JPS60214336A - Optical collimator - Google Patents

Optical collimator

Info

Publication number
JPS60214336A
JPS60214336A JP59072252A JP7225284A JPS60214336A JP S60214336 A JPS60214336 A JP S60214336A JP 59072252 A JP59072252 A JP 59072252A JP 7225284 A JP7225284 A JP 7225284A JP S60214336 A JPS60214336 A JP S60214336A
Authority
JP
Japan
Prior art keywords
optical axis
cylindrical lens
end surface
optical fiber
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59072252A
Other languages
Japanese (ja)
Inventor
Norio Nishi
功雄 西
Etsuji Sugita
杉田 悦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59072252A priority Critical patent/JPS60214336A/en
Publication of JPS60214336A publication Critical patent/JPS60214336A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/327Optical coupling means having lens focusing means positioned between opposed fibre ends with angled interfaces to reduce reflections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To align projection parallel luminous flux with the optical axis of a distributed index cylindrical lens by slanting the parallel luminous flux projection end surface of the distributed-index cylindrical lens to the optical axis of the cylindrical lens, and setting an end surface of an incidence optical fiber at a specific position. CONSTITUTION:The end surface 5 of the incidence optical fiber 4 is joined with the vertical end surface 3 of the distributed-index cylindrical lens which has a slanting end surface 2 as a projection terminal and the vertical end surface 3 as an incidence terminal. A light beam 12 incident on the cylindrical lens 1 from the end surface 5 of the incidence optical fiber 4 which is S away from the optical axis center 11 of the vertical end surface 3 onto the plane containing the normal line 10 of the slanting end surface 2 and an optical axis 9 is passed through the lens and then slants by an angle theta0 to the optical axis 9. When the focal length and maximum refractive index of the distributed- index denoted as (f) and (n) and the core diameter of the optical fiber 1 is denoted as (d), the projection end surface of the cylindrical lens 1 is slanted to the optical axis 9 by an angle theta1 determined by theta1>d/2f and the optical axis center of the incidence optical fiber 4 is set (n0-1)ftheta1 away from the optical axis center 9 of the lens 1 on the surface containing the normal line of the projection end surface and the optical axis.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は反射戻り光が少ない光コリメータに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical collimator with less reflected return light.

〔発明の背景〕[Background of the invention]

