JPS60213573A - Vehicle steering device - Google Patents

Vehicle steering device

Info

Publication number
JPS60213573A
JPS60213573A JP59068182A JP6818284A JPS60213573A JP S60213573 A JPS60213573 A JP S60213573A JP 59068182 A JP59068182 A JP 59068182A JP 6818284 A JP6818284 A JP 6818284A JP S60213573 A JPS60213573 A JP S60213573A
Authority
JP
Japan
Prior art keywords
control valve
steering
rear wheel
power cylinder
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59068182A
Other languages
Japanese (ja)
Other versions
JPH0512186B2 (en
Inventor
Seiji Komamura
駒村 清二
Katsuhiro Suzuki
勝博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP59068182A priority Critical patent/JPS60213573A/en
Publication of JPS60213573A publication Critical patent/JPS60213573A/en
Publication of JPH0512186B2 publication Critical patent/JPH0512186B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1554Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a fluid interconnecting system between the steering control means of the different axles
    • B62D7/1572Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a fluid interconnecting system between the steering control means of the different axles provided with electro-hydraulic control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To aim at improving the steering function of rear wheels, by increasing the flow rate of fluid fed into a rear wheel control valve in proportion to increases in the pressure of a reaction force chamber in a front wheel control valve. CONSTITUTION:In the intermediate section of a hydraulic oil feed passage 28 for a rear wheel control valve 50, there is provided a solenoid type flow control valve 80 provided with a variable orifice passage, which energizes a solenoid 84 in association with a signal from a controller 100 to adjust the constriction degree of hydraulic oil so that the flow rate of hydraulic oil fed into a power cylinder 20 through a rear wheel control valve 50 is adjusted. A controller 100 in which desirable flow rates of hydraulic oil fed into the rear wheel power cylinder 20 in accordance with the running conditions of the vehicle are previously stored, controls the flow control valve 80 in accordance with input signals which are delivered from a steering angle sensor 102 and a reaction force pressure sensor 103, indicating the steered angle of the front wheels and the pressure in a reaction force chamber 71, respectively.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は車両の操舵装置に係シ、特に前輪および後輪全
同時に操舵するに好適な車両の操舵装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a vehicle steering system, and more particularly to a vehicle steering system suitable for simultaneously steering both front wheels and rear wheels.

〔発明の背景〕[Background of the invention]

車両操舵装量の動力舵取装置には、操舵力の軽減を図る
ためのパワーシリンダが備えられておシ、車両の操舵は
一般には前輪方式で、この前輪の転舵にパワーシリンダ
ケ用いている。最近では小回シ性能を良くするため、あ
るいはスラローム走行や縦列駐車會し易くする等の観点
から、前輪とともに後輪を転舵する前後輪転舵方式が採
用され5前後輪の転舵にもパワーシリンダを用いるよう
になっている(特開昭58−112875号公報参照)
The power steering device of the vehicle steering equipment is equipped with a power cylinder to reduce the steering force. Vehicle steering is generally a front wheel system, and the power cylinder cylinder is used to steer the front wheels. There is. Recently, in order to improve small turning performance or to make slalom driving and parallel parking easier, a front and rear wheel steering system has been adopted in which the rear wheels are steered along with the front wheels. A cylinder is used (see Japanese Unexamined Patent Publication No. 112875/1987).
.

るので、この門化にあわせて逆に操舵反力が太門〈ガる
ようにして操舵感を一定に保ち安定した運転ができるよ
うな反力制御式の速度感応システムが採用されている。
Therefore, in line with this trend, a reaction force control type speed-sensitive system has been adopted that reduces the steering reaction force to a large extent to maintain a constant steering feel and ensure stable operation.

しかし、前記した特開昭58−112875号公報に示
されるような従来の車両操舵装置では。
However, in the conventional vehicle steering system as shown in the above-mentioned Japanese Patent Laid-Open No. 58-112875.

第1図に示されるように、後輪2を前輪1と同期させて
転舵できるようにするため、両端にピニオン3A、3B
の形成場れた作動軸4からなる後輪転舵力伝達経路5、
クランク部材6.コンロッド7等からなる後輪転舵機構
8を設けねばならず、装置全体が複雑化かつ大型化する
という問題点があった。また、この従来の方式では、伝
達経路5゜転舵機構8内の機械的誤差のため1前後輪全
正確に同じたけ転舵することはできなかった。
As shown in FIG. 1, in order to enable the rear wheels 2 to be steered in synchronization with the front wheels 1, pinions 3A and 3B are provided at both ends.
A rear wheel steering force transmission path 5 consisting of an operating shaft 4,
Crank member 6. Since a rear wheel steering mechanism 8 consisting of a connecting rod 7 and the like must be provided, there is a problem in that the entire device becomes complicated and large. Further, in this conventional system, it was not possible to accurately steer all of the front and rear wheels by the same amount due to mechanical errors in the transmission path 5° steering mechanism 8.

