JPS60211831A - Forming method for pattern - Google Patents

Forming method for pattern

Info

Publication number
JPS60211831A
JPS60211831A JP59067566A JP6756684A JPS60211831A JP S60211831 A JPS60211831 A JP S60211831A JP 59067566 A JP59067566 A JP 59067566A JP 6756684 A JP6756684 A JP 6756684A JP S60211831 A JPS60211831 A JP S60211831A
Authority
JP
Japan
Prior art keywords
film
monomolecular
pattern
group
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59067566A
Other languages
Japanese (ja)
Inventor
Yutaka Hirai
裕 平井
Yoshinori Tomita
佳紀 富田
Hiroshi Matsuda
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59067566A priority Critical patent/JPS60211831A/en
Publication of JPS60211831A publication Critical patent/JPS60211831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02285Langmuir-Blodgett techniques

Abstract

PURPOSE:To form a sole molecular film or a mono-molecular accumulation film in a pattern shape on a primary surface by modifying the primary surface by gamma rays. CONSTITUTION:When a monomolecular accumulation film 1-2 of arachidic acid is formed by an LB method on the surface of an Si (100) substrate 1-1, placed in vacuum, and scanned on a primary surface by gamma beam with a mask, the hydrophobic base of the arachidic acid of the scanned portion 1-4 is modified to form a pattern. Then, the film 1-5 of the derivatives of arachidic acid and merocyanine is formed by the LB method, and when a supersonic wave is applied, the film of the modified primary portion 1-4 is separated, and the film 1-5 is formed only on the non-modified portion 1-3 according to the pattern.

Description

【発明の詳細な説明】 [技術分野] 本発明は新規なパターン形成方法に関する。更に具体的
には、単分子膜又は単分子累積膜のノ々ターンを、下地
上に形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a novel pattern forming method. More specifically, the present invention relates to a method for forming a monolayer of a monomolecular film or a monomolecular cumulative film on a substrate.

[背景技術] 従来、半導体技術分野並びに光学技術分野に於ける素材
利用はもっばら比較的取扱いが容易な無機物を対象にし
て進められてきた。これは有機化学分野の技術進展が無
機材料分野のそれに比べて著しく遅れていたことが一因
している。
[Background Art] Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたといわれている。そこで無機物を凌ぐ
新しい機能素材としての機能性有機材料の開発が要望さ
れている。有機材料の利点は安価かつ製造容易であるこ
と、機能性に富むこと等である0反面、これまで劣ると
ごれてきた耐熱性・、機械的強度に対しても、最近これ
を克服した有機材料が次々に生まれている。このような
技術的背景のもとで、論理素子、メモリー素子、光電変
換素子等の集積回路デバイスやマイクロレンズ・アレイ
、光導波路等の光学デバイスの機能を荷う部分(主とし
て薄膜部分)の一部又は全部を従来の無機薄膜に代えて
、有機薄膜で構成しようという提案から、ばては1個の
有機分子に論理素子やメモリ素子等の機能を持たせた分
子電子デバイスや生体関連物質からなる論理素子(例え
ばバイオ・チップス)を作ろうという提案が最近、いく
つかの研究機関により発表された。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of organic materials are that they are cheap, easy to manufacture, and highly functional.On the other hand, organic materials have recently overcome their heat resistance and mechanical strength, which have been inferior until now. Materials are being created one after another. Against this technical background, some of the functional parts (mainly thin film parts) of integrated circuit devices such as logic elements, memory elements, and photoelectric conversion elements, and optical devices such as microlens arrays and optical waveguides have been developed. From the proposal to replace part or all of the conventional inorganic thin film with an organic thin film, we have started to develop molecular electronic devices and bio-related materials in which a single organic molecule has a function such as a logic element or a memory element. Several research institutions have recently announced proposals to create logical devices (e.g., biochips).