光コリメータは光合分波器、光スィッチ、レンズ形光コ
ネクタ等を構成する場合に、光ファイバから出射する拡
散光を平行光線に変換するもので、そのレンズとしては
分布屈折率円柱レンズが多く用いられている。しかし従
来の光コリメータでは垂直端面を有する分布屈折率円柱
レンズが用いられているため、上記分布屈折率円柱レン
ズの端面からの反射光が入射光ファイバに戻るという欠
点があった。この欠点を解決するために、上記分布屈折
率円柱レンズの端面に無反射コートを施すことが提案さ
れているが、広い波長帯域にわたる無反射コート膜を形
成することは困難である。また、分布屈折率円柱レンズ
の端面を斜めに研磨して、反射光を入射光ファイバに戻
さないようにする構造が提案されているが、この場合は
上記分布屈折率円柱レンズからの出射平行光束の方向が
分布屈折率円柱レンズの光軸と一致しないため、上記分
布屈折率円柱レンズの回転に対して厳密な角度条件のも
とに使用しなければならないという欠点を有していた。
An optical collimator converts diffused light emitted from an optical fiber into parallel light beams when configuring optical multiplexers/demultiplexers, optical switches, lens-type optical connectors, etc. A distributed index cylindrical lens is often used as the lens. It is being However, since the conventional optical collimator uses a distributed index cylindrical lens having a vertical end face, there is a drawback that the reflected light from the end face of the distributed index cylindrical lens returns to the incident optical fiber. In order to solve this drawback, it has been proposed to apply an anti-reflection coating to the end face of the distributed index cylindrical lens, but it is difficult to form an anti-reflection coating over a wide wavelength band. In addition, a structure has been proposed in which the end face of the distributed index cylindrical lens is polished obliquely to prevent the reflected light from returning to the input optical fiber, but in this case, the output parallel light beam from the distributed index cylindrical lens Since the direction of the gradient index cylindrical lens does not coincide with the optical axis of the gradient index cylindrical lens, it has the disadvantage that it must be used under strict angular conditions with respect to the rotation of the gradient index cylindrical lens.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を除くために、分布屈折率円柱レン
ズの平行光束出射端面を、上記円柱レンズの光軸に対し
て傾斜させるとともに、入射光ファイバの端面を所定の
位置に設定することによって、出射平行光束を上記分布
屈折率円柱レンズの光軸と一致させることを目的とする
In order to eliminate the above-mentioned drawbacks, the present invention tilts the parallel light beam output end face of the distributed index cylindrical lens with respect to the optical axis of the cylindrical lens, and sets the end face of the input optical fiber at a predetermined position. , the purpose is to make the emitted parallel light beam coincide with the optical axis of the distributed index cylindrical lens.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明による光コリメータ
は、分布屈折率円柱レンズの焦点位置に光フアイバ端部
を配置してなる光コリメータにおいて、上記分布屈折率
円柱レンズの焦点距離をf、最大屈折率をn、光ファイ
バのコア径をdとしたとき、上記分布屈折率円柱レンズ
の出射端面を光軸に対してθ1>d/2fで決まる角度
θ1だけ傾けるとともに、入射光ファイバの光軸中心を
、分布屈折率円柱レンズの光軸中心から出射端面の法線
と光軸を含む面上に、(no−1)fθ1だけ離れた位
置に設けることによって、分布屈折率円柱レンズの出射
平行光束を上記円柱レンズの光軸と一致させるようにし
たものである。
In order to achieve the above object, an optical collimator according to the present invention is an optical collimator in which an end of an optical fiber is arranged at a focal position of a distributed index cylindrical lens, and the focal length of the distributed index cylindrical lens is set to f, a maximum. When the refractive index is n and the core diameter of the optical fiber is d, the output end face of the distributed index cylindrical lens is tilted with respect to the optical axis by an angle θ1 determined by θ1>d/2f, and the optical axis of the input optical fiber is By setting the center at a position away from the optical axis center of the distributed index cylindrical lens by (no-1) fθ1 on a plane including the normal to the output end face and the optical axis, the output parallelism of the distributed index cylindrical lens can be adjusted. The light beam is made to coincide with the optical axis of the cylindrical lens.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による光コリメータの一実施例を示す断
面図、第2図は上記実施例の動作原理を示す説明図、第
3図は本発明による光コリメータの他の実施例を示す断
面図である。第1図に示す実施例において、分布屈折率
円柱レンズ1は0.25ピツチ、最大屈折率1.55、
焦点距離2.8mで、出射端に傾斜端面2および入射端
に垂直端面3を有している。コア径50I1mの入力光
ファイバ4の端面5はファイバホルダ6に保持されて上
記円柱レンズ1の垂直端面3に接合し、上記円柱レンズ
1とともにレンズホルダ7に収納され、接着剤8により
上記端面5が垂直端面3の定位置に固定されている。上
記構成の光コリメータにおいて、入力光ファイバ4から
入射した光は端面5から分布屈折率円柱レンズ1内に導
かれ、0.25ピツチの上記円柱レンズ1内を通過する
ときに平行光束に変換されて、傾斜端面2から自由空間
中に出射される。本実施例では入射光ファイバ4の端面
5の位置が、上記円柱レンズ1の光軸中心から傾斜端面
2の法線と光軸を含む面上28I1mの距離に設置され
、かつ傾斜端面2の傾斜角度が1.02°に設定されて
いるため、出射平行光束は上記円柱レンズ1の光軸と一
致する。また傾斜端面2で反射した光は上記円柱レンズ
1の中を逆行しながら集束し、入射光ファイバ4の端面
5に結像して戻り光となることがない。
FIG. 1 is a cross-sectional view showing one embodiment of the optical collimator according to the present invention, FIG. 2 is an explanatory diagram showing the operating principle of the above embodiment, and FIG. 3 is a cross-sectional view showing another embodiment of the optical collimator according to the present invention. It is a diagram. In the embodiment shown in FIG. 1, the distributed index cylindrical lens 1 has a pitch of 0.25, a maximum refractive index of 1.55,
It has a focal length of 2.8 m, and has an inclined end face 2 at the output end and a vertical end face 3 at the input end. The end face 5 of the input optical fiber 4 with a core diameter of 50 I1 m is held by a fiber holder 6 and joined to the vertical end face 3 of the cylindrical lens 1, and is housed together with the cylindrical lens 1 in the lens holder 7, and the end face 5 is bonded with an adhesive 8. is fixed at a fixed position on the vertical end surface 3. In the optical collimator with the above configuration, the light incident from the input optical fiber 4 is guided into the distributed index cylindrical lens 1 from the end face 5, and is converted into a parallel light beam when passing through the 0.25 pitch cylindrical lens 1. Then, the light is emitted from the inclined end face 2 into free space. In this embodiment, the end face 5 of the input optical fiber 4 is located at a distance of 28I1 m from the center of the optical axis of the cylindrical lens 1 on a plane including the normal line of the inclined end face 2 and the optical axis, and the angle of the inclined end face 2 is Since the angle is set to 1.02°, the output parallel light beam coincides with the optical axis of the cylindrical lens 1. Further, the light reflected by the inclined end face 2 is converged while traveling backwards inside the cylindrical lens 1, and does not form an image on the end face 5 of the input optical fiber 4 and become returned light.

