JPS6021488A - Device for determining time of travelling of tip - Google Patents

Device for determining time of travelling of tip

Info

Publication number
JPS6021488A
JPS6021488A JP58127926A JP12792683A JPS6021488A JP S6021488 A JPS6021488 A JP S6021488A JP 58127926 A JP58127926 A JP 58127926A JP 12792683 A JP12792683 A JP 12792683A JP S6021488 A JPS6021488 A JP S6021488A
Authority
JP
Japan
Prior art keywords
value
tip
lprm
calculation
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58127926A
Other languages
Japanese (ja)
Inventor
満田 透
福崎 孝治
木口 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58127926A priority Critical patent/JPS6021488A/en
Publication of JPS6021488A publication Critical patent/JPS6021488A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉の炉心性能監視装置に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a core performance monitoring device for a nuclear reactor.

特に・運転中の原子炉の監視精度を向上させるためのT
IP走行時期を決定する装置に関するものである。この
ような最適なTIP走行時期を決定することは、原子炉
を効率良く運転する上で重要である。
In particular, T to improve the monitoring accuracy of nuclear reactors during operation.
This invention relates to a device that determines IP travel timing. Determining such an optimal TIP running timing is important for efficiently operating a nuclear reactor.

〔発明の背景〕[Background of the invention]

第1図は、沸騰水型原子炉の1/4炉心炉心図の一例で
ある。炉心は、燃料集合体1と制御棒2よシ構成される
。制御棒は、炉心周辺部を除いて燃料集合体4体に1本
の割合で配置されている。
FIG. 1 is an example of a 1/4 core diagram of a boiling water reactor. The reactor core is composed of fuel assemblies 1 and control rods 2. Control rods are arranged at a ratio of one control rod to every four fuel assemblies, excluding the area around the core.

また炉内には、炉心周辺部を除いて、燃料集合体16体
に1本の割合で監視ス) IJソングが設けられ、同ス
トリングには、常時中性子束を測定するLPRMが軸方
向に通例4個設置されており、そのほか案内管が配置さ
れて、必要な時にこの中をTIPが走行して軸方向の連
続的な中性子束分布を測定するようになっている。
In addition, an IJ song is installed inside the reactor (one monitoring string for every 16 fuel assemblies, excluding the area around the core), and an LPRM that constantly measures the neutron flux is installed in the same string in the axial direction. Four of them are installed, and a guide tube is also arranged, through which the TIP travels when necessary to measure continuous neutron flux distribution in the axial direction.

従来よシ、原子炉を安全に運転するために1周期的(た
とえば1時間毎)に炉心を監視することが行なわれてい
る。このような周期炉心監視時に出力分布を計算する方
法として、核熱水力モデルを用いて各燃料集合体の出力
をめる方法がある(特公昭53−22639)。周期監
視時には、計算精度を向上させるために、前記LPII
、M測定値を出力分布計算値へフィードバックし、出力
分布計算値を補正する。
Conventionally, in order to safely operate a nuclear reactor, the core has been monitored periodically (for example, every hour). As a method of calculating the power distribution during such periodic core monitoring, there is a method of calculating the power of each fuel assembly using a nuclear thermal hydraulic model (Japanese Patent Publication No. 53-22639). During cycle monitoring, in order to improve calculation accuracy, the LPII
, M measured values are fed back to the output distribution calculation value, and the output distribution calculation value is corrected.

炉心は、燃焼の進行、制御棒パターンの変更等により、
その物理的特性が変化する。核熱水力モデルを用いて出
力分布を精度良く計算するには、核熱水力モデルが炉心
の物理的特性を良く表わしていなければならない。核熱
水力モデルを炉心状態に適応させる方法として%TIP
を走行させて得られるTIP測定値と核熱水力モデルで
計算したTIP計算値が一致するように・モデルの調整
パラメータを調整する方法(特願昭56−134165
)や燃料集合体の特性を表わす核定数を調整する方法が
ある。
Due to the progress of combustion, changes in control rod patterns, etc.
Its physical properties change. In order to accurately calculate the power distribution using a nuclear thermal-hydraulic model, the nuclear thermal-hydraulic model must represent the physical characteristics of the reactor core well. %TIP as a way to adapt nuclear thermal-hydraulic models to core conditions
A method of adjusting the model adjustment parameters so that the TIP measurement value obtained by running the nuclear thermal hydraulic model matches the TIP calculation value calculated by the nuclear thermal hydraulic model (Patent application No. 56-134165
) and methods to adjust the nuclear constants that represent the characteristics of the fuel assembly.

