JPS60212617A - Water-cooled turbocharger cooling device - Google Patents

Water-cooled turbocharger cooling device

Info

Publication number
JPS60212617A
JPS60212617A JP59069568A JP6956884A JPS60212617A JP S60212617 A JPS60212617 A JP S60212617A JP 59069568 A JP59069568 A JP 59069568A JP 6956884 A JP6956884 A JP 6956884A JP S60212617 A JPS60212617 A JP S60212617A
Authority
JP
Japan
Prior art keywords
water
cooling water
turbocharger
cooling
exhaust manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59069568A
Other languages
Japanese (ja)
Inventor
Hatsuo Takase
高瀬 初夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP59069568A priority Critical patent/JPS60212617A/en
Publication of JPS60212617A publication Critical patent/JPS60212617A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0475Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To prevent a large loss of energy due to overcooling of a turbine casing by forming a circulating circuit through which a cooling water flows, between an exhaust manifold, a turbocharger, and a fresh-water cooler. CONSTITUTION:When an engine is started in a cold state, as a thermostat 53 keeps a flow path on a piping 55 side closed while a bypass 54 is opened, the cooling water from an outlet passage 52 is refluxed through the bypass 54 into a cooling water tank 50. And the cooling water circulates between the pump 50 and each water jacket of an engine body 21, preventing cylinders, etc. from being overcooled. When the temp. of the cooling water reaches a set temp. the thermostat 53 opens the flow path on the piping 55 side. Thereby, the cooling water leaving the pump 50 enters a fresh water cooler 31 through the engine body 21. The cooling water exchanges heat with sea water flowing through a cooling pipe 30 in the cooler 31, and, after flowing through the water jacket 26 of an exhaust manifold 22 to cool an exhaust pipe 24, it is refluxed into the pump 50.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

=1一 本発明は内燃機関の給気系統に配設される水冷式ターボ
チャージャーの冷却装置に関するものである。 (従来技術) ディーゼルエンジンの如き内燃機関の出方向上を目的と
して給気系統に付設さ九る過給機のうちでも、とりわけ
、排気ガスの匝力をかりてガスタービンを駆動し、該ガ
スタービンと同軸一体のコンプレッサによって強制過給
を行う排気ガスタービン式過給機、所謂、ターボチャー
ジャーにおいてに、前記ガスタービスを同転自在に収容
するタービンケーシングが高温高圧のvr気ガスに直接
曝され、ここに大きな熱応力が生じるため、こil、を
防止すべく前記タービンケーシングの外面ヲ水ジャケッ
トで包囲し、該水ジャナツトに常時冷却水を供給するこ
とが行なわれている。 第1図は、この種従来の水冷式ターボチャージャーを付
設した船用内燃機門の冷却回路を示したモノマ、 +1
1:エンジン本体、1211’j内部に水ジャケットを
内蔵した水冷式排気マニホールド、131ハ該2− 排気マニホールド(2)の上面に載置され、内部に海水
を流通させる冷却管(4)を内蔵した清水クーラ、[5
1に前記排気マニホールド(21に接続さ九、内部にタ
ービンチーシングーを覆う水ジャケット(6)を備えた
ターボチャージャー、(7)に冷却水ポンプ、(81r
rl冷却水の温度に応じて冷却水の流れを切換えるサー
モスタット全犬々示しており、機関の冷態始動時等にお
いて機関冷却水の温度が前記サーモスタット(8)の開
弁設定温度より低い間に、冷却水ポンプ(71から吐出
された冷却水が冷却水入日通路(9ンを通じてシリンダ
ブロック[11に入り、実i1 矢Ell )mく冷却
水出口通路(10]からサーモスタット(8]およびバ
イパス通路(111を経て再び冷却水ポンプ(7)に戻
り、これらの間をくり返し循環すると共に、冷却水の温
度が−L昇し、サーモスタット(8〕の開弁設定温度を
越えたときは、前記バイパス通路(11〕が閉じられ、
代りにサーモスタット(8]から出た冷却水が、一点鎖
線矢印で示す如く、分岐点02Iから2方向に分かれ、
一方が通路(+31i通って前記清水クーラ
=1- The present invention relates to a cooling device for a water-cooled turbocharger installed in an air supply system of an internal combustion engine. (Prior Art) Among the superchargers attached to the air supply system for the purpose of supplying air to an internal combustion engine such as a diesel engine, the turbocharger drives a gas turbine using the compressive force of exhaust gas, and In an exhaust gas turbine supercharger, a so-called turbocharger, which performs forced supercharging by a compressor coaxially integrated with a turbine, a turbine casing that rotatably accommodates the gas turbine is directly exposed to high-temperature and high-pressure VR gas, Since large thermal stress occurs here, in order to prevent this, the outer surface of the turbine casing is surrounded by a water jacket, and cooling water is constantly supplied to the water jacket. Figure 1 shows a cooling circuit for a marine internal combustion engine equipped with a conventional water-cooled turbocharger.
1: Engine body, 1211'j Water-cooled exhaust manifold with built-in water jacket, 131c 2- Built-in cooling pipe (4) placed on the top of the exhaust manifold (2) and allowing seawater to flow inside. Shimizu Cooler, [5
1 is connected to the exhaust manifold (21), a turbocharger with a water jacket (6) that covers the turbine engine inside, (7) is a cooling water pump, (81r
All the thermostats that switch the flow of cooling water according to the temperature of the rl cooling water are shown. , the cooling water discharged from the cooling water pump (71) enters the cylinder block [11 through the cooling water inlet passage (9), and passes through the cooling water outlet passage (10) to the thermostat (8) and the bypass. It returns to the cooling water pump (7) through the passage (111) and circulates between them repeatedly, and when the temperature of the cooling water rises by -L and exceeds the valve opening setting temperature of the thermostat (8), the above-mentioned The bypass passage (11) is closed,
Instead, the cooling water coming out of the thermostat (8) is split into two directions from branch point 02I, as shown by the dashed-dotted line arrow.
One side passes through the passage (+31i and connects to the fresh water cooler)

