal-combined equipment such as ion exchange resin equipment, ultraviolet sterilization equipment, and precision filtration equipment.

(従来技術) この半透膜を利用した逆浸透装置や限外濾過装置を組み
込んだシステムは蒸発装置のようにシステム全体に熱を
かけることができないので、システムを停止して再起動
する際、配管系、システム主要部を殺菌洗浄する必要が
ある。
(Prior art) A system incorporating a reverse osmosis device or an ultrafiltration device using this semipermeable membrane cannot apply heat to the entire system like an evaporator, so when the system is stopped and restarted, It is necessary to sterilize and clean the piping system and main parts of the system.

この殺菌・洗浄法として一般的に採用されている方法は
殺菌剤水溶液を/ステム全体に通液し、殺菌・洗浄後長
時間かけてフラツノングする方法が知られている。
A commonly used method for sterilizing and cleaning is to pass an aqueous sterilizing solution through the entire stem, and after sterilizing and cleaning, flatten the stem over a long period of time.

この殺菌・洗浄法が完全であれば生菌数0ケ/100m
/!の無菌状態を長時間維持することが可能であり、且
つ発熱性物質陰性の状態を維持することができる。
If this sterilization/cleaning method is perfect, the number of viable bacteria will be 0/100m.
/! It is possible to maintain a sterile state for a long period of time, and it is possible to maintain a pyrogen-negative state.

しかしながら、例え上記のような完全な状態にしてもシ
ステム全体を一旦停止すると比較的短時間で菌による汚
染が進行し、必然的に発熱性物質も陽性になってしまう
However, even if the system is in the perfect condition as described above, once the entire system is stopped, bacterial contamination will progress in a relatively short period of time, and the pyrogen will inevitably become positive.

このように一旦完全な無菌状態になってもシステムが停
止することにより汚染してしまうのは配管内で静止して
いる水の中音末端から生菌が逆流し、システム内で増殖
するためと考えられている。
In this way, once the system is completely sterile, contamination occurs when the system is stopped because viable bacteria flows back from the end of the still water in the pipes and multiplies within the system. It is considered.

これを防ぐための方法としては配管末端部などに菌逆流
防止装置をとりつけて逆流を防止する方法やシステム全
体を停止することなく連続運転を行な5方法などがとら
れている。
To prevent this, there are five methods, including installing a bacterial backflow prevention device at the end of the pipe to prevent backflow, and continuously operating the system without stopping the entire system.

(従来技術の欠点) しかしながら、これらの方法には次のような欠点がある
(Disadvantages of Prior Art) However, these methods have the following disadvantages.

先ず菌の逆流防止器というのはどんな方法を用いても不
完全な場合が多く、0ケ/ 100 mlという高度な
無菌状部全維持するのに困難であるのが実情であり、前
述のように停止することなく連続運転する方がはるかに
有効である。
First of all, bacterial backflow preventers are often incomplete no matter what method is used, and the reality is that it is difficult to maintain a highly sterile state of 0 cells/100 ml. It is much more effective to operate continuously without stopping.

しかしながら、この方法には品質の維持は達成されるが
、以下のような欠点がある。
However, although this method achieves quality maintenance, it has the following drawbacks.

(イ)無駄な電力を消費する。(b) It consumes unnecessary power.

(ロ)機器の消耗を著しく早め、メンテナンスのために
経費と時間がかかる。
(b) The wear and tear of the equipment is significantly accelerated, and maintenance costs and time are required.

(本発明の構成) 以上のような欠点を解決するために鋭意検討した結果本
発明に到達した。
(Structure of the present invention) As a result of intensive studies to solve the above-mentioned drawbacks, the present invention was arrived at.

本発明の構成を詳しく説明する。The configuration of the present invention will be explained in detail.

すなわち、従来技術がシステム全体を停止することなく
配管系の液の流れの方向および量を正常運転に近い状態
に保持しながら品質を保持するのに対して、システム主
要部は休止して主加圧ボン。
In other words, whereas the conventional technology maintains the quality by maintaining the flow direction and amount of liquid in the piping system in a state close to normal operation without stopping the entire system, the main part of the system is stopped and main processing is performed. Pressure bong.