かかる有機材料を用いて上記の各種デバイス等を作成す
る際の薄膜は公知の単分子累積法、すなわちラングミュ
ア・プロジェット法(LB法)(新実験化学講座 18
巻 498頁〜50?頁 丸首)によって形成すること
ができる。
When creating the various devices mentioned above using such organic materials, thin films are prepared using the known single molecule accumulation method, namely the Langmuir-Prodgett method (LB method) (New Experimental Chemistry Course 18).
Volume 498-50? page round neck).

LB法は、例えば分子内に親木基と疎水基を有する構造
の分子において、両者のバランス(両親媒性のバランス
)が適度に保たれているとき1分子は水面で親木基を下
に向けて単分子の層になることを利用して単分子膜また
は単分子層の累積膜を作成する方法である。
In the LB method, for example, in a molecule with a structure that has a parent wood group and a hydrophobic group in the molecule, when the balance between the two (balance of amphiphilicity) is maintained appropriately, one molecule is placed on the water surface with the parent wood group below. This is a method of creating a monomolecular film or a cumulative film of monomolecular layers by utilizing the fact that the film becomes a monomolecular layer.

ところで、このような単分子膜又は単分子累積膜に光導
電性等の各種の機能を持たせ、前述の如き各種デバイス
等を作成するためには、単分子膜又は単分子累積膜の二
次元的な配置を制御する必要がある。しかしながら、上
記の方法では単分子膜又は単分子累積膜が基体全面に形
成されるため、単分子膜又は単分子累積膜の二次元的な
パターニングは、特殊な光重合性を利用したりソグラフ
ィ応用のフォトレジストの場合を除いて、すなわち単分
子膜又は単分子累積膜を構成する分子がフォトレジスト
としての性状を有する場合を除いて制御できない欠点が
あった。
By the way, in order to provide various functions such as photoconductivity to such a monomolecular film or a monomolecular cumulative film and to create various devices as described above, it is necessary to It is necessary to control the physical placement. However, in the above method, a monomolecular film or a monomolecular cumulative film is formed on the entire surface of the substrate, so two-dimensional patterning of a monomolecular film or a monomolecular cumulative film cannot be achieved by using special photopolymerizability or by applying lithography. There is a drawback that the method cannot be controlled except in the case of a photoresist, that is, unless the molecules constituting a monomolecular film or a monomolecular cumulative film have properties as a photoresist.

[発明の開示] 本発明の目的は、単分子膜又は単分子累積膜の二次元的
な配置を制御することがfif能な新規なパターン形成
方法を提供することにある。
[Disclosure of the Invention] An object of the present invention is to provide a novel pattern forming method capable of controlling the two-dimensional arrangement of a monomolecular film or a monomolecular cumulative film.

木発すjの目的は、以下のパターン形成方法によって達
成される。
The purpose of wood-generating j is achieved by the following patterning method.

すなわち、少なくとも下地表面を雰囲気ガス不存在下で
カンマ−線を走査し、単分子膜又は単分子累積膜のパタ
ーンを形成後、超音波振動を加えることを特徴とするパ
ターン形成方法によって達成される。
That is, it is achieved by a pattern forming method characterized in that at least the underlying surface is scanned with a commer line in the absence of atmospheric gas to form a pattern of a monomolecular film or a monomolecular cumulative film, and then ultrasonic vibration is applied. .