【3)に入
り、ここで冷却管【4】内を通過する海水と熱交換し3
一 温度を下げた後、排気マニホールド(2)内の水ジャケ
ットを通り、通路(14)から冷却水ポンプ(7)に還
i’+Ir。 すると共に、(lj4方向に流へた冷1’JI *に配
管(1ωを通じて前記ターボチャージャ−[5+の下部
に設けた冷却水入口(16)から水ジャケット(6)に
入り、ここでタービンケーシングを冷却した後、冷却水
出口07)から配管08)を通じて前記清水クーラ13
1に入り、前記海水と熱交換した冷却水と合流してni
前記冷JJ水ポンプ(7)へ還流するよう冷却回路が絹
まれでいる。 ところが、上述の如き従来の冷1JJ装fE1を付設し
たターボチャージャー付内燃機関においてに、前記サー
モスタット(8)が開か力、た後に、nir記ターボチ
ャージャー151の水ジャケット(6)に対し、常時、
配管(15)を通じて冷却水が強制的に送られるため、
タービンケーシングが過冷却を生じて排気ガスのエネル
ギーが多量に奪わrL、ターボチャージャー自体の効率
が低下すると共に、冷却水の全■を清水クーラ(31に
送ることが出来ないため、清水クーラ
It enters [3], where it exchanges heat with the seawater passing through the cooling pipe [4].
After lowering the temperature, i'+Ir passes through the water jacket in the exhaust manifold (2) and returns to the cooling water pump (7) from the passage (14). At the same time, the cooling water flowing in the (lj4 direction) enters the water jacket (6) from the cooling water inlet (16) provided at the bottom of the turbocharger [5+] through the piping (1ω), where it flows into the turbine casing. After cooling, the fresh water cooler 13 is passed from the cooling water outlet 07) to the piping 08).
1, merges with the cooling water that has exchanged heat with the seawater, and ni
A cooling circuit is installed to provide reflux to the cold JJ water pump (7). However, in the turbocharged internal combustion engine equipped with the conventional cold 1JJ equipment fE1 as described above, after the thermostat (8) is opened, the water jacket (6) of the nir turbocharger 151 is constantly
Since the cooling water is forcibly sent through the pipe (15),
The turbine casing becomes supercooled and a large amount of energy is taken away from the exhaust gas.The efficiency of the turbocharger itself decreases, and all of the cooling water cannot be sent to the fresh water cooler (31), so