そこで、パワーシリンダ作動機構全コンパクト化し、か
つ前後輪の転舵量に誤差が生じないようにするため、上
記機械式後輪転舵方式に代えて5操舵軸の回動により同
期して移動可能なスプールをそれぞれ内蔵し前輪用およ
び後輪用の両パワーシリンダへのシリンダ作動流体供給
方向をそれぞれ制御するコントロールバルブを並設した
2連式コントロールバルブ機構を用いて前後輪を同時に
操舵できるパワーステアリング装置が提案されるに至っ
た。この2連式コントロールバルブ機構を用いたパワー
ステアリング装置では1前後輪転舵量は全く同一となっ
て好ま[2いように思える。
Therefore, in order to make the power cylinder operating mechanism completely compact and to prevent errors in the amount of steering of the front and rear wheels, instead of the mechanical rear wheel steering method described above, it is possible to move synchronously by rotating the five steering axes. A power steering device that can simultaneously steer the front and rear wheels using a dual control valve mechanism that has a built-in spool and a control valve that controls the direction of cylinder working fluid supply to both the front and rear power cylinders. has been proposed. In a power steering device using this dual control valve mechanism, the amount of steering for each front and rear wheel is exactly the same, which seems preferable.

しかし、車両旋回の際、車両は一定の旋回半径で旋回す
るものとは限らず、一般には刻々と旋回生徒が変化し、
これに伴って前後輪の各旋回半径もそれぞれ異なってく
るので1前後輪の転舵量はそれぞれの旋回半径に対応す
る転舵角とすることが望ましい。即ち、後輪の操向追従
性全長くして安定した走行を得るためには、後輪転舵量
は前輪のそれよりわずかに太き目にすることが好ましい
にも拘らず、操舵によって前輪と後輪とが全く同−転舵
量となったのでは後輪にすべりが生じ、そのため安定し
た走行ができないという新たな問題を提起するに至った
However, when a vehicle turns, the vehicle does not necessarily turn with a constant turning radius, and generally the turning radius changes from moment to moment.
As a result, the turning radii of the front and rear wheels also differ, so it is desirable that the turning amount of one front and rear wheel be a turning angle that corresponds to each turning radius. In other words, in order to lengthen the steering followability of the rear wheels and achieve stable running, it is preferable to make the amount of rear wheel steering slightly wider than that of the front wheels. If the rear wheels and the rear wheels were steered by exactly the same amount, slippage would occur in the rear wheels, resulting in a new problem in that stable driving could not be achieved.

〔発明の目的〕[Purpose of the invention]

本発明は前記問題点に鑑みなされたもので、装置構造を
コンパクトなものとするとともに、車両の如何なる走行
状況においても安定した走行全実現できる車両操舵装置
を提供することにある。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a vehicle steering device which has a compact device structure and which can realize stable driving under any driving conditions of the vehicle.

〔発明の概要〕[Summary of the invention]

まず1本発明の原理を簡単に説明する。 First, the principle of the present invention will be briefly explained.

同期して移動するバルブスプールケ備え−fcZ連式コ
ントロールバルブ機構を用いて前後輪の両パワーシリン
ダを制御すると1両パワーシリンダへの供給圧油流量は
同一なため、両パワーシリンダの容積を等しくすれば、
前後輪の転舵量は全く同一にすることができるが、実際
にはシリンダ容積や伝導リンク比等を適度に選択して前
後輪の転舵量が所定の比例関係になるように設定する。
Equipped with valve spools that move synchronously - When controlling both front and rear power cylinders using the fcZ linked control valve mechanism, the flow rate of pressure oil supplied to each power cylinder is the same, so the volume of both power cylinders can be made equal. if,
Although the steering amounts of the front and rear wheels can be made to be exactly the same, in reality, the cylinder volume, transmission link ratio, etc. are appropriately selected so that the steering amounts of the front and rear wheels are set in a predetermined proportional relationship.

しかし、前輪用コントロールバルブは1例えば車速増大
に比例して操舵力が重くなるようにして操舵惑全一定に
保つ反力制御式の速度感応システムを備えているため、
車速が大となればなる程運転者の意図する操舵量に等し
い量の後輪操舵がなされない。そこで後輪操舵が運転者
の意図に合致 ゛し、さらに前輪操舵量に対し最適な後
輪操舵量となるように後輪用パワーシリンダへの流体の
供給流量を補正してやればよいという観点から本発明を
なすに至ったものである。
However, the front wheel control valve is equipped with a reaction force control type speed sensitive system that keeps the steering torque constant by increasing the steering force in proportion to the increase in vehicle speed.
As the vehicle speed increases, the rear wheels are not steered by an amount equal to the amount of steering intended by the driver. Therefore, from the perspective of correcting the flow rate of fluid supplied to the rear wheel power cylinder so that the rear wheel steering matches the driver's intention and the amount of rear wheel steering is optimal for the amount of front wheel steering, the present invention was developed. This led to the invention.