プと並列に配置した小容量のポンプだけの運転に切替え
て主要部を含めて配管系内をユースポイント末端まで例
えわづかでも流れが停滞しないように保持することであ
る。
This means switching to operation of only a small-capacity pump placed in parallel with the pipe to maintain the flow within the piping system, including the main parts, to the end of the use point so that it does not stagnate, even if only slightly.

この時使用する小容量のポンプとは主加圧ポンプに対し
て相対的に小容量いうことであり、一般的には使用する
電動機出力比率で115〜1/10の範囲のものが望ま
しい。
The small-capacity pump used at this time means a relatively small-capacity pump with respect to the main pressurizing pump, and it is generally desirable that the motor output ratio used be in the range of 115 to 1/10.

あまりポンプの容量の小さいものを使用すると配管内で
最低限必要な流れを保てなくなり、システムを停止した
のと同じ状態に近くなり、菌の逆流を防ぐことができな
くなる。通常、末端部の配管内の流速が数センチメート
ル7秒より小さくなると逆流防止効果がなくなる。
If you use a pump with too small a capacity, you will not be able to maintain the minimum necessary flow in the piping, which will be almost the same as stopping the system, and you will not be able to prevent the backflow of bacteria. Normally, when the flow velocity in the pipe at the end becomes smaller than several centimeters per 7 seconds, the backflow prevention effect disappears.

猿だ主加圧ポンプ電動機とあまり容量が違わない場合に
はたとえ主加圧ポンプからこのポンプに切り換えても省
エネルギー効果が少なく、設備費の増加によるマイナス
の方が大きくなるのは言うプでもないことである。
It goes without saying that even if you switch from the main pressure pump to this pump, if the capacity is not much different from the main pressure pump electric motor, the energy saving effect will be small, and the negative impact of increased equipment costs will be greater. That's true.

(本発明の効果) 本発明の方法を例えば逆浸透装置または限外濾過装置を
組み込んだシステムに適用した場合得られる効果は以下
の通りである。
(Effects of the present invention) The following effects can be obtained when the method of the present invention is applied to a system incorporating a reverse osmosis device or an ultrafiltration device, for example.

(イ)小容量の電動機を使用するため消費電力を大幅に
軽減できる。
(b) Power consumption can be significantly reduced because a small-capacity electric motor is used.

(ロ)逆浸透装置または限外濾過装置に組み込んだ膜モ
ジュールにかかる負荷が著しく軽減され、寿命が大幅に
伸びる。
(b) The load on the membrane module incorporated in a reverse osmosis device or ultrafiltration device is significantly reduced, and its lifespan is significantly extended.

(ハ)システム機器全体にかかる負荷が軽減され、メン
テナンス作業がすくなくなる。
(c) The load on the entire system equipment is reduced, reducing maintenance work.

以上のように本発明の方法は夜間の工場停止時や休日停
止時はもちろん、例え操業時間中の一時停止時にでも適
用することが可能であり、製品ラインの稼動率が低い工
場はど適用した場合の効果が太きい。
As described above, the method of the present invention can be applied not only when the factory is shut down at night or on holidays, but also when it is temporarily stopped during operating hours. The effect of the case is strong.

実施例 第1図は本発明の1実施態様金示す逆浸透装置を組み込
んだフローシートであり、■−1は原水供給ライン、2
−2は主加圧ポンプ、3−3TI逆止弁、4−4は小容
量ポンプ、5−5は逆 造膜モジュール、6−6は濃縮
度水ライン、7−7は限外沢過処理水ライン、8−8は
ユースポイント循環ライン、9−9は末端精密フィルタ
ー、10−10はストノブ弁、1l−11idサンプリ
ング箇所。
Embodiment FIG. 1 is a flow sheet incorporating a reverse osmosis device showing one embodiment of the present invention, where -1 is a raw water supply line;
-2 is the main pressure pump, 3-3 TI check valve, 4-4 is the small capacity pump, 5-5 is the reverse membrane forming module, 6-6 is the concentrated water line, 7-7 is the ultra-slough overtreatment Water line, 8-8 is point-of-use circulation line, 9-9 is terminal precision filter, 10-10 is Stonob valve, 1l-11id sampling point.