【31の熱交換率
が低下し、より大型の熱交換器が必要になり、更に、サ
ーモスタット[81トターボチ4− ヤージャー(5〕とを接続する長い配管051およびこ
れを支持するサポートを必要とするため、装置コストの
高騰およびメンテナンスの煩雑さを招く問題があった。 (発明の目的J 本発明にかかる従来のターボチャージャー付内燃機関に
おいて懸案となっていたターボチャージャーの過冷却、
清水クーラの効率低下および配管長さの増大等の問題に
着目し、排気マニホールドの水ジャナツト下部とターボ
チャージャーの水ジヤケツト下部とを短い配管で接続す
るなどして互バに連通させ、排気マニホールドとターボ
チャージャーと清水クーラとの間に冷却水が自由に流れ
る循環回路を形成し、該循環回路を通じて冷却水をサー
モサイフオンの原理により自然循環させながらターボチ
ャージャーを冷却し、もって前記問題魚を一挙に解消せ
んとするものである。 【発明の構成] 上記目的を達成するための本発明の構成に、排iY=*
−ルドの上面に、該排気マニホールドの5− 水ジャケットと連通ずる冷却水収容空間を備えた清水ク
ーラを載置固定する一方、itJ記排気マニホールドの
排気出口に対し、タービンケーシングの外面を水ジャナ
ツトで覆ったターボチャージャーの排気入りを接続し、
該ターボチャージャーの水ジヤケツト上部と前記清水ク
ーラ内の冷却水収容空間上部とを連通させてなる水冷式
ターボチャージャーの冷却装置におhで、前記排気マニ
ホールドの水ジヤケツト下部とターボチャージャーの水
ジャナツト下部とを互いに連通させ、前記排気マニホー
ルド、ターボチャージャーおよび清水クーラの訃に冷却
水が自alに流通可能なυ1路を形成せしめた点にある
。 【実施例】 以下本発明の実施例を添付図面にもとづいて詳細に説明
する。 第2図に本発明の水冷式ターボチャージャー冷却装置を
適用した舶用内燃機関の冷却回路の概要図、第3図は本
発明を適/’fIした内燃機関の要部側断面図である〇 6− これら各図において、伐1)汀エンジン本体、し2に該
エンジン本体りI)の排気用D(231,(23+・・
・に接続2!tた排気管(財)を所定間隙を存して外部
壁(251で囲繞し、該排気管伝喝の外周に水ジャケラ
) e261を形成した水冷式排気マニホールド、しη
は該排気マニホールド伝zの外部壁例と一体に鋳造形成
されたケーシングシル内の冷却水収容空間29+に海水
等の2次冷却水を流通させる多数本の冷a管色0)の束
を収容した清水クーラであって、該清水クーラシカ内部
の前記冷却水収容空間e29)に前記排気マニホールド
(3)の水ジャナツト−と互いに連通した状態にあり、
清水クーラ蓼ηの上部に設けた清水人口01)から導入
された清水冷却水が前記冷却管e(El)の外周に設け
た円筒体−の9J欠き[32a]から該円筒体い4の内
部に設けたバッフル板G31 、 (331・・・の間
をぬって冷MJ菅−の間隙をジグザグ状に流れ、前記円
筒体(34の他方端側に設けた切欠き[32blから排
気マニホールド伐4内の水ジャケットシ0に入り、該排
気マニホールド(20の外部壁い(ト)に設けた清水出
口(3燭から流出するようになっている。 7− なお、nU記冷J:(+ ??関内には、図外の海水ポ
ンプで汲み上げら九た海水冷力1水が、前記清水クーラ
伝力の外部壁(ハ)に設けた海水人11 e(litか
も導入され、多数の冷却管(11)の東のうち、下半部
の冷711管(11)を通って前記清水クーラ蓼ηに取
付けた蓋a u’ CQ内に流入し、ここで方向転換し
て上半部の冷JJI管(2)o−1通り、海水出口C(
ηより機外に排出ざ力、るようになって贋る。 図中、0樽tri Fm記清水タり−(ロ)のケーシン
グ(ハ)−に面に設けられた給水目看:閉鎖して取付け
たフイラキャップである。 一万、 (391けnij記排気マニホールドレカの排
気用[1[24alに対し、タービンケーシング111
11の排気入「I[40alを1妾続したクーボ千ヤー
ジャーであって、該ターボチャージャー4’(!11 
に、前記タービンケーシング個の夕1面が所定間隙を・
存して% Aklタービアケーシング00)と鋳造によ
り一体形成された外部ケーシング(41)によって囲繞
されており、両ケーシング顛、 +411の間に水ジャ
ケット(1カが形成されている。 上記ターボチャージャー〇湧の水ジャケットHJ−,f
、=8− 前記外部ケーシングellの下部に取付けた継手バイブ
(4二すと、前記排気マニホールド(2りの外部壁シ均
下部に取付けた継手バイブ04)と、周継手パイプ(4
尋、←4)間に亘設された配管@0により前記排気マニ
ホールド翰側の水ジャテラ) ff1llil下部と連
通していると共に、上部において前記外部ケーシング←
1)に設けられた冷却水継手管f461と、前記清水ク
ーラ伐力のケーシング(ハ)外面に設けた継手管0ηと
の間に亘設した配g(4〜を介して前記清水クーラシカ
内の冷却水収容空間シηと連通しており、前記各配管I
A@、(4F!I内の冷却水通路が前記清水クーラ蓼η
の冷却水収容空間−と、排気マニホールド(27Jの水
ジヤケツト12f5ト、前記ターボチャージャー酷の水
ジャケット(4功との間を自由に流通可能な循環通路を
構成している。 なお、前記排気マニホールドe2Zの清水出口の勾から
出た冷却水に、第2図に示す如く配管−を通じて冷却水
ポンプ−に還流し、ここで加圧されて冷却水入口通路
[31's heat exchange efficiency decreases, requiring a larger heat exchanger, and also requires a long pipe 051 to connect to the thermostat [81 torboch 4-yager (5)] and a support to support it. Therefore, there was a problem that the cost of the device increased and the maintenance became complicated.
Focusing on issues such as reduced efficiency of fresh water coolers and increased piping length, the lower part of the exhaust manifold's water jacket and the lower part of the turbocharger's water jacket were connected with short piping to communicate with each other, and the exhaust manifold and the lower part of the water jacket were connected. A circulation circuit in which cooling water freely flows is formed between the turbocharger and the fresh water cooler, and the turbocharger is cooled while the cooling water is naturally circulated through the circulation circuit according to the thermosiphon principle, thereby eliminating the problem fish all at once. This is something that we are trying to resolve. [Configuration of the Invention] The configuration of the present invention for achieving the above object includes
A fresh water cooler equipped with a cooling water storage space communicating with the water jacket of the exhaust manifold is placed and fixed on the upper surface of the exhaust manifold, and the outer surface of the turbine casing is connected to the water jacket of the exhaust manifold. Connect the exhaust inlet of the turbocharger covered with