例えば、第2図は2連式コントロールパルプ機構を備え
たパワーステアリング機構の車速Vに対する後輪パワー
シリンダへの流体供給流量Qの特性を示す図であシ、こ
の図においてラインXは望ましい供給流量特性を示すも
のであるが、後輪用パワーシリンダに供給される流量は
前輪の速度感応システムが働いてバルブ機構の拘束が越
えるためコントロールパルプの変位が拘束されてライン
Yに示されるように少なくなってしまう。そこで、後輪
用パワーシリンダへの供給流量特性全ライン2で示され
るように制御すれば、前輪側パワーステアリングに速度
感応システム(本発明にあっては、車速増大に比例略せ
て反力圧力制御弁を作用させ、バルブスプールの移動全
その両端に形成された反力室への供給圧力全増加【7て
抑制することによって操舵反力を高めるシステム)が働
いても後輪は運転者の意図どうりに望ましい転舵量に補
正されて操舵されることになるのである。
For example, Fig. 2 is a diagram showing the characteristics of the fluid supply flow rate Q to the rear power cylinder with respect to the vehicle speed V of a power steering mechanism equipped with a dual control pulp mechanism, and in this figure, line X is the desired supply flow rate. The flow rate supplied to the power cylinder for the rear wheels is reduced as shown by line Y because the front wheel speed sensitive system works and exceeds the restriction of the valve mechanism, so the displacement of the control pulp is restricted. turn into. Therefore, if the supply flow rate characteristic to the rear wheel power cylinder is controlled as shown in line 2, the front wheel power steering will be equipped with a speed sensitive system (in the present invention, the reaction force pressure will be controlled proportionally to the increase in vehicle speed). Even if the valve is activated and the supply pressure to the reaction force chambers formed at both ends of the valve spool is increased (a system that increases the steering reaction force by suppressing the movement of the valve spool), the rear wheels will not move as intended by the driver. As expected, the steering is corrected to the desired steering amount.

このように1本発明に係る車両操舵装置は、操舵軸ノ回
動ニよシ同期して移動するバルブスプールをそれぞわ、
内蔵【、前輪および後輪用のコントロー ル/<ルア”
k 並設した2連式コントロールパルプ機構會用いて前
輪用および後輪用のパワーシリンダ會同時に作動甥せ1
反力圧力制御弁をして少なくとも車速または/および舵
角の増加に応じて前輪側コントロールバルブ機構におけ
る反力室への供給圧力を高めてバルブスプールの動きを
抑制するとともに、後輪用コントロールバルブへの流体
供給路途中に設けられた流量制御弁全して後輪転舵量が
前輪転舵量に対し最適転舵量となるような補正制御、例
えば前記反力室の圧力上昇に比例さあり、これによって
前記目的が達成されるのである。
In this manner, the vehicle steering system according to the present invention has valve spools that move in synchronization with the rotation of the steering shaft.
Built-in controls for front and rear wheels
k The power cylinders for the front and rear wheels can be operated simultaneously by using two parallel control pulp mechanisms.
The reaction pressure control valve suppresses the movement of the valve spool by increasing the pressure supplied to the reaction chamber in the front wheel side control valve mechanism at least in response to an increase in vehicle speed and/or steering angle, and also controls the movement of the valve spool. A flow control valve installed in the middle of the fluid supply path to the flow rate control valve performs correction control such that the amount of rear wheel turning becomes the optimum amount of turning with respect to the amount of front wheel turning, for example, it is proportional to the pressure rise in the reaction force chamber. , this achieves the above objective.

さらに、後輪用パワーシリンダへの作動流体送帰路に方
向切換弁を設け、所定設定速度以上となると作動流体送
帰路方向を逆転はせ、中高速時には前後輪転舵方向を同
一方向とし、低速時にはそ時の小回シ性能を良くするこ
ともできる。
Furthermore, a directional control valve is installed in the working fluid return path to the rear wheel power cylinder, and when the speed exceeds a predetermined setting, the direction of the working fluid return path is reversed, so that the front and rear wheels are steered in the same direction at medium and high speeds, and at low speeds. It is also possible to improve the small turning performance at that time.

〔発明の実施例〕[Embodiments of the invention]

次に1本発明の実施例を図面に基づいて説明する。 Next, an embodiment of the present invention will be described based on the drawings.

第3図は本実施例に係る車両操舵装置を示すものである
。この図において、車両操舵装置は、前輪12および後
輪14の転舵補助力を発生する前輪用パワーシリンダ1
0および後輪用パワーシリンダ20と、同lAして移動
するバルブスフ” −ル’1それぞれ内蔵するとともに
両パワーシリンダ10゜20それぞれへの圧油供給方向
を制御するコントロールバルブが並設されたコントロー
ルバルブ機構30と、各コントロールバルブ(前輪コン
トロールバルブ4O,後輪コントロールバルブ50)’
i介して両パワーシリンダに圧油管供給する油ポンプ6
0 (60A、60B)と、前輪用コントロールバルブ
40内のスプールの動きを制御する反力圧力制御弁70
と、後輪コントロールバルブへの圧油供給路に設けら力
た流量制御弁8oと、後輪用パワーシリンダ20への圧
油の送局路92途中に設けら:fiyv方向切換弁90
と、圧力制御弁7o、流量制御弁80.方向切換弁9(
1作動させるための制御信号ケ送るコントローラ100
と、から構成されている。
FIG. 3 shows a vehicle steering system according to this embodiment. In this figure, the vehicle steering system includes a front wheel power cylinder 1 that generates steering assist force for front wheels 12 and rear wheels 14.
The power cylinder 20 for the 0 and rear wheels, and the valve block 1 that moves in the same direction, are built in, and a control valve that controls the direction of pressure oil supply to both power cylinders 10 and 20 is installed in parallel. Valve mechanism 30 and each control valve (front wheel control valve 4O, rear wheel control valve 50)'
Oil pump 6 that supplies pressure oil pipes to both power cylinders via i
0 (60A, 60B) and a reaction pressure control valve 70 that controls the movement of the spool in the front wheel control valve 40.
, a flow control valve 8o provided in the pressure oil supply path to the rear wheel control valve, and a fiyv direction switching valve 90 provided in the middle of the pressure oil transmission path 92 to the rear wheel power cylinder 20.
, a pressure control valve 7o, a flow rate control valve 80. Directional switching valve 9 (
1 Controller 100 that sends control signals for operation
It consists of and.

