JPS60216317A - Heat-resisting optical fiber unit - Google Patents

Heat-resisting optical fiber unit

Info

Publication number
JPS60216317A
JPS60216317A JP59071331A JP7133184A JPS60216317A JP S60216317 A JPS60216317 A JP S60216317A JP 59071331 A JP59071331 A JP 59071331A JP 7133184 A JP7133184 A JP 7133184A JP S60216317 A JPS60216317 A JP S60216317A
Authority
JP
Japan
Prior art keywords
heat
pipe
optical fiber
resistant
fiber unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59071331A
Other languages
Japanese (ja)
Inventor
Ario Shirasaka
白坂 有生
Kenichi Fuse
憲一 布施
Kinya Kumazawa
金也 熊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP59071331A priority Critical patent/JPS60216317A/en
Publication of JPS60216317A publication Critical patent/JPS60216317A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain sufficient heat resistance to the repetition of high temperatures or a momentary abnormally high temperature by storing plural optical fibers with a protection coating loosely in a heat-resisting pipe, and providing a protection layer of fiber-reinforced thermosetting plastic around the pipe. CONSTITUTION:Plural optical fibers 2 with a protective coating are stored in the heat-resisting pipe 10 so that a gap 11 is left in it, and the protection layer 5 made of fiber-reinforced thermosetting plastic is arranged outside of the pipe. The plural optical fibers 2 are bundles and the buffer protection layer 3 is formed of silicone rubber or fluororubber in one body to obtain a coated bundle 4 which has a nearly circular section. The pipe 10 is formed by impregnating a paper tape, etc., with thermosetting plastic and then setting the plastic. The gap of the bundle 4 and pipe 10 is so determined that D>=1.04d, where (d) is the external diameter of the bundle 4 and D is the internal diameter of the pipe 10. Consequently, even when this unit is exposed repeatedly at high temperatures in windless summertime or a momentary abnormally high temperature of about 400 deg.C due to, for example, a thunderbolt, there is no cracking generated in the protection layer 5 and this unit is usable for OPGW (optical composite overhead earth-wire), etc.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光複合架空地線(以下0PGWと称す)等に使
用される高強度、高耐熱性を要求される光フアイバユニ
ットにおいて、特に耐熱性を大幅に改良せしめてなる耐
熱光フアイバユニットに関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention significantly improves heat resistance, especially in optical fiber units used in optical composite overhead ground wires (hereinafter referred to as 0PGW), which require high strength and high heat resistance. The present invention relates to a heat-resistant optical fiber unit that has been improved.

〔従来技術〕[Prior art]

近年、発電所と変電所間等の通信用として、電力送電線
用鉄塔間に架線されている架空地線に、光フアイバユニ
ットを内蔵あるいは添架した、いわゆるopcwが広く
使用されるようになってきた。ところで、この0PGW
に使用される光フアイバユニットは、その使用上の性格
から風等の振動に耐えるよう高強度であることはもちろ
んのこと、耐熱性にも優れたものでなければならない。
In recent years, so-called OPCW, which has an optical fiber unit built into or attached to the overhead ground wire that is installed between power transmission towers, has become widely used for communication between power plants and substations. Ta. By the way, this 0PGW
Due to the nature of its use, the optical fiber unit used for this purpose must not only have high strength to withstand vibrations from wind and other factors, but also must have excellent heat resistance.

因みに、0PGWがおかれる一般的な熱的環境条件とし
ては、まず第1に真夏の無風時、しかも送電線に最大電
流が流れている状態があげられる。
Incidentally, the typical thermal environmental conditions under which 0 PGW occurs are, first of all, midsummer, when there is no wind, and at the same time, the maximum current is flowing through the power transmission line.

この時架空地線に流れる誘導電流も最大となり、例えば
、50万KV程度の送電線網ではこの0PGW全体が約
150℃まで昇温するといわれている。
At this time, the induced current flowing in the overhead ground wire reaches its maximum, and it is said that, for example, in a power transmission network of about 500,000 KV, the temperature of the entire 0PGW will rise to about 150°C.