しかし、TIPを走行するには、3〜4時間の時間を要
する上、TIP走行中は出力分布を一定に保持する必要
から、制御棒等の操作を行なうことができない。原子炉
を効率良く運転するためには、なるぺ(TIP走行回数
を低減するのが望°ましい。現在は、定常運転時には1
か月に1回程度の割合でTlPt−走行させている。従
来’I’IP走行を決定する目安はあったが、最適な指
標はなかった。
However, it takes three to four hours to travel on the TIP, and because it is necessary to maintain a constant output distribution while traveling on the TIP, control rods and the like cannot be operated. In order to operate a nuclear reactor efficiently, it is desirable to reduce the number of TIP runs.Currently, during steady operation,
I run TlPt about once a month. Conventionally, there were guidelines for determining 'I'IP driving, but there was no optimal index.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、出力分布計算精度を目標値に維持する
ために・最小限必要なTIP走行時期を決定し、これを
運転員に指示する装置を提供し、原子炉を効率良く運転
することにある。
The purpose of the present invention is to provide a device that determines the minimum required TIP travel timing and instructs operators to do so in order to maintain power distribution calculation accuracy at a target value, and to operate a nuclear reactor efficiently. It is in.

〔発明の概要〕[Summary of the invention]

本発明では、LPRM測定値とLPRM計算値を比較し
、その差が・判定基準を越え、かつ、その差が測定誤差
に起因するものでなく、計算誤差に起因するものである
と判明したLPRMが発生した場合に、核熱水力モデル
の計算精度が低下したと判定し、TIP走行の必要性を
運転員に指示する。
In the present invention, the LPRM measured value and the LPRM calculated value are compared, and the difference between the LPRM values exceeds the criterion, and the difference is found not to be due to a measurement error but to a calculation error. If this occurs, it is determined that the calculation accuracy of the nuclear thermal-hydraulic model has decreased, and the operator is instructed on the necessity of TIP driving.

まず、本発明のアルゴリズムを説明する。First, the algorithm of the present invention will be explained.

第2図は、サイクル初期にTIPを走行させ、調整パラ
メータを最適化した核熱水力モデルをサイクル末期まで
用いた場合の計算誤差を示す。ここで計算誤差とは、出
力分布測定値(TIP測定値)と出力分布計算値(TI
P計算値)の差の自乗平均を示す。第2図より、燃焼が
進むにつれ、計算誤差が増大して行くことが分る。今、
目標計算精度が平均自乗誤差で5%だとすると、Tの時
点でTIPを走行させ、改めて核熱水力モデルの調整パ
ラメータを調諦する必要がある。
FIG. 2 shows calculation errors when the TIP is run at the beginning of the cycle and a nuclear thermal hydraulic model with optimized adjustment parameters is used until the end of the cycle. Here, the calculation error refers to the output distribution measured value (TIP measurement value) and the output distribution calculation value (TI
P calculated value) indicates the root mean square of the difference. From FIG. 2, it can be seen that the calculation error increases as combustion progresses. now,
If the target calculation accuracy is 5% in mean square error, it is necessary to run the TIP at time T and adjust the adjustment parameters of the nuclear thermal hydraulic model again.

本発明のアルゴリズムを第3図に示す。第3図の判定条
件A、判定条件Bをそれぞれ式(1)、式(2)に示す
The algorithm of the present invention is shown in FIG. Judgment condition A and judgment condition B in FIG. 3 are shown in equations (1) and (2), respectively.

ΔA = l LPRMM(N、L) LPRMc (
N、L)l > ε・・・・・・ (1) LPRMM : LPRM測定値 LPRMc : LPRM計算値 ε = 3σ。
ΔA = l LPRMM (N, L) LPRMc (
N, L) l > ε... (1) LPRMM: LPRM measured value LPRMc: LPRM calculated value ε = 3σ.