第1図に示した上記実施例の動作原理を第2図を用いて
以下に説明する。第2図において、出射端を傾斜端面2
、入射端を垂直端面3とする分布屈折率円柱レンズ1の
垂直端面3に、入射光ファイバ4の端面5を接合してい
る。図における9は上記円柱レンズ1の光軸、10は傾
斜端面2の光軸中心における法線を示し、11は垂直端
面3上の光軸中心を示している。垂直端面3の光軸中心
11から、傾斜端面2の法線10と光軸9を含む面上に
Sだけ離れた入射光ファイバ4の端面5から円柱レンズ
1に入射した光線12は、0.25ピツチのレンズを通
過後、光軸9に対して次式で示される角度θ。たけ傾斜
する。
The operating principle of the embodiment shown in FIG. 1 will be explained below with reference to FIG. 2. In Figure 2, the output end is set to the inclined end face 2.
, an end face 5 of an input optical fiber 4 is bonded to a vertical end face 3 of a distributed index cylindrical lens 1 whose input end is a vertical end face 3 . In the figure, 9 indicates the optical axis of the cylindrical lens 1, 10 indicates the normal line to the optical axis center of the inclined end surface 2, and 11 indicates the optical axis center on the vertical end surface 3. A light ray 12 that enters the cylindrical lens 1 from the end face 5 of the input optical fiber 4, which is spaced by S from the optical axis center 11 of the vertical end face 3 on a plane including the normal 10 of the inclined end face 2 and the optical axis 9, is 0. After passing through a 25-pitch lens, the angle θ with respect to the optical axis 9 is expressed by the following formula. tilt high.

ここでn。は分布屈折率円柱メンズ1の最大屈折率、f
は焦点距離である。傾斜端面2の傾斜角度をθ、とすれ
ば、入射光線12が傾斜端面2の法線10に対してなす
角度θ2は次式で示される。
Here n. is the maximum refractive index of the distributed index cylinder Mens 1, f
is the focal length. If the inclination angle of the inclined end face 2 is θ, then the angle θ2 that the incident light ray 12 makes with respect to the normal 10 of the inclined end face 2 is expressed by the following equation.