第2は、雷の地絡時に架空地線に閃絡電流が流れ、遮断
機が動作するまでに瞬時的に生ずる約1100℃という
高温状態がある。このように0PGWは、最悪の場合数
時間に及ぶと予想される約150℃という温度と、瞬時
的ではあるが約400℃という異常高温に、しかも繰返
しさらされる環境下にある。それ故、架空地線に内蔵ま
たは添架される光フアイバユニ、トは、前記環境に耐え
得るものでなければならない。さて、このような環境下
で使用されるopGw用の耐熱光フアイバユニットとし
て、従来から第う図に示すようなものが広く知られてい
る。この耐熱光フアイバユニット1は、シリコーンゴム
等の保護被覆を有する光ファイバ2を複数本撚合せ、こ
れにシリコーンゴム等よりなる緩衝保護層うを一体的に
、かつ断面はぼ円形状に被覆し、被覆つき集合体ヰを形
成し、該被覆つき集合体重の外側にガラス繊維等を含む
エポキシ樹脂等からなる繊維強化熱硬化性プラスチック
製の保護層5を設けるものである。しかしながら、第5
図に示す従来の耐熱光フアイバユニット1は、前述の高
温を繰返し受けていると、次第に、外側の保護層5に第
4図が示すようなりラック6が生じて、保護層5が補強
繊維方向に裂け、その結果この耐熱光フアイバユニット
1の機械的強度が著しく低下することが知られている。
Second, when a ground fault occurs due to lightning, a flash current flows through the overhead ground wire, and a high temperature state of about 1100° C. occurs instantaneously before the circuit breaker operates. In this way, 0PGW is in an environment where it is repeatedly exposed to temperatures of approximately 150° C., which is expected to last for several hours in the worst case, and to abnormally high temperatures of approximately 400° C., albeit instantaneously. Therefore, the optical fiber unit built into or attached to the overhead ground wire must be able to withstand the above environment. Now, as a heat-resistant optical fiber unit for opGw used in such an environment, the one shown in FIG. 3 has been widely known. This heat-resistant optical fiber unit 1 is made by twisting together a plurality of optical fibers 2 each having a protective coating such as silicone rubber, which is integrally coated with a buffer protection layer made of silicone rubber or the like and having a roughly circular cross section. A covered aggregate is formed, and a protective layer 5 made of fiber-reinforced thermosetting plastic made of epoxy resin containing glass fiber or the like is provided on the outside of the covered aggregate. However, the fifth
When the conventional heat-resistant optical fiber unit 1 shown in the figure is repeatedly subjected to the above-mentioned high temperature, a rack 6 is gradually formed in the outer protective layer 5 as shown in FIG. It is known that the mechanical strength of the heat-resistant optical fiber unit 1 is significantly reduced as a result.

その理由は、内側の緩衝保護層うの熱膨張係数が、外側
の保護層5の熱膨張係数より太きいため、この耐熱光フ
アイバユニット1が高温にさらされると、外側の保護層
5に対して、内側の緩衝保護層5の熱膨張に伴う応力が
第4図の矢印方向に作用する。それ故、繰返し高温にさ
らされていると、前述の応力を繰返し受けることになり
、その結果、外側の保護層5のぜい弱部が疲労し、クラ
ック6を生ずるのである。
The reason for this is that the coefficient of thermal expansion of the inner buffer protective layer is greater than that of the outer protective layer 5, so when the heat-resistant optical fiber unit 1 is exposed to high temperatures, the outer protective layer 5 As a result, stress due to thermal expansion of the inner buffer protection layer 5 acts in the direction of the arrow in FIG. Therefore, if it is repeatedly exposed to high temperatures, it will be subjected to the above-mentioned stress repeatedly, and as a result, the weak parts of the outer protective layer 5 will become fatigued and cracks 6 will occur.