前輪用パワーシリンダ10および後輪用パワーシリンダ
20内にはそれぞれピストン(図示せず)が挿通嘔しで
おシ、両ピストンの両端部はそれぞれ前後輪におけるタ
イロッド15.16に連接されておシ、シリンダ内への
圧油の供給にょシピストンの摺動をして車輪12.14
がそれぞれ転舵するようになっている。
Pistons (not shown) are inserted into the power cylinder 10 for the front wheels and the power cylinder 20 for the rear wheels, respectively, and both ends of both pistons are connected to tie rods 15 and 16 of the front and rear wheels, respectively. , the pressure oil is supplied into the cylinder, the piston slides, and the wheels 12.14
are designed to steer respectively.

車両(外郭は符号17で示す)のハンドル18は転舵軸
19を介してピニオン軸21に接続されておシ、ピニオ
ン軸21は、第4図に示されるように、ピニオン21A
が一体に形成されて軸受22で回動自在に支承されてい
る。このピニオン軸21と直交状態にビニオン21Aと
噛合するラック23が配設されており、ラック23は前
輪用パワーシリンダ10内を挿通ずるピスト/に連設さ
れており、ハンドル18の操作によって前輪12を転舵
できるようになっている。
A steering wheel 18 of the vehicle (the outer frame is indicated by reference numeral 17) is connected to a pinion shaft 21 via a steering shaft 19, and the pinion shaft 21 is connected to a pinion 21A as shown in FIG.
is integrally formed and rotatably supported by a bearing 22. A rack 23 that meshes with the pinion 21A is disposed perpendicular to the pinion shaft 21, and the rack 23 is connected to a piston that passes through the power cylinder 10 for the front wheels. It is now possible to steer the ship.

2連式コントロールバルブ機構3oは、第4図に示され
るように、それぞれ独立したバルブスプール挿通孔41
 、 s 1 yt有する前輪コントロールバルブ40
と後輪コントロールバルブ5oとが並設されてピニオン
軸21のまわシに組付けられた構造となっており、この
スプール挿通孔41,51はピニオン軸21と直交状態
に形成されてお、シ、この挿通孔41,51内にはポン
プ60A、60Bからポンプボート45,55に介して
供給される圧油全パワーシリンダ10.20に送油方向
を選択して供給するバルブスプール42.52が配設嘔
れている。なお第3図、第5図において符号61 (6
1A、61B)は油タンクを示す。パルプスプール42
.52外周には第5図、第6図に示されるように、スプ
ール挿通孔41,51内周壁との間で圧油通路を形成す
る環状溝43,44゜53.54がそれぞれ設けられ、
またスプール挿通孔41,51内周壁にはこれらの溝4
3,44゜53.54とそれぞれ協働してパワーシリン
ダ10゜20の油圧室をポンプ側又はタンク側と選択的
に連通ずるポンプポー)45.55及びシリンダボー)
46,47.56.57%タンクボート48゜58が形
成されておシ、バルブスプール42.52が図中中立位
置から右方又は左方へ移動すると、その移動方向に応じ
てパワーシリンダ10.20へと向けられる圧油の供給
方向が切シ換わるようになっている。
As shown in FIG. 4, the dual control valve mechanism 3o has independent valve spool insertion holes 41.
, front wheel control valve 40 with s 1 yt
The spool insertion holes 41 and 51 are formed perpendicularly to the pinion shaft 21, and the rear wheel control valve 5o is arranged in parallel and assembled to the rotation of the pinion shaft 21. In the insertion holes 41 and 51, there is a valve spool 42.52 which selectively supplies oil to the full power cylinder 10.20 from the pumps 60A and 60B via the pump boats 45 and 55. The arrangement is disgusting. In addition, in FIGS. 3 and 5, the reference numeral 61 (6
1A, 61B) indicate oil tanks. Pulp spool 42
.. As shown in FIGS. 5 and 6, annular grooves 43 and 44° 53 and 54 are provided on the outer periphery of the spool insertion holes 41 and 51 to form pressure oil passages with the inner peripheral walls of the spool insertion holes 41 and 51, respectively.
In addition, these grooves 4 are formed on the inner circumferential walls of the spool insertion holes 41 and 51.
3, 44゜53.54, respectively, to selectively communicate the hydraulic chamber of the power cylinder 10゜20 with the pump side or the tank side (pump port) 45.55 and cylinder bow)
46, 47.56.57% tank boat 48°58 is formed, and when the valve spool 42.52 moves from the neutral position to the right or left in the figure, the power cylinder 10. The direction in which the pressure oil is supplied to the pump 20 can be switched.