θ2=01−〇〇 (2) 出射光13が法線10に対してなす角度はスネルの法則
により5in−’ (n osunθz)#noθ2で
ある。したがって出射光13の方向が上記円柱レンズ1
の光軸9と一致するためには、つぎの(3)式が成立し
なければならない。
θ2=01−〇〇 (2) The angle that the emitted light 13 makes with respect to the normal 10 is 5 in-' (no sun θz) #no θ2 according to Snell's law. Therefore, the direction of the emitted light 13 is the same as that of the cylindrical lens 1.
In order to coincide with the optical axis 9 of , the following equation (3) must hold true.

noθ2=θ□ (3) 上記(1)〜(3)式からつぎの(4)式の関係が得ら
れる。
no θ2=θ□ (3) From the above equations (1) to (3), the following relationship of equation (4) is obtained.

入射光線12の一部は傾斜端面2で反射し反射光線14
となるが、そのとき、入射光12と反射光14の角度差
は2θ2となるから、垂直端面3上の入力光ファイバ4
の端面5の中心と反射光14が作る像15の中心とはつ
ぎの(5)式で与えられる距離Wだけ離れている。
A part of the incident light ray 12 is reflected by the inclined end face 2 and becomes a reflected light ray 14.
At that time, since the angle difference between the incident light 12 and the reflected light 14 is 2θ2, the input optical fiber 4 on the vertical end face 3
The center of the end surface 5 and the center of the image 15 formed by the reflected light 14 are separated by a distance W given by the following equation (5).

戻り光が生じないためにはw>dでなければならない。In order for no return light to occur, w>d must be satisfied.

ここでdは入力光ファイバのコア径である。Here, d is the core diameter of the input optical fiber.

これより傾斜端面2の傾斜角度θ1は次式の条件を満足
させる必要がある。
From this, the inclination angle θ1 of the inclined end face 2 must satisfy the following condition.

θ、>d/2f (6) 第1図に示す実施例においては、入力光ファイバ4のコ
ア径を50−とし、最大屈折率1.55、焦点距離2.
8nmの円柱レンズ1を用いているので、(6)式より
最小の傾斜端面角度は0.51°、入射光ファイバ4の
軸ずれ量が14−となるが、角度設定誤差、位置合わせ
誤差を見込んでそれぞれ1.02” 、 zaIlmと
している。
θ,>d/2f (6) In the embodiment shown in FIG. 1, the core diameter of the input optical fiber 4 is 50-, the maximum refractive index is 1.55, and the focal length is 2.
Since an 8 nm cylindrical lens 1 is used, the minimum inclined end face angle is 0.51° and the axis deviation of the input optical fiber 4 is 14- from equation (6), but the angle setting error and alignment error are They are estimated to be 1.02" and zaIlm, respectively.