このように従来の0PGW用耐熱光フアイバユニツトに
おいては、前述の如き高温に繰返しさらされていると、
繊維強化熱硬化性プラスチックよりなる保護層が裂け、
その結果、0PGWとして必要な機械的強度を損なうと
いう問題がある。
In this way, in the conventional heat-resistant optical fiber unit for 0PGW, if it is repeatedly exposed to the above-mentioned high temperatures,
The protective layer made of fiber-reinforced thermosetting plastic is torn.
As a result, there is a problem that the mechanical strength necessary for 0PGW is lost.

〔発明の目的〕[Purpose of the invention]

前記問題に鑑み本発明の目的は、真夏の無風時において
、最悪数時間に及ぶと予想される約150℃という高温
や、雷の地絡時に生ずる瞬時的qoo℃という異常高温
に繰返しさらされても、繊維強化熱硬化性プラスチック
よりなる保護層が裂けることのない耐熱性に優れ^耐熱
光ファイバユニットを提供することにある。
In view of the above-mentioned problems, the purpose of the present invention is to reduce the risk of repeated exposure to extremely high temperatures of approximately 150°C, which are expected to last for several hours in the worst case, during midsummer periods of no wind, and to abnormally high temperatures of instantaneous qoo°C, which occur during lightning ground faults. Another object of the present invention is to provide a heat-resistant optical fiber unit that has excellent heat resistance so that the protective layer made of fiber-reinforced thermosetting plastic will not tear.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明の耐熱光フアイバユニット
は、保護被覆を有する複数本の光ファイバと、該複数本
の光ファイバを空隙を有した状態で収納する耐熱性のパ
イプと、該パイプの外側に設ける繊維強化熱硬化性プラ
スチックよりなる保護層とからなることを特徴とするも
のである。
In order to achieve the above object, the heat-resistant optical fiber unit of the present invention includes a plurality of optical fibers having a protective coating, a heat-resistant pipe that accommodates the plurality of optical fibers with a gap, and a heat-resistant optical fiber unit of the pipe. It is characterized by comprising a protective layer made of fiber-reinforced thermosetting plastic provided on the outside.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図を参照して詳細に説明する。第1図
は本発明の耐熱光フアイバユニットの一実施例を示す。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the heat-resistant optical fiber unit of the present invention.

第1図が示すように、まずシリコーンゴム等の保護被覆
を有する光ファイバ2を複数本撚合せ、これにシリコー
ンゴムまたはフッ素系ゴムよりなる緩衝保護層5を一体
的に、かつ断面がほぼ円形状になるように被覆して、被
覆つき集合体りを形成する。ここで前記光ファイバ2を
複数本撚合せる場合、適宜介在紐等を一緒に撚合せて、
撚合せ断面が円形になるようにしてもよい。さて、この
ようにしてなる被覆つき集合体4は、例えば、紙テープ
とかマニラ麻テープまたは芳香族ポリアミド繊維不織布
等の耐熱性テープに、耐熱性に優れたエポキシ樹脂やフ
ェス等の熱硬化性プラスチックを接着剤として予め塗布
あるいは含浸させておき、前記テープを丸めてパイプ状
にしたところで、熱を加えて、前記熱硬化性プラスチッ
クを硬化させてなる耐熱性のパイプ10に空隙11を有
した状態で収納される。そして、この耐熱性のパイプ1
0の外側に、長尺の耐熱補強繊維、例えば、ガラス繊維
、カーボン繊維あるいは芳香族ポリアミド繊維等を含む
エポキシ樹脂等の繊維強化熱硬化性プラスチックからな
る保護層5を設ける。ここで前記空隙11は、収納され
る被覆つき集合体11の外径をd1パイプ10の内径を
Dとし、D≧1.0 I+ 6としだとき生ずる空隙量
を有していることが好ましい。これは発明者らがヒート
サイクル試験等の種々の試験を行った結果得たものであ
る。なお、被覆つき集合体4の断面が円形でない場合は
、断面積より相当直径を算出し、前記D≧1.046と
なるようパイプ10の内径を決定すればよい。
As shown in FIG. 1, first, a plurality of optical fibers 2 having a protective coating such as silicone rubber are twisted together, and a buffer protection layer 5 made of silicone rubber or fluorine rubber is integrally applied thereto, and the cross section is approximately circular. The material is coated to form a coated aggregate. When a plurality of optical fibers 2 are twisted together, an intervening string or the like is twisted together as appropriate,
The twisted cross section may be circular. Now, the covered assembly 4 formed in this way is made by bonding, for example, a thermosetting plastic such as an epoxy resin or fest with excellent heat resistance to a heat-resistant tape such as paper tape, Manila hemp tape, or aromatic polyamide fiber nonwoven fabric. The tape is coated or impregnated in advance as an agent, and the tape is rolled into a pipe shape, and then heat is applied to harden the thermosetting plastic and stored in a heat-resistant pipe 10 with voids 11. be done. And this heat resistant pipe 1
A protective layer 5 made of a fiber-reinforced thermosetting plastic such as an epoxy resin containing elongated heat-resistant reinforcing fibers such as glass fibers, carbon fibers, or aromatic polyamide fibers is provided on the outside of the 0. Here, the void 11 preferably has a void amount that occurs when D≧1.0 I+ 6, where the outer diameter of the covered assembly 11 to be accommodated is d1 and the inner diameter of the pipe 10 is D. This was obtained as a result of the inventors conducting various tests such as heat cycle tests. In addition, when the cross section of the covered assembly 4 is not circular, the equivalent diameter may be calculated from the cross-sectional area, and the inner diameter of the pipe 10 may be determined so that D≧1.046.