A cooling device for a water-cooled turbocharger that communicates between the upper part of the water jacket of the turbocharger and the upper part of the cooling water storage space in the fresh water cooler is connected to the lower part of the water jacket of the exhaust manifold and the lower part of the water jacket of the turbocharger. and communicate with each other to form a path υ1 through which cooling water can flow through the exhaust manifold, turbocharger, and fresh water cooler. [Embodiments] Hereinafter, embodiments of the present invention will be described in detail based on the accompanying drawings. Fig. 2 is a schematic diagram of a cooling circuit of a marine internal combustion engine to which the water-cooled turbocharger cooling device of the present invention is applied, and Fig. 3 is a side sectional view of the main parts of an internal combustion engine to which the present invention is applied. - In each of these figures, 1) the engine body, and 2 the engine body 1) the exhaust D(231, (23+...)
・Connect to 2! A water-cooled exhaust manifold, in which an external wall (251) surrounds an exhaust pipe with a predetermined gap, and a water jacket (261) is formed around the outer circumference of the exhaust pipe.
A bundle of a large number of cold A-tubes (color 0) through which secondary cooling water such as seawater flows is housed in a cooling water storage space 29+ in a casing sill that is integrally cast with the external wall of the exhaust manifold. a fresh water cooler, the cooling water storage space (e29) inside the fresh water cooler being in communication with the water jack of the exhaust manifold (3);
The fresh water cooling water introduced from the fresh water 01) provided at the upper part of the fresh water cooler η flows into the inside of the cylindrical body 4 from the 9J notch [32a] of the cylindrical body provided on the outer periphery of the cooling pipe e (El). Baffle plates G31 and (331... The water enters the internal water jacket 0 and flows out from the fresh water outlet (3 lamps) provided on the external wall of the exhaust manifold (20). ?In Kannai, seawater cooling power 1 water pumped up by a seawater pump (not shown) is supplied to a sea water cooler 11 e (lit) installed on the external wall (c) of the fresh water cooler transmission, and a large number of cooling pipes are installed. On the east side of (11), the water flows through the cold 711 pipe (11) in the lower half into the lid au' CQ attached to the fresh water cooler η, where it changes direction and flows into the cold water in the upper half. JJI pipe (2) o-1 street, seawater outlet C (
η The force of ejecting it outside the machine causes it to become counterfeit. In the figure, the water supply mark provided on the surface of the casing (c) of the 0 barrel tri Fm fresh water tank (b) is a filler cap that is closed and attached. 10,000, (for the exhaust of the exhaust manifold recorder [1[24al], turbine casing 111
11 exhaust intake "I [40al], and the turbocharger 4' (!11
The first side of the turbine casing has a predetermined gap.
The turbocharger is surrounded by an outer casing (41) integrally formed by casting with the turbocharger casing (00), and a water jacket (1 jacket) is formed between both casing frames. 〇Spring water jacket HJ-, f
, = 8 - the joint vibe (4) attached to the lower part of the external casing ell, the exhaust manifold (the joint vibe 04 attached to the leveled part of the two external walls), and the circumferential joint pipe (4)
4) The water jaterra on the exhaust manifold side is communicated with the lower part of the exhaust manifold by the piping installed between
1) between the cooling water joint pipe f461 provided in the fresh water cooler cutting force and the joint pipe 0η provided on the outer surface of the casing (c) of the fresh water cooler cutting force It communicates with the cooling water storage space η, and each of the pipes I
A @, (4F! The cooling water passage in I is connected to the fresh water cooler η
It constitutes a circulation passage that can freely flow between the cooling water storage space of the engine, the exhaust manifold (27J water jacket 12F5), and the turbocharger water jacket (4). The cooling water discharged from the fresh water outlet of e2Z is returned to the cooling water pump through piping as shown in Figure 2, where it is pressurized and flows into the cooling water inlet passage.