またバルブスプール42.52には、ピニオン軸21と
直交するピン穴49.59が形成されておシ、このピン
穴49.59とピニオン軸21會連結する揺動レバー2
4が、パルプスプール42゜52とピニオン軸21とを
隔てる開口部25(25(11) A、25B)を通して配置されている。
Further, the valve spool 42.52 is formed with a pin hole 49.59 orthogonal to the pinion shaft 21, and the swing lever 2 is connected to the pin hole 49.59 to the pinion shaft 21.
4 is placed through the opening 25 (25(11)A, 25B) separating the pulp spool 42.degree. 52 and the pinion shaft 21.

揺動レバー24には、ピニオン軸21に嵌まるリング部
24Aの中心全通る対称位置に支持ピン26 (26A
、26B)及び駆動ピン27(27A、27B)が突設
嘔れ、駆動ピン27はパルプスプールt2.52のピン
孔49.59内に嵌めラレテおり、揺動レバー24は支
持ピン26の支点部28 (28A、28B)を中心と
して第5図。
The swing lever 24 has a support pin 26 (26A
, 26B) and drive pins 27 (27A, 27B) are protruded, the drive pin 27 is fitted into the pin hole 49.59 of the pulp spool T2.52, and the swing lever 24 is attached to the fulcrum part of the support pin 26. FIG. 5 is centered around 28 (28A, 28B).

第6図左右方向に揺動できるようになっている。Figure 6: It is designed to be able to swing in the left and right directions.

内に装着された圧縮ばね72によってパルプスプール4
2は中立状態(第5図に示す位置)に保持されている。
The pulp spool 4 is compressed by a compression spring 72 installed inside.
2 is held in a neutral state (the position shown in FIG. 5).

一方、スプール挿通孔51の一端にはバネ室62が形成
されており、このバネ室61内に装着された圧縮ばね6
3によってバルブスプール52は中立状態(第6図に示
す位置)に保持嘔れている。
On the other hand, a spring chamber 62 is formed at one end of the spool insertion hole 51, and a compression spring 6 is installed in this spring chamber 61.
3, the valve spool 52 is held in a neutral state (the position shown in FIG. 6).

いま、ハンドル18′!]l−操作してピニオン軸21
をいずれかの方向に回動させると、タイロッド15(1
2) 等に連接されているラック23の抵抗が大きいため、こ
の回動方向にラック23に沿ってラック23の移動方向
とは逆方向にピニオン軸21は変位しようとする。
Now the handle is 18′! ] l - Operate the pinion shaft 21
When rotated in either direction, tie rod 15 (1
2) Since the resistance of the rack 23 connected to the pinion shaft 23 is large, the pinion shaft 21 tends to be displaced along the rack 23 in this rotation direction in a direction opposite to the movement direction of the rack 23.

これにより揺動レバー24は、ピニオン軸21に嵌合し
ているのでピニオン軸21がその変位方向へと揺動する
に伴い、支点部28を中心として駆動ピン27が同方向
へと揺動する。こi’LKよってバルブスプール42.
52が移動して謝→6!2ホード45と46(又は47
)、55と56(又は57)が連通し、パワーシリンダ
xo、2oiポンプ60A、60Bから圧油が供給され
、ピニオン軸21の回動方向にラック23が駆動されて
前後輪がともに転舵される。
As a result, since the swing lever 24 is fitted to the pinion shaft 21, as the pinion shaft 21 swings in its displacement direction, the drive pin 27 swings in the same direction about the fulcrum portion 28. . Valve spool 42.
52 moves and Xie → 6!2 Horde 45 and 46 (or 47
), 55 and 56 (or 57) communicate with each other, pressure oil is supplied from the power cylinder xo and 2oi pumps 60A and 60B, and the rack 23 is driven in the rotational direction of the pinion shaft 21, so that both the front and rear wheels are steered. Ru.

前輪用コントロールバルブ40の戻り何回路73の途中
には、可変絞り通路を備えた電磁バルブである圧力制御
弁70が設けられておシ、後述するコントローラ100
からの信号によりソレノイド75を作動させて絞p量を
調節し、コントロールパルプ40の反力油室71内へ送
給路76會介して圧油全供給するようになっている。こ
れによってバルブスプール42は第5図左右方向に動き
に〈〈なって操舵反力が高められるようになっている。
A pressure control valve 70, which is an electromagnetic valve equipped with a variable throttle passage, is provided in the middle of the return circuit 73 of the front wheel control valve 40, and is connected to a controller 100 described later.
The solenoid 75 is actuated by a signal from the solenoid 75 to adjust the throttle amount P, and the entire pressure oil is supplied into the reaction oil chamber 71 of the control pulp 40 via the feed passage 76. This causes the valve spool 42 to move in the left-right direction in FIG. 5, thereby increasing the steering reaction force.