このようにしてなる耐熱光フアイバユニットにおいて、
被覆つき集合体ヰを耐熱性のパイプ10に収納する1つ
の方法を第2図を用いて説明する。
In the heat-resistant optical fiber unit thus formed,
One method for storing the covered assembly in the heat-resistant pipe 10 will be explained with reference to FIG.

第2図が示すように、被覆つき集合体4をサプライ15
で供給し、その外径が前記耐熱性のパイプ10の内径に
等しいニップル16に貫通せしめ、図の矢印方向にある
図示されていない巻取機へと導くと共に、サプライ17
.17によシ供給される。例えば、紙テープ1g、Il
l!の該紙テープ18.18同志の接着面側に液状のフ
ェノを塗布する。フェノの塗布は、液状のフェノを貯蔵
しである液槽19.19の液面下にその一部が没してい
る回転ロール20.20により前記テープ18.18の
接着面側に塗布せしめ、しかる後紙テープill!、I
II!をニップル16へと導き、かつ該紙テープ18.
18を駆動回転ロール21.21によシ矢印方向に回転
するベルト22の回転による摩擦力でニップル16上で
パイプ状に丸め、前記塗布された液状のフェノでラップ
する紙同志を互いに接着する。続いて、この紙パイプは
加熱器23により前記液状のフェノが加熱硬化され、内
部に空隙を有した状態で収納されている被覆つき集合体
ヰと共に巻取機に巻取られる。なお、前述の如く、紙テ
ープIll!、1gによりなる紙製のパイプ10は、加
熱硬化されたフェノにより固められているので紙製のパ
イプとはいえかなり硬く、それ故、このパイプ10の外
側に繊維強化熱硬化性プラスチックからなる保護層5を
設けても、その際に発生する半径方向の圧力によって、
このパイプ10がつぶれるようなことはない。
As shown in FIG.
The supply 17 is passed through a nipple 16 whose outer diameter is equal to the inner diameter of the heat-resistant pipe 10, and is guided to a winder (not shown) in the direction of the arrow in the figure.
.. 17. For example, 1g of paper tape, Il
l! Apply liquid phenol to the adhesive side of the paper tape 18.18. The pheno is applied to the adhesive side of the tape 18.18 using a rotating roll 20.20, a part of which is submerged below the liquid surface of a liquid tank 19.19 that stores liquid pheno. But then paper tape ill! , I
II! into the nipple 16 and the paper tape 18.
18 is rolled into a pipe shape on the nipple 16 by the frictional force generated by the rotation of the belt 22 rotating in the direction of the arrow by the drive rotating rolls 21, 21, and the sheets of paper to be wrapped with the applied liquid pheno are adhered to each other. Subsequently, the liquid phenol is heated and hardened by the heater 23, and the paper pipe is wound up by a winding machine together with the coated assembly housed inside with a gap. In addition, as mentioned above, paper tape Ill! , 1g is hardened by heat-cured phenol, so it is quite hard even though it is a paper pipe.Therefore, the outside of this pipe 10 is protected by fiber-reinforced thermosetting plastic. Even if layer 5 is provided, due to the radial pressure generated at that time,
This pipe 10 will not be crushed.