51)からエンジン本体伝υ内の水ジャチットに入り、
シリンダブロックおよびシリンダヘッド等の高温部全冷
却した後、冷却水出口通路9− [52] i通じてサーモスタット【53】に流入し、
n:、度が低い間は、バイパス通路
[
51) enters the water inside the engine body,
After the high temperature parts such as the cylinder block and cylinder head are completely cooled, the cooling water flows into the thermostat [53] through the cooling water outlet passage 9- [52] i.
n: Bypass passage while the degree is low

【54】を通って冷
Jil水ポンプー側に流ノt1温度が一]−昇した場合
に、配管
If the temperature of the flow through [54] rises to the cold water pump side, the piping

【55】を通じてrlt前記清水ターり−力の
清水入口(31)に流入するよう冷ff+水回路が組ま
れている。 本発明の水冷式ターボチャージャー冷力1装置nは叙」
二の如き構成を有するものであるが、次にその作用につ
いて詳述する。 先ず、機関の冷態始動11:?において機関冷却水の温
度がサーモスクッ)+ 53 ]の開弁設定温度以下で
あるときけ、サーモスタツ) (53]が配管
[55] A cold ff+water circuit is constructed so that the fresh water flows into the fresh water inlet (31) of the fresh water supply through [55]. The water-cooled turbocharger cooling power device of the present invention is described.
It has a configuration as shown in 2. Next, its operation will be explained in detail. First, cold start of the engine 11:? When the temperature of the engine cooling water is below the valve opening temperature of the thermostat (53), the thermostat (53) is the piping.

【55】
側の流路を閉鎖し、バイパス通路(54)全開放してい
るため、冷却水出口通路152】からサーモスクツ) 
+531に流入した冷J11水は第2図実線矢印の如く
全量がバイパス通路
[55]
Since the side flow passage is closed and the bypass passage (54) is fully opened, the cooling water outlet passage (152) is completely opened.
The entire amount of cold J11 water flowing into +531 flows into the bypass passage as shown by the solid line arrow in Figure 2.

【54】を通じて冷却水ポンプ団に
還流し、該冷却水ポンプr10)とエンジン本体り1)
内の水ジャケットとの間をくり返し循環し、シリンダ等
の過冷却を防止する〇 次に、 冷n水ノ塩度がサーモスタツh [53] o
nR弁設定温度に達したときは、サーモスタット(53
]=10− が配管
The cooling water is returned to the cooling water pump group through [54], and the cooling water pump R10) and the engine body 1)
The water is repeatedly circulated between the inner water jacket and the cylinder to prevent overcooling of the cylinder, etc.Next, the salinity of the cold water is adjusted to the thermostat h [53] o
When the nR valve set temperature is reached, the thermostat (53
]=10- is the piping

【55】側の流路を開くため、冷却水ポンプ(5
o)から出た冷却水に、第2図一点鎖線矢印の如くエン
ジン本体(21)内に入りシリンダブロックやシリンダ
ヘッドの高温部を冷却した後、冷却水出口通路[52]
、サーモスタット
[55] In order to open the side flow path, the cooling water pump (55)
The cooling water discharged from the cooling water enters the engine body (21) as shown by the dashed-dotted line arrow in Figure 2, cools the high temperature parts of the cylinder block and cylinder head, and then enters the cooling water outlet passage [52].
,thermostat