コントローラ100Kは、走行状況(車速および前輪舵
角)K応じ次望ましい反力油室内圧力が予め記憶されて
おり、さらに車軸の回転数を検出する車速センサ101
から走行時の車速が、また操舵軸19に設置された舵角
センサ102から走行時の前輪舵角が、さらに前輪用コ
ントロールパルプ40の反力油室71への圧油送給路7
6途中に設置された反力圧力センサ103から反力油室
71内の圧力がそれぞれ常に送られている。そしてコン
トローラ100はこれらの入力信号に基づいて1例えば
接地抵抗が小さくなる場合(高速走行時や舵角が小さい
場合)には1反力油室71内の圧力を高めて操舵反力を
高めるような弁開度制御信号を圧力制御弁70に送るよ
うになっている。これによシバルブスプール42が動t
kに〈〈なってハンドル18は重くなシ、高速時の急ハ
ンドルが防止されるのである。
The controller 100K stores in advance the next desired reaction oil chamber pressure according to the driving situation (vehicle speed and front wheel steering angle) K, and further includes a vehicle speed sensor 101 that detects the rotational speed of the axle.
The vehicle speed when traveling is detected from the steering angle sensor 102 installed on the steering shaft 19, and the front wheel steering angle when traveling is detected from the steering angle sensor 102 installed on the steering shaft 19.
6, the pressure inside the reaction oil chamber 71 is constantly sent from the reaction pressure sensor 103 installed in the middle. Based on these input signals, the controller 100 increases the pressure in the reaction oil chamber 71 to increase the steering reaction force, for example, when the ground resistance becomes small (when traveling at high speed or when the steering angle is small). A valve opening degree control signal is sent to the pressure control valve 70. This causes the valve spool 42 to move.
The steering wheel 18 is not heavy and sudden steering at high speeds is prevented.

なお1反力油室71内の圧力を高めバルブスプール42
の動きを拘束する手段に代えて、車速に応じて操舵軸1
9又はピニオン軸21の回動を抑制また、後輪用コント
ロールバルブ50への圧油供給路82(第3図参照)の
途中には、可変絞り通路を備えた電磁バルブからなる流
量制御弁80が設置されており、コントローラー00か
らの信号によりソレノイド84を作動させて絞り量が調
節され、後輪用コントロールバルブ50に介してパワー
シリンダ20に供給される流量が調節されるようになっ
ている。コントローラー00には走行状況(反力油室7
1内圧力および前輪舵角)に応じた望ましい後輪コント
ロールバルブ20への供給圧油流量が予め記憶されてお
り、舵角センサ102および反力圧力センサ−03から
送られる前輪舵角および反力油室71内圧力を示す入力
信号に基づいて、コントローラー00は望ましい後) 輪転前置(パワーシリンダ20への望ましい供給流量)
となるよう々弁開度信号を出力して流量制御弁80を制
御するようになっている。例えば、高速走行時には圧力
制御弁70が働くのでコントロールバルブ機構30の前
輪側の反力機構のためバルブスプール42.52は動き
に〈〈なっており(ハンドル18操作は重くなっており
)、後輪用パワーシリンダ20へ供給される圧油流量は
運転者の意図する後輪転舵量に至らない。しかし、コン
トローラ100からの信号により流量制御弁80が働い
て後輪用パワーシリンダ20への供給圧油流量が補正さ
れ、後輪14転舵量が最適量となるようになっている。
Note that 1 the pressure inside the reaction oil chamber 71 is increased and the valve spool 42
Instead of using a means to restrict the movement of the steering shaft 1, the steering shaft 1 is
Also, in the middle of the pressure oil supply path 82 (see FIG. 3) to the rear wheel control valve 50, there is a flow control valve 80 consisting of an electromagnetic valve equipped with a variable throttle passage. is installed, and the solenoid 84 is actuated by a signal from the controller 00 to adjust the throttle amount, and the flow rate supplied to the power cylinder 20 via the rear wheel control valve 50 is adjusted. . The controller 00 contains the driving status (reaction oil chamber 7
A desirable flow rate of pressure oil supplied to the rear wheel control valve 20 according to the internal pressure and front wheel steering angle) is stored in advance, and the front wheel steering angle and reaction force sent from the steering angle sensor 102 and reaction force pressure sensor-03 are stored in advance. Based on the input signal indicating the internal pressure of the oil chamber 71, the controller 00 determines the desired flow rate (desired supply flow rate to the power cylinder 20)
The flow rate control valve 80 is controlled by outputting a valve opening signal so that the following occurs. For example, when driving at high speed, the pressure control valve 70 works, and the reaction force mechanism on the front wheel side of the control valve mechanism 30 causes the valve spools 42 and 52 to move (the handlebar 18 operation becomes heavy), and the rear The flow rate of pressurized oil supplied to the wheel power cylinders 20 does not reach the amount of rear wheel steering intended by the driver. However, the flow rate control valve 80 operates in response to a signal from the controller 100 to correct the flow rate of pressure oil supplied to the rear wheel power cylinder 20, so that the amount of steering of the rear wheels 14 becomes the optimum amount.

このように1本実施例では流量制御弁80によって運転
者の意図どうりにして、かつ前輪転舵量に対し望ましい
後輪転舵量まで後輪14會転舵させることができるよう
になっているので、後輪転舵の追従性會最適に維持して
後輪14にすべりが生じることもなく安定した走行がで
きる。なお。
In this way, in this embodiment, the flow control valve 80 allows the rear wheels to be steered by 14 degrees according to the driver's intention and to a desired amount of rear wheel turning relative to the amount of front wheel turning. Therefore, the followability of the rear wheel steering is maintained at an optimal level, and the rear wheels 14 do not slip, allowing stable running. In addition.