このようにしてなる本発明の耐熱光フアイバユニットに
あっては、前記の如く、真夏の最悪時、数時間に及ぶと
予想される約150℃という高温や、雷の地絡において
、発生する瞬時約ll00℃という異常高温に繰返しさ
らされても、複数の光ファイバを含む被覆つき集合体が
耐熱性のパイプ内に空隙を有して収納されているため、
この被覆つき集合体が熱膨張しても、外側の繊維強化熱
硬化性プラスチックよりなる保護層を内側から圧迫する
ことがない。つまυ熱膨張による力は前記空隙に吸収さ
れてしまい、その結果、保護層にクラックが入シ、長手
方向に裂けるということがなくなシ、機械強度が損なわ
れることがない。
As mentioned above, the heat-resistant optical fiber unit of the present invention, which is constructed as described above, can be used at high temperatures of approximately 150°C that are expected to last for several hours at the worst time of midsummer, or during lightning-induced ground faults. Even if it is repeatedly exposed to abnormally high temperatures of approximately 100°C, the coated assembly containing multiple optical fibers is housed in a heat-resistant pipe with gaps, so
Even if this covered assembly thermally expands, it will not press the outer protective layer made of fiber-reinforced thermosetting plastic from the inside. The force due to thermal expansion is absorbed by the voids, and as a result, the protective layer does not crack or tear in the longitudinal direction, and its mechanical strength is not impaired.