第3図に示す本発明の他の実施例は、傾斜端面を有する
0、25ピツチの分布屈折率円柱レンズ16a、16b
のそれぞれの垂直端面に、入射光ファイバ17a、17
bの端面を接合し、これらの入射光ファイバ17a、1
7bを保持するファイバホルダ18a、18bを上記円
柱レンズ16a、16bとともにレンズホルダ19a、
19bにそれぞれ固定し、これらのレンズホルダ19a
、19bは、はぼ全長を蔽う調心スリーブ20内に各円
柱レンズ16a、16bの傾斜端面を相対させて支持さ
れている。本実施例では調心スリーブ20の両端から前
記第1図に示した光コリメータをそれぞれ挿入して光結
合を得るため、光軸方向の許容位置ずれ量が極めて大き
な光コネクタが得られる。相手側コリメータのレンズ端
面からの反射光は光軸に対して傾斜しているため、第2
図を用いて示した上記条件を満たしていれば原理的に戻
り光とはならない。しかし、傾斜端面間の多重反射光の
干渉による損失の変動を避けるためには、第3図に示す
ように、分布屈折率円柱レンズ16a、16bの面傾斜
端面が光軸に垂直な面に対して鏡映の関係になるように
配置するのが望ましい。このためには調心スリーブ20
とレンズホルダ19a、19bとの回転を防止する公知
の技術を適用することができる。
Another embodiment of the present invention shown in FIG.
The input optical fibers 17a, 17
b, and these input optical fibers 17a, 1
The fiber holders 18a and 18b holding the lens 7b are attached together with the cylindrical lenses 16a and 16b to the lens holder 19a,
19b, and these lens holders 19a
, 19b are supported within a centering sleeve 20 that covers almost the entire length of the cylindrical lenses 16a, 16b with their inclined end faces facing each other. In this embodiment, the optical collimators shown in FIG. 1 are inserted from both ends of the alignment sleeve 20 to obtain optical coupling, so that an optical connector with an extremely large allowable displacement in the optical axis direction can be obtained. Since the reflected light from the lens end face of the other collimator is inclined with respect to the optical axis, the second
If the above-mentioned conditions shown in the figure are satisfied, in principle, there will be no return light. However, in order to avoid fluctuations in loss due to interference of multiple reflected light between the inclined end surfaces, it is necessary to align the inclined end surfaces of the distributed index cylindrical lenses 16a and 16b with respect to the plane perpendicular to the optical axis, as shown in FIG. It is desirable to arrange them so that they are mirrored. For this purpose, the alignment sleeve 20
A known technique for preventing the lens holders 19a and 19b from rotating can be applied.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による光コリメータは、分布屈折率
円柱レンズの焦点距離位置に光フアイバ端部を配置して
なる光コリメータにおいて、上記分布屈折率円柱レンズ
の焦点距離をf、最大屈折率をn、光ファイバのコア径
をdとしたとき、上記分布屈折率円柱レンズの出射端面
を光軸に対してθ□>d/2fで決まる角度θ□だけ傾
けるとともに、入射光ファイバの光軸中心を、分布屈折
率円柱レンズの光軸中心がら出射端面の法線と光軸を含
む面上に、(no 1)fθ、だけ離れた位置に設ける
ことによって、出射端面の反射による反射戻り光がなく
、かつ出射平行光束の方向が分布屈折率円柱レンズの光
軸に一致するため、光軸を中心とする回転に対して極め
て特性変動が少ない光コリメータを得ることができる。
As described above, the optical collimator according to the present invention is an optical collimator in which the end of an optical fiber is arranged at the focal length position of a distributed index cylindrical lens, where the focal length of the distributed index cylindrical lens is f, and the maximum refractive index is f. n, and when the core diameter of the optical fiber is d, the output end face of the distributed index cylindrical lens is tilted with respect to the optical axis by an angle θ□ determined by θ□>d/2f, and the optical axis center of the input optical fiber is By providing (no 1) fθ away from the optical axis center of the distributed index cylindrical lens on the plane that includes the normal to the output end face and the optical axis, the reflected return light due to reflection from the output end face can be prevented. Moreover, since the direction of the emitted parallel light beam coincides with the optical axis of the distributed index cylindrical lens, it is possible to obtain an optical collimator with extremely small characteristic fluctuations with respect to rotation around the optical axis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光コリメータの一実施例を示す断
面図、第2図は上記実施例の動作原理を示す説明図、第
3図は本発明による光コリメータの他の実施例を示す断
面図である。 1・・・分布屈折率円柱レンズ 2・・・出射端面(傾斜端面) 4・・・光ファイバ 5・・・光ファイバの端部 9・・・光軸 10・・・出射端面における法線 特許出願人 日本電信電話公社 代理人弁理士 中村 純之助
FIG. 1 is a cross-sectional view showing one embodiment of the optical collimator according to the present invention, FIG. 2 is an explanatory diagram showing the operating principle of the above embodiment, and FIG. 3 is a cross-sectional view showing another embodiment of the optical collimator according to the present invention. It is a diagram. 1... Distributed refractive index cylindrical lens 2... Output end face (slanted end face) 4... Optical fiber 5... Optical fiber end 9... Optical axis 10... Normal line patent at the output end face Applicant: Junnosuke Nakamura, Patent Attorney, Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] 分布屈折率円柱レンズの焦点位置に光フアイバ端部を配
置してなる光コリメータにおいて、上記分布屈折率円柱
レンズの焦点距離をf、最大屈折率をn、光ファイバの
コア径をdとしたとき、上記分布屈折率円柱レンズの出
射端面を光軸に対してO工>d/2fで決まる角度θ、
たけ傾けるとともに、入射光ファイバの光軸中心を、分
布屈折率円柱レンズの光軸中心から出射端面の法線と光
軸を含む面上に、(no−1)fθ、たけ離れた位置に
設けることを特徴とする光コリメータ。
In an optical collimator in which an optical fiber end is placed at the focal point of a distributed index cylindrical lens, where f is the focal length of the distributed index cylindrical lens, n is the maximum refractive index, and d is the core diameter of the optical fiber. , the angle θ of the output end face of the distributed index cylindrical lens with respect to the optical axis determined by O>d/2f,
At the same time, the optical axis center of the input optical fiber is set at a position far away from the optical axis center of the distributed index cylindrical lens by (no-1) fθ on a plane that includes the normal to the output end face and the optical axis. An optical collimator characterized by:
JP59072252A 1984-04-11 1984-04-11 Optical collimator Pending JPS60214336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072252A JPS60214336A (en) 1984-04-11 1984-04-11 Optical collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072252A JPS60214336A (en) 1984-04-11 1984-04-11 Optical collimator