σ0 : 目標計算精度(平均自乗誤差)L : 監視
ストリング番号 N : LPRM番号 〈ε・・・・・・(2) LPRMM (N、L) 、 LPRMc (N、L)
 :高さNのLPR,M測定値と計算値の平均値 計算誤差は、はぼ正規分布を示しており、平均自乗誤差
が・目標値σ0以下ならば・計算誤差が6=3σ0を越
えるLPRMはないと考える。すなわち、計算誤差がε
を越えるLPRMが存在するならば、核熱水力をモデル
の計算精度(平均自乗誤差)は、目標値を越えていると
判断する。判定Aで、まず、LPRM測定値と計算値の
差がεを越えているか否かを判定する。両者の差がεを
越えている場合でも、その差が、計算誤差に起因するか
・測定誤差に起因するかをさらに判定する必要がある。
σ0: Target calculation accuracy (mean square error) L: Monitoring string number N: LPRM number <ε... (2) LPRMM (N, L), LPRMc (N, L)
: LPR of height N, average value of M measured value and calculated value The calculation error shows a nearly normal distribution, and if the mean square error is less than the target value σ0, the calculation error exceeds 6=3σ0. I don't think so. In other words, the calculation error is ε
If there is an LPRM exceeding , it is determined that the calculation accuracy (mean square error) of the nuclear thermal-hydraulic model exceeds the target value. In determination A, first, it is determined whether the difference between the LPRM measurement value and the calculated value exceeds ε. Even if the difference between the two exceeds ε, it is necessary to further determine whether the difference is caused by a calculation error or a measurement error.

すなわち、その差が、計算誤差に起因していた場合のみ
・核熱水力モデルの計算精度が低下したと判定する。判
定Bでは、次のような考え方に基づいている。
That is, only when the difference is due to a calculation error, it is determined that the calculation accuracy of the nuclear thermal-hydraulic model has decreased. Judgment B is based on the following idea.

(1)測定誤差は・LPRMの劣化や故障により発生す
るものであシ、これは、局所的であシ・系統的でない。
(1) Measurement errors are caused by deterioration or failure of the LPRM, and are local and not systematic.

(2)計算誤差は、核熱水力モデルが実際の炉心状態に
適応できなくなって来たことにより発生するものであシ
、これは、広域的であり、系統的である。
(2) Calculation errors are caused by the inability of nuclear thermal-hydraulic models to adapt to actual core conditions, and are widespread and systematic.

判定Bにより、LPRM実測値と計算値の差が、計算誤
差に起因するか測定誤差に起因するかを判定する。式(
2)では、LPRM計算値の軸方向の系統的な計算誤差
を低減するために、炉心内の各高さにおける平径方向平
均のLP几M計算値が対応するLPRM測定値の平均値
と一致するようにLP几M計算値を較正する。この較正
されたLPRM計算値と測定値の差が、εを越えた場合
には・L P RM実測値と計算値の差は、測定誤差に
起因すると判定する。すなわち、LPRM計算値を補正
しても、差が大きいならば、それは測定誤差によるもの
だと判定する。逆に・その差がε以下ならば、その差は
、計算誤差に起因すると判定する。
Judgment B determines whether the difference between the measured LPRM value and the calculated value is due to a calculation error or a measurement error. formula(
In 2), in order to reduce systematic calculation errors in the axial direction of the LPRM calculated values, the average calculated LPRM value in the radial direction at each height in the core is matched with the average value of the corresponding LPRM measured values. Calibrate the LP calculation value so that If the difference between the calibrated LPRM calculation value and the measured value exceeds ε, it is determined that the difference between the LPRM actual measurement value and the calculated value is due to a measurement error. That is, if the difference is large even after correcting the LPRM calculation value, it is determined that the difference is due to a measurement error. Conversely, if the difference is less than or equal to ε, it is determined that the difference is caused by a calculation error.

以上をまとめると1判定Aにより・LPRM実測値と計
算値との差がεを越え1判定Bにより。
To summarize the above, 1 Judgment A: - The difference between the LPRM actual measurement value and the calculated value exceeds ε, and 1 Judgment B is made.

計算誤差を補正したLPRM計算値と実測値の差がε以
下となったならば、そのLPRMの計算誤差はε=3σ
0を越えており、すなわち核熱水力モデ鼻の計算精度は
目標値σ0を越えていると判定し、TIP走行の指令を
発する。
If the difference between the LPRM calculated value with calculation errors corrected and the actual measurement value is less than ε, then the LPRM calculation error is ε=3σ
It is determined that the value exceeds 0, that is, the calculation accuracy of the nuclear thermal hydraulic model nose exceeds the target value σ0, and a command for TIP travel is issued.

〔発明の実施例〕[Embodiments of the invention]

次に・本発明の実施例を示す。 Next, examples of the present invention will be shown.