〔具体例〕〔Concrete example〕

本発明の一具体例を示す、まずシリコーンゴム等の被覆
を有する外径3ooμmの光ファイノ(を7本互いに撚
合せ、断面がほぼ円形になるようにシリコーンゴムを塗
布焼付し、緩衝保護層を形成し、外径約0.9 mmの
被覆つき集合体を得る。これをサプライで供給しつつ、
薄肉の金属)くイブ(内径0.95閣、外径1.2 +
mn )からなるニップルを貫通させ、同時に前記ニッ
プルの外側に、エポキシ系樹脂のプリプレグ(半硬化状
態の樹脂)を厚さ25μmの2枚の芳香族ポリアミド系
のノーメックステープに該2枚のテープが接触する側に
塗布含浸させ、互いに合せ目位置をAピッチずらした状
態で巻つける。そして加熱器により120〜180℃に
て加熱して、前記プリプレグを完全に硬化させ、内径1
.20mm、外径約128咽のパイプを形成する。この
ように内部に被覆つき集合体を空隙を有して収納するパ
イプを形成したら、最後にこのパイプの外側に長尺のガ
ラス繊維を含む熱硬化性樹脂、例えば、エボキシ不飽和
ポリエステルからなる保護層を設け、外径約23胴の耐
熱光フアイバユニットを得た。
In a specific example of the present invention, first, seven optical fins (with an outer diameter of 30 μm) coated with silicone rubber or the like are twisted together, silicone rubber is coated and baked so that the cross section becomes approximately circular, and a buffer protection layer is formed. A coated aggregate with an outer diameter of about 0.9 mm is obtained.While supplying this,
thin-walled metal) tube (inner diameter 0.95 mm, outer diameter 1.2 +
At the same time, an epoxy resin prepreg (semi-cured resin) is attached to two sheets of aromatic polyamide Nomex tape with a thickness of 25 μm on the outside of the nipple. The contacting sides are coated and impregnated, and wound with the seam positions shifted by A pitch. Then, the prepreg is heated at 120 to 180°C using a heater to completely cure the prepreg, and the inner diameter is 1.
.. Form a pipe with a diameter of 20 mm and an outer diameter of approximately 128 mm. After forming the pipe that houses the covered assembly with a void inside, the pipe is finally coated with a protective material made of a thermosetting resin containing long glass fibers, such as epoxy unsaturated polyester, on the outside of the pipe. A heat-resistant optical fiber unit having an outer diameter of about 23 mm was obtained by forming layers.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、真夏の無風時におい
て、最悪時予想される約150℃という高温や、雷の地
絡により生ずる約1100℃という瞬時異常高温に繰返
しさらされても、繊維強化熱硬化性プラスチックよりな
る保護層にクラックが入ることがなく、もって耐熱性に
優れた耐熱光フアイバユニットを得ることができる。
As described above, according to the present invention, even if the fibers are repeatedly exposed to a high temperature of about 150°C, which is expected at the worst time, and an instantaneous abnormal high temperature of about 1100°C, which is caused by a lightning ground fault, in windless conditions in midsummer, A heat-resistant optical fiber unit with excellent heat resistance can be obtained without cracking the protective layer made of reinforced thermosetting plastic.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の耐熱光フアイバユニットの一実施例を
示す横断面図、第2図は第1図に示した本発明の耐熱光
フアイバユニットの製造方法の一実施例を示す概略図、
第5図は従来の耐熱光フアイバユニットを示す横断面図
、第」図は従来の耐熱光フアイバユニ71・の問題点を
説明するだめの説明図である。 1・・・耐熱光フアイバユニット、2・・・光ファイバ
、う・・・緩衝保護層、11・・・被覆つき集合体、5
・・・保護層、6・・・クラック、10・・・パイプ、
11・・・空隙、16・・・ニップル、21・・・駆動
回転ロール第1図 0 第3図 丘 第4図
FIG. 1 is a cross-sectional view showing an embodiment of the heat-resistant optical fiber unit of the present invention, and FIG. 2 is a schematic diagram showing an embodiment of the method for manufacturing the heat-resistant optical fiber unit of the present invention shown in FIG.
FIG. 5 is a cross-sectional view showing a conventional heat-resistant optical fiber unit, and FIG. 5 is an explanatory diagram for explaining the problems of the conventional heat-resistant optical fiber unit 71. DESCRIPTION OF SYMBOLS 1...Heat-resistant optical fiber unit, 2...Optical fiber, U...Buffer protection layer, 11...Coated assembly, 5
...protective layer, 6...crack, 10...pipe,
11...Gap, 16...Nipple, 21...Drive rotating roll Fig. 1 0 Fig. 3 Hill Fig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)保護被覆を有する複数本の光ファイバと、該複数
本の光ファイバを空隙を有した状態で収納する耐熱性の
パイプと、該パイプの外側に設ける繊維強化熱硬化性プ
ラスチックよりなる保護層とからなることを特徴とする
耐熱光フアイバユニット。
(1) Protection consisting of a plurality of optical fibers with a protective coating, a heat-resistant pipe that accommodates the plurality of optical fibers with gaps, and a fiber-reinforced thermosetting plastic provided on the outside of the pipe. A heat-resistant optical fiber unit characterized by comprising layers.
(2)前記複数本の光ファイバは、該光ファイバを互い
に集合せしめたものに、シリコーンゴムiたけフッ素系
ゴムよりなる緩衝保護層を一体的に施した断面はぼ円形
の被覆つき集合体であることを特徴とする特許請求の範
囲第1項記載の耐熱光フアイバユニット。
(2) The plurality of optical fibers are a covered assembly with a roughly circular cross section, in which a buffer protection layer made of silicone rubber or fluorine rubber is integrally applied to the optical fibers assembled together. A heat-resistant optical fiber unit according to claim 1, characterized in that:
(3)前記耐熱性のパイプは紙テープ、マニラ麻テープ
、または芳香族ポリアミド繊維不織布と、該テープ捷た
は不織布に塗布または含浸せしめてなる熱硬化性プラス
チックよりなり、該熱硬化性プラスチックは加熱硬化さ
れていることを特徴とする特許請求の範囲第1項まだは
第2項記載の耐熱光フアイバユニット。 ()0 前記被覆つき集合体の外径をdとし、前記耐熱
性のパイプの内径をDとしたとき、D≧1.0116と
して前記被覆つき集合体と耐熱性パイプの間に空隙を形
成したことを特徴とする特許請求の範囲第1項乃至第う
項のいづれかに記載の耐熱光フアイバユニット。
(3) The heat-resistant pipe is made of paper tape, manila hemp tape, or aromatic polyamide fiber nonwoven fabric, and a thermosetting plastic made by coating or impregnating the tape or nonwoven fabric, and the thermosetting plastic is heat-cured. A heat-resistant optical fiber unit according to claim 1 or 2, characterized in that: ()0 When the outer diameter of the coated aggregate is d and the inner diameter of the heat-resistant pipe is D, a gap is formed between the coated aggregate and the heat-resistant pipe with D≧1.0116. A heat-resistant optical fiber unit according to any one of claims 1 to 3, characterized in that:
JP59071331A 1984-04-10 1984-04-10 Heat-resisting optical fiber unit Pending JPS60216317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59071331A JPS60216317A (en) 1984-04-10 1984-04-10 Heat-resisting optical fiber unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59071331A JPS60216317A (en) 1984-04-10 1984-04-10 Heat-resisting optical fiber unit