矢印に定常操業時のシステム内配管中の水の流れ、点線
矢印は本発明の方法で小容量ポンプを稼働させた場合の
システム内配管中の小容量の水の流れを表わしたもので
ある。
The arrows represent the flow of water in the system piping during steady operation, and the dotted arrows represent the flow of small volume water in the system piping when the small capacity pump is operated by the method of the present invention.

本実施例および次に記す比較例に使用されたシステム主
要部の仕様および運転条件、水質分析結果をまとめたも
のが表1である。
Table 1 summarizes the specifications, operating conditions, and water quality analysis results of the main parts of the system used in this example and the comparative example described below.

なお、供給した原水は常温のイオン交換水で、菌数は1
.5X10個/ ml、発熱性物質陽性(+)のもので
ある。菌数は原水の場合は1m1iサンプリングして培
養後直税法により測定し、逆浸透装置の場合Fl l 
(10ml、サンプリングして0.45μのメンブレン
フィルターで全量f過して培養後直税法により測定し、
発熱性物質はリムラス法により測定した。
The raw water supplied was ion-exchanged water at room temperature, and the number of bacteria was 1.
.. 5 x 10 cells/ml, pyrogen positive (+). In the case of raw water, the number of bacteria is measured by sampling 1 ml and using the direct method after culturing, and in the case of reverse osmosis equipment, the number of bacteria is measured using the direct method.
(Sampled 10ml, passed the entire volume through a 0.45μ membrane filter, and measured by the direct method after culturing.
Pyrogenic substances were measured by the Limulus method.

運転開始後1日1回サンプリングして分析した結果を表
−1に示した。
Table 1 shows the results of sampling and analysis once a day after the start of operation.

比較例 実施例で用いた小容量ポンプ(2kg/dx1.sm/
時間、0.75kw)の代りにさらに容量の小さいポン
プ(0,55kl?/dX 1 m/時間、01kW)
を使用した以外は実施例と同じ条件で運転し、分析した
結果を表1に併わせで記載した。
Comparative Example Small capacity pump (2 kg/dx1.sm/
hour, 0.75 kW), a smaller capacity pump (0.55 kl?/dX 1 m/hour, 01 kW)
The operation was carried out under the same conditions as in the example except that the following was used, and the analysis results are also listed in Table 1.

表 −1 手続補正書(方式) 特許庁長官 志賀 学 殿 1、 事件の表示 昭和59年特許願第70023号 2 発明の名称 逆汚染防止方法 3 補正をする者 事件との関係 特許出願人 住所 郵便番号590大阪府堺市鉄砲町1番地氏名 (
290)ダイセル化学工業株式会社昭和59年7月31
日 面の簡単な説明を追加する。
Table-1 Procedural amendment (method) Manabu Shiga, Commissioner of the Patent Office1, Indication of the case Patent Application No. 70023 of 19822 Name of the invention Method for preventing reverse contamination3 Person making the amendment Relationship with the case Patent applicant address Mail Number 590 1 Teppocho, Sakai City, Osaka Prefecture Name (
290) Daicel Chemical Industries, Ltd. July 31, 1982
Add a brief description of the sun's surface.

4、図面の簡単な説明 第1図は本発明の方法を適用したシステムフローであり
、2−2が主加圧ポンプで、4−4が小容量ポンプであ
る。
4. Brief Description of the Drawings FIG. 1 shows a system flow to which the method of the present invention is applied, in which 2-2 is a main pressurizing pump and 4-4 is a small-capacity pump.

Claims (3)