本発明の構成を、第4図に示す。本発明は、核熱水力モ
デルを内蔵した出力分布計算装置4とL P RM比較
装置5と判定装置6とTIP走行指令装置7とより成る
。周期監視時には、出力分布計算装置によ、9LPRM
計算値X2が計算され、LPRM実測値X1 と計算値
X2が、比較装置5で比較され、その差X3が判定装置
に送られ、判定装置6により核熱水力モデルの計算精度
が目標値を越えているか否かが判定される。判定により
、TIP走行が必要と判定された場合には、TIP走行
指令装置7が運転員にTIP走行を指令する。
The configuration of the present invention is shown in FIG. The present invention comprises a power distribution calculation device 4 incorporating a nuclear thermal hydraulic model, an L PRM comparison device 5, a determination device 6, and a TIP travel command device 7. During period monitoring, the output distribution calculation device calculates 9LPRM.
Calculated value X2 is calculated, LPRM actual measurement value X1 and calculated value It is determined whether or not the limit is exceeded. If it is determined that TIP driving is necessary, the TIP driving command device 7 instructs the operator to perform TIP driving.

本発明を第2図で示したサイクルに適用した例を示す、
目標計算精度σ0は5チとした。表1に■〜■の各点で
、本発明の判定により、LPRM計算誤差がεを越えて
いると判定されたLPRMの個数を示す。このようなL
PRMが1個でも存在した場合には、核熱水力モデルの
計算精度が目標精度を越えたと判断し・’I’IP走行
の指令を発生する。
An example in which the present invention is applied to the cycle shown in FIG. 2 is shown.
The target calculation accuracy σ0 was set to 5chi. Table 1 shows the number of LPRMs whose LPRM calculation error was determined to exceed ε according to the determination of the present invention at each point from ■ to ■. L like this
If even one PRM exists, it is determined that the calculation accuracy of the nuclear thermal hydraulic model exceeds the target accuracy and an 'I' IP travel command is issued.

表2は、判定Aのみの場合、すなわち単にLPRM実測
値と計算値を比較した場合の結果である。表1から分る
ように、ε=3σo=15%とした場合には、核熱水力
モデルの計算誤差が目標値5%を越えた時点■、■で、
正しくTIP走行の指令が出ている。これに対し1表2
では、核熱水力モデルの計算誤差が目標値よシ小さいの
にもかかわらず’I’IP走行の誤った指令が出ている
Table 2 shows the results for only determination A, that is, for simply comparing the LPRM measured values and calculated values. As can be seen from Table 1, when ε = 3σo = 15%, at points ■ and ■ when the calculation error of the nuclear thermal hydraulic model exceeds the target value of 5%,
The correct TIP driving command is issued. In contrast, 1 Table 2
In this case, even though the calculation error of the nuclear thermal-hydraulic model is smaller than the target value, an incorrect command for 'I' IP travel is issued.

表1 判定Aと判定Bを用いた場合 衣2 判定Aのみを用いた場合 〔発明の効果〕 以上説明したように1本発明によシ、TIP走行時期を
正しく決定し、TIP走行回数を必要最小限におさえる
ことが可能となシ、原子炉を効率良く運転することが可
能となる。
Table 1 Case when judgment A and judgment B are used Case 2 Case when only judgment A is used [Effects of the invention] As explained above, according to the present invention, the TIP running timing is correctly determined and the number of TIP running is required. It is possible to keep this amount to a minimum, and it becomes possible to operate the nuclear reactor efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰水型原子炉の炉心説明図・第2図は計n誤
差を示す図・第3図は本発明のアルゴリズムを示す図・
第4図は本発明実施例の構成図である。 4・・・出力分布計算装置、5・・・LP几M比較装置
。 6・・・判定装置、7・・・TIP走行指令装置。 代理人 弁理士 高橋明夫 第 7 図 / 第 3 日 第 4 口
Figure 1 is an explanatory diagram of the core of a boiling water reactor. Figure 2 is a diagram showing the total n error. Figure 3 is a diagram showing the algorithm of the present invention.
FIG. 4 is a configuration diagram of an embodiment of the present invention. 4... Output distribution calculation device, 5... LP-M comparison device. 6... Determination device, 7... TIP travel command device. Agent Patent Attorney Akio Takahashi Figure 7/ 3rd day 4th session

Claims (1)