Publications (1)

Publication Number Publication Date
JPS60214336A true JPS60214336A (en) 1985-10-26

Family

ID=13483913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072252A Pending JPS60214336A (en) 1984-04-11 1984-04-11 Optical collimator

Country Status (1)

Country Link
JP (1) JPS60214336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111804A (en) * 1989-09-27 1991-05-13 Anritsu Corp Low-reflection collimation optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111804A (en) * 1989-09-27 1991-05-13 Anritsu Corp Low-reflection collimation optical device

Similar Documents

Publication Publication Date Title
JP2786322B2 (en) Reflection reduction assembly
JPH02248905A (en) Optical fiber connector
US6501876B1 (en) Bidirectional optical communication device and bidirectional optical communication apparatus
GB2031182A (en) Optical waveguid arrangements
WO2021056836A1 (en) Optical coupling assembly and optical transmission assembly
US6832859B1 (en) Free space optical system with multiple function detectors
JPH11160569A (en) Optical coupling circuit
JPS60214336A (en) Optical collimator
JP2898760B2 (en) Receptacle type semiconductor laser module
JPH0488308A (en) Light receiving device
US5721426A (en) Optical transmitting/receiving module having communication lines coupled by a single lens
JPH02118503A (en) Optical multiplexer/demultiplexer
JPS60138506A (en) Photodetecting element module
JPS6125104A (en) Compound lens
JPH1062648A (en) Optical fiber collimator
JPH0556483B2 (en)
JP3077554B2 (en) Optical isolator
JPH09258061A (en) High-stability photodetecting device
CN115113336B (en) Polarization coupler and manufacturing method thereof
CN210605095U (en) Optical module
JPH04301809A (en) Light reception module
JPH07117610B2 (en) Optical attenuator
JPS6180209A (en) Photocoupler between light source and optical fiber
JPS59184584A (en) Semiconductor laser module
JPH04131817A (en) Collimator