【53】および配管[53] and piping

【55】を通じて
清水クーラ(3I)に入り、ここで冷却管(3o)内を
通過する海水と熱交換して熱を放出し、排気マニホール
ド(221の水ジャケラ) (26]を通って排気管(
241を冷却し、清水出口(圓から配管(49)を通じ
て冷却水ポンプ(50)に還流する。 なお、前記冷却水ポンプ(50)により冷却水の強制循
環を行っている間、ターボチャージャー(39)の水ジ
ャナツト(4匈内の冷却水に、タービンケーシング(4
0)の外面を冷却して、その過熱を防止すると共に、熱
を奪って温度上昇し比重の小さくなった冷却水が上部の
配管(48)を通じて清水クーラ(2η側へ流出するO
また・排気73ホールド伐2からは、これを補うように
水ジャケラ) (26]下部の比較的低温の冷却水が配
管(4均を通じてターボチャージャー(39)側に流れ
水ジャケット(42)に入る。この様に、ターボチャー
ジャー(39)の水ジヤケツト0匂内の冷ノJ水はサー
モサイフオンの原理によってタービンケーシング(囮の
温度上昇に対応した速度で循環し、排気マニホールド(
ロ)内の冷ノ」水と順次入れ替るため、前記タービンケ
ーシング(39)に対して冷却水で強制的に冷却する場
合と異なり、過冷却が抑制され、同時にターボチャージ
ャー(39)の効率低下も防止されることになる。 なお、上記実施例においては、排気マニホールド翰の水
ジャケット(2(支)下部とターボチャージャー(39
)の水ジャケラ) (14下部とを短い配管(伺で接続
し配管の短縮を行った場合を示したが、木発明に別設こ
れに限定されるものでになく、例えば、排気マニホール
ド(221トターボチャージャ−(39) (!−17
) 合わせ面に両者の水ジャケット(2(支)、(4’
4′f:互いに連通させる連絡孔を穿設して循環回路を
構成することも可能であり、木発明の主旨に逸脱しない
限りにおいて適宜設計的改変を加え得ることは云うまで
もない。 【発明の効果] 木発明の水冷式ターボチャージャー冷却装置は以上述べ
た如く、排気マニホールド上面に内部の水通路を連通さ
せた清水クーラを載置し、前記排気マニホールドに接続
した水冷式ターボチャージャーの水ジヤケツト上部と前
記清水クーラ内の冷却水収容空間とを連通させてなる水
冷式ターボチャージャーの冷却装置において、前記排気
マニホールドの水ジヤケツト下部とターボチャージャー
の水ジヤケツト下部とを互いに連通させ、前記排気マニ
ホールド、ターボチャージャーおよび清水クーラの間に
、冷却水が自由に流通可能な回路を形成することにより
、サーモサイフオンの原理を利用して該回路内で冷却水
を自然循環させながら前記ターボチャージャーのタービ
ンケーシングの冷却を行うようにしたものであるから、
ターボチャージャーの水ジヤケツト内の冷却水がタービ
ンケーシングの温度上昇に対応した速度で入れ替わるこ
とになり、従来の如く冷却水ポンプで冷却水を強制的に
供給していた場合のようにタービンケーシングが過冷却
され、大きなエネルギーロス全13− 生じる懸念がなく、ターボチャージャーの効率を維持し
て、機関の出方向上を連成するというすぐれた効果を発
揮する。 しかも、本発明によ九ば、隣接する排気マニホールドの
水ジャケットLターボチャージャーの水ジャケットとを
短い配管を用いて連通させることが可能であることから
、冷却水配管を大rlに短縮することが出来、内燃機関
の装置コスト高騰を抑制すると共に、機関のメンテナン
スを簡略化するという実際的な効果も期待される。
It enters the fresh water cooler (3I) through [55], where it exchanges heat with the seawater passing through the cooling pipe (3o) and releases heat, and passes through the exhaust manifold (221 water jacket) (26) to the exhaust pipe. (
241, and is returned to the cooling water pump (50) from the fresh water outlet (round) through the piping (49). Note that while the cooling water is being forcedly circulated by the cooling water pump (50), the turbocharger (39 ) to the cooling water in the water tank (4 tons), the turbine casing (4 tons)
0) to prevent it from overheating, and the cooling water, which has increased in temperature by removing heat and has a lower specific gravity, flows out to the fresh water cooler (2η side) through the upper pipe (48).
Also, from the exhaust 73 hold cut 2, the water jacket is used to supplement this) (26) The relatively low temperature cooling water at the bottom flows through the pipe (4-way) to the turbocharger (39) side and enters the water jacket (42). In this way, the cold J water in the water jacket of the turbocharger (39) is circulated at a speed corresponding to the temperature rise of the turbine casing (decoy) by the principle of thermosiphon, and is circulated through the exhaust manifold (
Since the water is sequentially replaced with the cold water in (b), unlike the case where the turbine casing (39) is forcibly cooled with cooling water, overcooling is suppressed and at the same time the efficiency of the turbocharger (39) is reduced. will also be prevented. In the above embodiment, the lower part of the water jacket (2 (support)) of the exhaust manifold and the turbocharger (39
) (The case where the lower part of 14 is connected with a short piping to shorten the piping is shown, but the invention is not limited to this. For example, the exhaust manifold (221 Turbocharger (39) (!-17
) Attach both water jackets (2 (support), (4') to the mating surfaces.
4'f: It is also possible to construct a circulation circuit by drilling communication holes for communication with each other, and it goes without saying that the design can be modified as appropriate without departing from the spirit of the invention. [Effects of the Invention] As described above, the water-cooled turbocharger cooling device of the invention includes a fresh water cooler with an internal water passage connected to the upper surface of the exhaust manifold, and a water-cooled turbocharger connected to the exhaust manifold. In a cooling device for a water-cooled turbocharger in which the upper part of the water jacket and the cooling water storage space in the fresh water cooler are communicated with each other, the lower part of the water jacket of the exhaust manifold and the lower part of the water jacket of the turbocharger are communicated with each other, By forming a circuit in which cooling water can freely flow between the manifold, turbocharger, and fresh water cooler, the cooling water is naturally circulated within the circuit using the principle of thermosiphon, and the turbocharger is heated. Since it is designed to cool the turbine casing,
The cooling water in the turbocharger's water jacket is replaced at a rate that corresponds to the rise in temperature of the turbine casing, which prevents the turbine casing from overflowing, unlike when cooling water was forcibly supplied by a cooling water pump. It is cooled and there is no concern about large energy loss, and it maintains the efficiency of the turbocharger and exhibits the excellent effect of coupling on the output direction of the engine. Moreover, according to the present invention, it is possible to communicate the water jacket of the adjacent exhaust manifold with the water jacket of the L turbocharger using a short pipe, so that the cooling water pipe can be shortened to a large length. This is expected to have the practical effect of suppressing the soaring cost of internal combustion engine equipment and simplifying engine maintenance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のターボチャージャー付内燃機関の冷却回
路を示す概要図、第2図に本発明の冷却装置を適用した
ターボチャージャー付内燃機関の冷却回路の一例を示す
概要図、第3図は末完FrAを適用した内燃機関の要部
側断面図である。 (221・・・排気マニホールド。 [24al・・・排気出口。 (イ)・・・水ジャケット
FIG. 1 is a schematic diagram showing a cooling circuit of a conventional internal combustion engine with a turbocharger, FIG. 2 is a schematic diagram showing an example of a cooling circuit of an internal combustion engine with a turbocharger to which the cooling device of the present invention is applied, and FIG. FIG. 2 is a sectional side view of a main part of an internal combustion engine to which fully FrA is applied. (221...Exhaust manifold. [24al...Exhaust outlet. (A)...Water jacket