【特許請求の範囲】 1、原子炉の炉内出力分布を核熱水力モデルに基づいて
計算する原子炉出力分布監視装置において核熱水力モデ
ルの計算精度を向上させるためにTIP(走行型中性子
検出器)を走行させる時期を、核熱水力モデルで計算し
たLPRM(固定型中性子検出器)指示値の計算値と実
測値を比較することによル決定し、運転員に指示するこ
とを特徴とするTIP走行時期決定装置。 2、特許請求の範囲第1項において、LPRM計算値と
実測値の差が判定基準を越え、かつ、計算誤差を補正し
たLPRM計算値と実測値が判定基準を越えなかった場
合に、核熱水力モデルの計算精度が目標値を満足してい
ないと判断し、TIP走行の指令を出すことを特徴とす
るTIP走行時期決定装置。
[Claims] 1. In order to improve the calculation accuracy of the nuclear thermal-hydraulic model in a reactor power distribution monitoring device that calculates the in-reactor power distribution of a nuclear reactor based on a nuclear thermal-hydraulic model, TIP (traveling type Decide when to run the neutron detector (neutron detector) by comparing the calculated value of the LPRM (fixed neutron detector) indication value calculated using the nuclear thermal hydraulic model with the actual value, and instruct the operator. A TIP travel timing determining device characterized by: 2. In claim 1, if the difference between the LPRM calculated value and the actual measured value exceeds the criterion, and the LPRM calculated value and the actual measured value corrected for calculation errors do not exceed the criterion, nuclear heat A TIP travel timing determining device that determines that the calculation accuracy of a hydraulic model does not satisfy a target value and issues a command for TIP travel.
JP58127926A 1983-07-15 1983-07-15 Device for determining time of travelling of tip Pending JPS6021488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127926A JPS6021488A (en) 1983-07-15 1983-07-15 Device for determining time of travelling of tip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127926A JPS6021488A (en) 1983-07-15 1983-07-15 Device for determining time of travelling of tip

Publications (1)

Publication Number Publication Date
JPS6021488A true JPS6021488A (en) 1985-02-02

Family

ID=14972046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127926A Pending JPS6021488A (en) 1983-07-15 1983-07-15 Device for determining time of travelling of tip

Country Status (1)

Country Link
JP (1) JPS6021488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671919A (en) * 1985-08-23 1987-06-09 Westinghouse Electric Corp. Reactor power level monitoring system using an alpha-beta tracker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671919A (en) * 1985-08-23 1987-06-09 Westinghouse Electric Corp. Reactor power level monitoring system using an alpha-beta tracker

Similar Documents

Publication Publication Date Title
CN108986939B (en) Method for verifying calibration value of power coefficient Gk of nuclear reactor power range
JPH10504384A (en) Method and apparatus for accurately calculating pressurized water reactor power from out-of-core detector output current corrected for changes in three-dimensional power distribution and coolant density in the reactor core
JPS633279B2 (en)
CN111967130A (en) Analysis method for supercooling margin fixed value under accident condition of pressurized water reactor nuclear power plant
JPS6021488A (en) Device for determining time of travelling of tip
JP2670400B2 (en) Monitoring equipment for nuclear power plants
JPS58223095A (en) Reactor power distribution monitoring device
JP2509901B2 (en) Reactor power distribution monitoring method
JPH07134196A (en) Reactor monitoring device
JP3084486B2 (en) Monitoring device for reactor neutron detector
JPS592879B2 (en) Local output area monitor substitute value setting method
Shi et al. PHYSICAL VERIFICATION TEST OF C-14 TARGET OF QINSHAN PRESSURIZED HEAVY WATER REACTOR (PHWR) AFTER FIRST REPLACEMENT
JP3137569B2 (en) Method for evaluating neutron source intensity and gamma ray intensity of reactor
JPS59136687A (en) Method of estimating reactor power distribution
Ahn et al. Several problems in reactor coolant system flow rate measurement
Bernard Demonstration of feedback using the MIT-SNL minimum time control laws for the rapid maneuvering of reactor power
CN117727477A (en) Nuclear power plant primary loop main pipeline temperature measurement correction method
You et al. Analysis and Design of Calibration Scheme for Reactor Circulating Loop Coolant Flow Transmitter
JPS5925198B2 (en) Neutron flux calculation device
JPS6095392A (en) Method of monitoring thermnal allowance of boiling-water type reactor
JPS5916674B2 (en) Reactor power control device
CN115388986A (en) Transmitter data processing method and system based on linear function
JPS63121794A (en) Thermal allowance monitor device for nuclear reactor
JPH01207698A (en) Local output distribution monitor apparatus for nuclear reactor
JPH0554917B2 (en)