本発明では、下地表面をガンマ−線を走査させることに
より改質する。ここで、下地とは、単分子膜または単分
子累積膜が所定のパターンに従って積層される部材を相
称する。そのような部材としては、例えば、前述した各
種の半導体デバイス等に用いられるガラス、5i02等
の無機物からなる基板、ポリエチレン、ポリエチし・ン
テレフタレート、ポリイミド等の有機物からなる基板、
A1. Ta、 W、 In、 Cu等の金属やこれら
の合金等からなる基板、これ等の基板上に設けられた各
種の層(所定のパターンに従って形成されている)、例
えばA1. Ta、 W、 In、 Cu等の泗着メタ
ル膜、シリコン、ゲルマニウム等のアモルファス、多結
晶あルイは単結晶半導体膜、5n02 、 I T O
(In703+5n02)等の導電性酸化物ガラス膜、
等の分子性アモルファス半導体膜等が挙げられる。また
、このような基板、膜、あるいはHりが積層されている
基板上に、更に単分子Rり又は単分子累積膜等が積層さ
れている部位等も利用し得るものとして挙げられる。
In the present invention, the underlying surface is modified by scanning it with gamma rays. Here, the base refers to a member on which a monomolecular film or a monomolecular cumulative film is laminated according to a predetermined pattern. Such members include, for example, glass used in the various semiconductor devices mentioned above, substrates made of inorganic substances such as 5i02, substrates made of organic substances such as polyethylene, polyethylene terephthalate, polyimide, etc.
A1. Substrates made of metals such as Ta, W, In, and Cu or alloys thereof, and various layers (formed according to predetermined patterns) provided on these substrates, for example, A1. Adhesive metal films such as Ta, W, In, Cu, etc., amorphous and polycrystalline films such as silicon and germanium, single crystal semiconductor films, 5n02, ITO
Conductive oxide glass film such as (In703+5n02),
Examples include molecular amorphous semiconductor films such as. Further, such a substrate, a film, or a portion on which a monomolecular resin, a monomolecular cumulative film, or the like is further laminated on a substrate on which a hydrogen film is laminated can also be used.

特に好ましくは、カラス、ポリエチレン、ポリイミド心
シリコンのアモルファス、多結晶あるいは単結晶半導体
膜、単分子膜又は単分子累積膜等が積層ぎれている下地
などが挙げられる。
Particularly preferred are substrates in which amorphous, polycrystalline or single crystal semiconductor films, monomolecular films, monomolecular cumulative films, etc. of glass, polyethylene, or polyimide core silicon are laminated.

ガンマ−線は波長が短いので、マスクを用いることによ
り100 A −1000Aの密度でパターン形成が0
丁能である。カンマ−線による表面の改質を行なうため
には、1oジユー JL// cm2〜5 x 104
ジユール/ 0m2のエネルギーが必要である。
Since gamma rays have short wavelengths, pattern formation can be achieved with a density of 100 A to 1000 A by using a mask.
It is Ding Noh. In order to modify the surface with commer rays, 10 JL// cm2~5 x 104
Energy of Joule/0m2 is required.

ガンマ−線による表面の改質は、例えば、以下のように
して行われる。シリコン等の場合には、カンマ−線で走
査すると1表面が疎水性であったのが親水性に変化する
。また、ポリイミド、AIの場合には、ガンマ−線で走
査すると、表面が親木性であったのが疎水性に変化する
。あるいは両親媒性が反転しないまでも親木性がより強
くなったり、疎水性がより強くなったりする。上記の様
にF−JM衣表面改質することによってパターニングを
行い、形成されたパターンに従って単分子11り又は単
分子累積Il々がU′地上に形成される。
Surface modification by gamma rays is performed, for example, as follows. In the case of silicon, etc., when scanning with a comma line, one surface changes from hydrophobic to hydrophilic. Furthermore, in the case of polyimide and AI, when scanned with gamma rays, the surface changes from lignophilic to hydrophobic. Alternatively, even if the amphiphilicity is not reversed, the phylophilicity becomes stronger or the hydrophobicity becomes stronger. Patterning is performed by modifying the surface of the F-JM coat as described above, and monomolecules 11 or cumulative monomolecules I1 are formed on the surface of U' according to the formed pattern.

単分子−Hり又は単分子累積膜欣が一ト地上に形成され
た後、超音波振動を加えることは、分−f間カが大きく
1模が固体膜に近いときあるいはRλが薄いときに特に
有効である。すなわち、超音波振動を加えることにより
微lIBなパターニングが07能となる。
After a monomolecular H layer or a monomolecular cumulative film has been formed on the ground, applying ultrasonic vibration is effective when the force between min and f is large and the layer is close to a solid film, or when Rλ is thin. Particularly effective. That is, by applying ultrasonic vibration, fine patterning of 0.7 lb is possible.