【特許請求の範囲】[Claims] (1) 主加圧ポンプと該加圧ポンプよりも小容量のポ
ンプを並列に備えた水処理システムにおいて、主加圧ポ
ンプの運転休止時に該小容量ポンプを運転し、送液配管
および処理装置内の液の流れを停止させないようにする
ことにより汚染を防止する逆汚染防止方法
(1) In a water treatment system equipped with a main pressure pump and a pump with a smaller capacity than the pressure pump in parallel, the small capacity pump is operated when the main pressure pump is out of operation, and the liquid sending piping and treatment equipment are Back contamination prevention method that prevents contamination by not stopping the flow of liquid inside
(2)水処理システムが逆浸透装置を用いたシステムで
ある特許請求範囲第1項記載の方法。
(2) The method according to claim 1, wherein the water treatment system is a system using a reverse osmosis device.
(3)水処理システムが限外濾過装置である特許請求範
囲第1項記載の方法。
(3) The method according to claim 1, wherein the water treatment system is an ultrafiltration device.
JP7002384A 1984-04-10 1984-04-10 Process for preventing reverse contamination Granted JPS60216808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002384A JPS60216808A (en) 1984-04-10 1984-04-10 Process for preventing reverse contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002384A JPS60216808A (en) 1984-04-10 1984-04-10 Process for preventing reverse contamination

Publications (2)

Publication Number Publication Date
JPS60216808A true JPS60216808A (en) 1985-10-30
JPH0351455B2 JPH0351455B2 (en) 1991-08-06

Family

ID=13419588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002384A Granted JPS60216808A (en) 1984-04-10 1984-04-10 Process for preventing reverse contamination

Country Status (1)

Country Link
JP (1) JPS60216808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161689A (en) * 1984-08-31 1986-03-29 Hitachi Ltd Apparatus for producing pure water
JPS6242789A (en) * 1985-08-20 1987-02-24 Arubatsuku Service Kk Sterilizer by heat generation of pump of apparatus for producing ultra-pure water and sterile pure water
JP2002316152A (en) * 2001-04-19 2002-10-29 Nikkiso Co Ltd Refined water making apparatus
JP2006167661A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Liquid supplying means and liquid supplying method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106079A (en) * 1978-02-08 1979-08-20 Nomura Micro Science Kk System for prevention of microbe multiplication in filtration mechamism for water and other liquids using hypolymer membrane filtration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106079A (en) * 1978-02-08 1979-08-20 Nomura Micro Science Kk System for prevention of microbe multiplication in filtration mechamism for water and other liquids using hypolymer membrane filtration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161689A (en) * 1984-08-31 1986-03-29 Hitachi Ltd Apparatus for producing pure water
JPH041679B2 (en) * 1984-08-31 1992-01-13 Hitachi Seisakusho Kk
JPS6242789A (en) * 1985-08-20 1987-02-24 Arubatsuku Service Kk Sterilizer by heat generation of pump of apparatus for producing ultra-pure water and sterile pure water
JP2002316152A (en) * 2001-04-19 2002-10-29 Nikkiso Co Ltd Refined water making apparatus
JP2006167661A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Liquid supplying means and liquid supplying method

Also Published As

Publication number Publication date
JPH0351455B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
JP4472050B2 (en) Fresh water generator and fresh water generation method
JP4363703B2 (en) Fresh water generation method
KR20200089223A (en) Pressure-reduced saline water treatment system
JPS6295189A (en) Purified water generator
WO1997018166A2 (en) Direct osmotic concentration contaminated water
JPS60216808A (en) Process for preventing reverse contamination
JP2005313151A (en) Water treatment method
JP2006305421A (en) Purification means washing method, purification means washing apparatus, and purification apparatus
CN111646605A (en) Desalination system and water treatment system of second grade reverse osmosis and EDI combination
CN101085681A (en) Process for preparing industrial high purity water
CN111138012A (en) Plateau water filtering system
RU2323036C2 (en) Method and device for concentrating water solutions of biology-active agents
CN211644929U (en) Plateau water filtering system
JPS60190298A (en) Preparation of ultra-pure water
CN104787967A (en) Treatment device for slightly-polluted surface water and application thereof
JP6107987B1 (en) Cleaning method of ultrapure water production system
CN211078757U (en) Bottled drinking water production system
Best et al. Application of immersed ultrafiltration membranes for colour & TOC removal
WO2016136957A1 (en) Method for treating water containing organic material, and device for treating water containing organic material
JP2017192898A (en) Pure water production method and system
CN115159749B (en) Resident and building water supply system
CN2325096Y (en) Water saving type water purification equipment with filtration film
JP2000354744A (en) Membrane sterilization method and fresh water making method
RU2780008C1 (en) Method for continuous production of water for injections and set for implementation thereof
CN213060517U (en) Water purification unit and water purification system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term