流量制御弁80の構造は新規なものではないためその説
明は省略する。また、前記説明ではコントロールバルブ
50に供給する圧油流量を制御していルカ、コントロー
ルバルブ50からパワーシリンダ50への圧油供給路に
流量制御弁80による補正圧油を直接供給するように構
成してもよい。
Since the structure of the flow control valve 80 is not new, its explanation will be omitted. Furthermore, in the above description, the flow rate of the pressure oil supplied to the control valve 50 is controlled, and the correction pressure oil is directly supplied by the flow rate control valve 80 to the pressure oil supply path from the control valve 50 to the power cylinder 50. It's okay.

t7c、コントロールバルブ50と後輪用パワーシリン
ダ20との圧油送帰路92の途中には方向切換弁90が
設けられており、前後輪12.14は通常(低速時)互
いに逆方向に転舵されるようになっているが、中高速時
にはコントローラ100からの切換信号によって圧油送
帰方向が切換わり、前後輪12.14は同方向に転舵す
るようになっている。即ち、コントローラ100には、
車速センサ101から走行速度が常に入力されているが
弁切換信号を送るための任意の速度が予め設定されてお
り、走行速度がこの設定速度上越えたときに、コントロ
ーラ100が方向切換弁90に弁切換信号を送り、ソレ
ノイド94を作動させて圧油送帰方向が切換るようにな
っている。
t7c, a directional control valve 90 is provided in the middle of the pressure oil return path 92 between the control valve 50 and the power cylinder 20 for the rear wheels, and the front and rear wheels 12 and 14 are normally steered in opposite directions (at low speeds). However, at medium to high speeds, the pressure oil return direction is switched by a switching signal from the controller 100, and the front and rear wheels 12, 14 are steered in the same direction. That is, the controller 100 has
The traveling speed is always input from the vehicle speed sensor 101, but an arbitrary speed for sending a valve switching signal is set in advance, and when the traveling speed exceeds this set speed, the controller 100 switches the directional switching valve 90. A valve switching signal is sent and a solenoid 94 is operated to switch the pressure oil return direction.

このようにして、車両の低速時には前後輪転舵方向が逆
方向となるので旋回半径を小さくした小回り性能が良く
なシ、中高速時には前後輪転舵方向が同方向とすること
により、変更区間での後輪の追従性を転舵方向に予測的
に合わせられるので。
In this way, when the vehicle is running at low speeds, the front and rear wheels are steered in opposite directions, which improves the turning radius with a small turning radius, while at medium and high speeds, the front and rear wheels are steered in the same direction, which improves performance during the change section. This allows the tracking ability of the rear wheels to be predictively adjusted to the steering direction.

車線変更、スラローム走行をスムーズに行うことができ
る。
You can change lanes and run slalom smoothly.