Publications (1)

Publication Number Publication Date
JPS60216317A true JPS60216317A (en) 1985-10-29

Family

ID=13457442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59071331A Pending JPS60216317A (en) 1984-04-10 1984-04-10 Heat-resisting optical fiber unit

Country Status (1)

Country Link
JP (1) JPS60216317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761361A (en) * 1995-05-10 1998-06-02 Siemens Aktiengesellschaft Elongated optical transmission element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761361A (en) * 1995-05-10 1998-06-02 Siemens Aktiengesellschaft Elongated optical transmission element

Similar Documents

Publication Publication Date Title
JP5631592B2 (en) Conductors and cores for conductors
RU2087015C1 (en) Submarine extended device which has fiber- optical members
JPS6329722B2 (en)
US11262521B1 (en) Fiber optic cable assembly for installation on a powerline conductor
KR20100056401A (en) Force transmitting assembly for a fiber composite tie rod
RU2568188C2 (en) Wire for overhead transmission lines and method of its manufacturing
WO2005089410A2 (en) Electrical conductor cable and method for forming the same
JPH03129606A (en) Aerial power cable
US4379243A (en) Stator end turn support system
CN105702352B (en) Reduce the high energy efficiency conducting wire and its manufacturing method of hot inflection point
NZ197875A (en) Optical fibre cable:protective sheath is an interference fit inside metallic tube
JPS60216317A (en) Heat-resisting optical fiber unit
CA1252659A (en) Optical fiber joint with reinforcing filament and method of making such joint
CN205211438U (en) Heat -resisting cable network on servo arrow
JPS58100103A (en) Optical fiber composite aerial wire
JPH07284218A (en) Sheath connection part of power cable
JP2717343B2 (en) Electrode protection electrode support and method of forming the same
JP7489470B2 (en) Towed fiber-reinforced composite cables and wires
JPH10321051A (en) Lightweight, low dip overhead wire
JP2889689B2 (en) Manufacturing method of cylindrical rotor
JP4593027B2 (en) Self-supporting aerial optical cable and its terminal retaining structure
JPH0487212A (en) Stranded cable
RU2037897C1 (en) Process of manufacture of coils with butt cooling for electrophysical plants
RU2018762C1 (en) Heat-insulated pipe
JP4505775B2 (en) Superconducting cable and spacer for superconducting cable