【排気マニホールド側】。 (27)・・・清水クーラ。 Q9)・・・冷却水収容空間。 (39)・・・ターボチャージャー。 No)・・・タービンケーシング。[Exhaust manifold side] (27)...Shimizu Cooler. Q9)...Cooling water storage space. (39)...turbocharger. No)...Turbine casing.

【4oa)・・・排気入口。 04・・・水ジャケット【ターボチャージャー側】。 15− 第1図 ネ 拾2図[4oa)...Exhaust inlet. 04...Water jacket [turbocharger side]. 15- Figure 1 Ne Figure 12

Claims (1)

【特許請求の範囲】[Claims] i、排気マニホールドの上面に、該排気マニホールドの
水ジャケットと連通ずる冷却水収容空間を備えた清水ク
ーラを載置固定する一万、前記排気マニホールドの排気
出口に対し、タービンケーシングの外面を水ジャチット
で覆ったターボチャージャーの排気入口を接続し、該タ
ーボチャージャーの水ジャチット上部と前記清水ターラ
内の冷却水収容空間上部とを連通させてなる水冷式ター
ボチャージャーの冷却装置において、前記排気マニホー
ルドの水ジャナツト下部とターボチャージャーの水ジャ
ナツト下部とを互いに連通させ、前記排気マニホールド
、ターボチャージャーおよび清水クーラの間に、冷却水
が自由に流通可能な回路を形成せしめたことを特徴とす
る水冷式ターボチャージャー冷却装置。
i. A fresh water cooler equipped with a cooling water storage space that communicates with the water jacket of the exhaust manifold is placed and fixed on the upper surface of the exhaust manifold; In a cooling device for a water-cooled turbocharger, in which the exhaust inlet of the turbocharger covered with water is connected, and the upper part of the water jet of the turbocharger is communicated with the upper part of the cooling water storage space in the fresh water Tara, the water in the exhaust manifold is connected to the A water-cooled turbocharger characterized in that a lower part of the janut and a lower part of the water janut of the turbocharger are communicated with each other to form a circuit between the exhaust manifold, the turbocharger, and the fresh water cooler in which cooling water can freely flow. Cooling system.
JP59069568A 1984-04-06 1984-04-06 Water-cooled turbocharger cooling device Pending JPS60212617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59069568A JPS60212617A (en) 1984-04-06 1984-04-06 Water-cooled turbocharger cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59069568A JPS60212617A (en) 1984-04-06 1984-04-06 Water-cooled turbocharger cooling device