また、方向切換弁90の切換え全手動で行うことができ
るようにすれば、縦列駐車にも便利である。
Furthermore, if the directional control valve 90 can be switched completely manually, it will be convenient for parallel parking.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように1本発明によればコンパ
クトな装置構造にして如何なる走行状況においても安定
した走行管実現できる車両操舵装置を得ることができる
As is clear from the above description, according to the present invention, it is possible to obtain a vehicle steering system that has a compact device structure and can realize a stable running path under any driving conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の車両操舵装置の全体平面図、第2図は速
度感応型2連コントロールノくルブ機構を用いた場合の
速度に対する後輪用パワーシリンダ5の供給流量の変化
曲線を示す図、第3図は本発明の実施例の平面図、第4
図は2連式コントロールバルブ機構の断面図、第5図は
第4図に示す線V−VK沿う断面図、第6図は第4図に
示す線■−■に沿う断面図である。 10・・・前輪用パワーシリンダ、12°°°前輪。 14・・・後輪、18・・・ノSジドル、19・・・操
舵軸、20・・・後輪用パワーシリ′ンダ、21・・・
ピニオン軸、’ 21A・・・ヒニオン、23・・・ラ
ック、24・・・揺動レバー、27・・・駆動ピン、3
゛0・・・コントロールバルブ機構、 40・・・前輪
コントロールバルブ、50・・・後輪用コントロールバ
ルブ。 42.52・・・バルブスプール、 45.請求−)、
46.47,56.57・・・シリンダポート、48.
58・・・タンクボート、60(’6’ □A、 60
 B )・・・油ポンプ、 70・・・反力圧力制御弁
、71・・・反力油室、75・・・ソレノイド、80・
・・流量制御弁、84・・・ソレノイド、90・・・方
向切換弁、94・・・ツレ〉イド、100・・・コント
ローラ、101・・・車速セジサ、102・・・舵角セ
ンサ、103・・・Wカセンサ÷4−a−v−(19) @1図 第2図
Fig. 1 is an overall plan view of a conventional vehicle steering system, and Fig. 2 is a diagram showing a change curve of the supply flow rate of the rear wheel power cylinder 5 with respect to speed when a speed-sensitive dual control knob mechanism is used. , FIG. 3 is a plan view of an embodiment of the present invention, and FIG. 4 is a plan view of an embodiment of the present invention.
5 is a sectional view taken along the line V--VK shown in FIG. 4, and FIG. 6 is a sectional view taken along the line ■--■ shown in FIG. 4. 10...Power cylinder for front wheel, 12°°° front wheel. 14... Rear wheel, 18... No S wheel, 19... Steering shaft, 20... Power cylinder for rear wheel, 21...
Pinion shaft, ' 21A... Hinion, 23... Rack, 24... Rocking lever, 27... Drive pin, 3
゛0...Control valve mechanism, 40...Front wheel control valve, 50...Rear wheel control valve. 42.52...Valve spool, 45. Claim-),
46.47, 56.57... cylinder port, 48.
58... Tank boat, 60 ('6' □A, 60
B)...Oil pump, 70...Reaction force pressure control valve, 71...Reaction force oil chamber, 75...Solenoid, 80...
...Flow rate control valve, 84...Solenoid, 90...Direction switching valve, 94...Tsure>id, 100...Controller, 101...Vehicle speed sensor, 102...Steering angle sensor, 103 ...W sensor ÷ 4-a-v-(19) @1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)前輪操舵用および後輪操舵用の各パワーシリンダ
と、操舵軸の回動により同期して移動するバルブスプー
ルをそれぞれ内蔵しこのバルブスプールの移動によシ前
記両パワーシリンダへの作動流体供給方向を切換えるコ
ントロールバルブが並設された2連式コントロールパル
プ機構と、前記前輪用コントロールバルブ内のバルブス
プール両端に形成された反力室の圧力を少なくとも車速
または/および舵角の増加に応じて高めるようにしてこ
のバルブスプールの動き全抑制する反力圧力制御弁と、
前記後輪用コン)o−ルバルブへの流体供給路途中に設
けられこのコントロールバルブへ供給する流体流量を前
記反力室の圧力上昇に比例させて増加させるように作用
する流量制御弁と、全備えたことを特徴とする車両操舵
装置。
(1) Each power cylinder for front wheel steering and rear wheel steering has a built-in valve spool that moves in synchronization with the rotation of the steering shaft, and the movement of this valve spool causes working fluid to be supplied to both power cylinders. A dual control pulp mechanism in which a control valve for switching the supply direction is arranged in parallel, and a reaction force chamber formed at both ends of the valve spool in the front wheel control valve, the pressure of which is adjusted according to at least an increase in vehicle speed and/or steering angle. a reaction pressure control valve that completely suppresses the movement of this valve spool by increasing the pressure;
a flow rate control valve which is provided in the middle of the fluid supply path to the rear wheel control valve and acts to increase the fluid flow rate supplied to the control valve in proportion to the pressure increase in the reaction force chamber; A vehicle steering device characterized by comprising:
(2) 前記後輪用コントロールバルブと後輪用パワー
シリンダ間のパワーシリンダ作動流体送帰路途中には、
所定の設定速度を境にパワーシリンダ作動流体供給方向
が逆転する方向切換弁が設けられていることを特徴とす
る特許請求の範囲第1項記載の車両操舵装量。
(2) In the middle of the power cylinder working fluid return path between the rear wheel control valve and the rear wheel power cylinder,
2. The vehicle steering device according to claim 1, further comprising a direction switching valve that reverses the direction of supply of working fluid to the power cylinder after a predetermined set speed.
JP59068182A 1984-04-05 1984-04-05 Vehicle steering device Granted JPS60213573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068182A JPS60213573A (en) 1984-04-05 1984-04-05 Vehicle steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068182A JPS60213573A (en) 1984-04-05 1984-04-05 Vehicle steering device

Publications (2)

Publication Number Publication Date
JPS60213573A true JPS60213573A (en) 1985-10-25
JPH0512186B2 JPH0512186B2 (en) 1993-02-17

Family

ID=13366379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068182A Granted JPS60213573A (en) 1984-04-05 1984-04-05 Vehicle steering device

Country Status (1)

Country Link
JP (1) JPS60213573A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085062A (en) * 1983-10-15 1985-05-14 Nissan Motor Co Ltd Steering device for vehicles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085062A (en) * 1983-10-15 1985-05-14 Nissan Motor Co Ltd Steering device for vehicles

Also Published As

Publication number Publication date
JPH0512186B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
EP0682618B1 (en) Four-wheel steering system for vehicle
US4811805A (en) Rear-wheel steering apparatus
JPH0616146A (en) Vehicle steering device
JPS62131870A (en) Power steering used in large size vehicle
JP2503574B2 (en) Vehicle power steering device
JPH07117694A (en) Power steering device
JPS60213573A (en) Vehicle steering device
JP2738169B2 (en) Vehicle steering system
JPH02212271A (en) Steering gear ratio changing device
JPS60161262A (en) Rear-wheel steering apparatus
JPH0242713B2 (en)
JPH027745Y2 (en)
JPH0611874Y2 (en) 4-wheel steering system
JPH02193775A (en) Four-wheel steering device
JPH0327902Y2 (en)
JPH0435263Y2 (en)
JPS63106181A (en) Power steering available for vehicle
JPH0637174B2 (en) Four-wheel steering system
JPS6181869A (en) Power steering control device
JPH08310432A (en) Car speed-steering control unit
JPS63101171A (en) Hydraulic controller for rear wheel
JPH01175571A (en) Four-wheel steering device
JPS6288667A (en) Four-wheel steering device
JPS60166562A (en) Four wheel steering device for vehicle
JPH03167074A (en) Four-wheel steering device