Publications (1)

Publication Number Publication Date
JPS60212617A true JPS60212617A (en) 1985-10-24

Family

ID=13406510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59069568A Pending JPS60212617A (en) 1984-04-06 1984-04-06 Water-cooled turbocharger cooling device

Country Status (1)

Country Link
JP (1) JPS60212617A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8099956B2 (en) * 2007-05-29 2012-01-24 Behr Gmbh & Co. Kg Arrangement of supercharging units for supercharging an internal combustion engine
US8365526B2 (en) * 2006-03-15 2013-02-05 Man Truck & Bus Ag Vehicle or stationary power plant having a turbocharged internal combustion engine as a drive source
CN105508034A (en) * 2014-10-09 2016-04-20 通用汽车环球科技运作有限责任公司 Cooled two-stage turbocharging system
WO2017083107A1 (en) * 2015-11-09 2017-05-18 Borgwarner Inc. Turbocharger heat transfer system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124545A (en) * 1976-04-08 1977-10-19 Perkins Engines Ltd Manifold for internal combustion engine
JPS5642430U (en) * 1979-09-10 1981-04-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124545A (en) * 1976-04-08 1977-10-19 Perkins Engines Ltd Manifold for internal combustion engine
JPS5642430U (en) * 1979-09-10 1981-04-18

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365526B2 (en) * 2006-03-15 2013-02-05 Man Truck & Bus Ag Vehicle or stationary power plant having a turbocharged internal combustion engine as a drive source
EP3591189A1 (en) * 2006-03-15 2020-01-08 MAN Truck & Bus SE Vehicle or stationary power station with a charged combustion engine as a drive source
EP3591200A1 (en) * 2006-03-15 2020-01-08 MAN Truck & Bus SE Vehicle or stationary power station with a charged combustion engine as a drive source
US8099956B2 (en) * 2007-05-29 2012-01-24 Behr Gmbh & Co. Kg Arrangement of supercharging units for supercharging an internal combustion engine
CN105508034A (en) * 2014-10-09 2016-04-20 通用汽车环球科技运作有限责任公司 Cooled two-stage turbocharging system
US9441534B2 (en) * 2014-10-09 2016-09-13 GM Global Technology Operations LLC Cooled two-stage turbocharging system
WO2017083107A1 (en) * 2015-11-09 2017-05-18 Borgwarner Inc. Turbocharger heat transfer system

Similar Documents

Publication Publication Date Title
CN104114828B (en) The chiller of internal combustion engine
WO2006053048A3 (en) Internal combustion engine with hybrid cooling system
KR20140025943A (en) Central cooling system
WO2004070291A3 (en) Heat transfer system for a co-generation unit
IT8049411A1 (en) TWO-STROKE V-STROKE ENGINE WITH SOLIDLY MELTED EXHAUST MANIFOLD
WO2019153494A1 (en) Cooling system for v-type multi-cylinder diesel engine
CA2878576C (en) Marine conversion of a diesel engine
CN107524512A (en) The high/low temperature independent loops cooling system of device for cooling in a kind of integrated two-stage
CN207829980U (en) The cooling system of V-type multi-cylinder diesel engine
JPS60212617A (en) Water-cooled turbocharger cooling device
CN108361098A (en) The cooling system of cold engine in two-step supercharging
CN107143410A (en) A kind of one-cylinder diesel unit Multifunctional water-cooling system
WO2019153499A1 (en) Engine oil supply system for v-type multi-cylinder diesel engine
CN208024453U (en) Small-sized single cylinder water-cooled diesel engine
JP2022540247A (en) Novel cooling system for internal combustion engines
JPS58192915A (en) Cooling device of internal-combustion engine
CN210530972U (en) High-low temperature double-path combined type generator set heat exchanger
JPH04314918A (en) Intercooler
JPS626249Y2 (en)
KR19980038566A (en) Intercooler with air and water cooling
SU300087A1 (en) The cooling system of a piston engine of an internal combustion with a gas turbine inflatable
JP3062761B2 (en) Engine lubricating oil cooling system
JPS63170519A (en) Cylinder head oil cooling device for auxiliary chamber type engine
JP2524876B2 (en) Cylinder head liquid cooling device for sub-chamber engine
JPS61197716A (en) Cooling device for internal-combustion engine