また、明瞭なパターンの形成が++/能となる。超音波
振動を加えることは、エツチング工程を別に設けるより
も時間の短縮も可能であるばかりではなく、エツチング
が不完全なことも生じない長所を有する。更に材料選択
の範囲もほとんど制限を受けない。
Moreover, formation of a clear pattern becomes ++/ability. Applying ultrasonic vibrations has the advantage that it not only takes less time than providing a separate etching process, but also prevents incomplete etching. Furthermore, the range of material selection is hardly restricted.

なお、本発明における単分子膜゛又は単分子累積膜を構
成する分子は、その分子内に疎水性部分及び親水性部分
を有する分子であれば広く使用tif能である。
The molecules constituting the monomolecular film or the monomolecular cumulative film in the present invention can be widely used as long as they have a hydrophobic part and a hydrophilic part in the molecule.

このような分子の疎水性部分の構成要素として最も代表
的なものはアルキル基であって、炭素数5〜30、好ま
しくは、炭素数lO〜25の直鎖状あるいは分枝状のも
のが使用しうる。疎水性部分を構成する基としては、上
記アルキル基の他、例えばビニレン、ビニリデン、アセ
チレン等のオレフィン系炭化水素基、フェニル、ナフチ
ル、アントラニル等の如き縮合多環フェニル基、ビフェ
ニル、ターフェニル等の鎖状多環フェニル基等の疎水基
等が挙げられる。これらは各々単独であるいは組合され
て上記分子の疎水性部分を構成し。
The most typical component of the hydrophobic portion of such a molecule is an alkyl group, which is a linear or branched group having 5 to 30 carbon atoms, preferably 10 to 25 carbon atoms. I can do it. In addition to the above-mentioned alkyl groups, examples of groups constituting the hydrophobic moiety include olefinic hydrocarbon groups such as vinylene, vinylidene, and acetylene, condensed polycyclic phenyl groups such as phenyl, naphthyl, and anthranyl, biphenyl, and terphenyl. Examples include hydrophobic groups such as a chain polycyclic phenyl group. Each of these, alone or in combination, constitutes the hydrophobic portion of the molecule.

分子の末端や中間に位置する。Located at the end or middle of the molecule.

一方、親木性部分の構成要素として最も代表的なものは
、例えばカルボキシル基及びその金属塩並びにアミン塩
、スルホン酸基及びその金属塩並びにアミン塩、スルホ
ンアミド基、アミド基、アミノ基、イミノ基、ヒドロキ
シル基、4級アミン基、オキシイミノ基、オキシイミノ
基、ジアノニウム基、グアニジン基、ヒドラジン基、リ
ン酸基、ケイ酸基、アルミン酸基等が挙げられる。これ
らも各々単独であるいは組合されて上記分子の親木性部
分を構成し1分子の末端や中間に位置する。
On the other hand, the most typical constituent elements of the wood-philic moiety are, for example, carboxyl groups and their metal salts and amine salts, sulfonic acid groups and their metal salts and amine salts, sulfonamide groups, amide groups, amino groups, imino group, a hydroxyl group, a quaternary amine group, an oximino group, an oximino group, a dianonium group, a guanidine group, a hydrazine group, a phosphoric acid group, a silicic acid group, an aluminate group, and the like. These also constitute the tree-like part of the above molecule either alone or in combination, and are located at the end or middle of one molecule.

ここで1分子内に親木性部分及び疎水性部分を有すると
は、例えば分子が上記のような親木基及び疎水基の両者
を分子内に一つずつ有するか、又は分子内に一つ以上の
親木性基及び疎水基を有する場合には、分子全体の構成
においである部分が他の部分との関係において親木性で
あり、−劣後者の部分は前者の部分との関係において疎
水性の関係を有することをいう。
Here, having a woody group and a hydrophobic group in one molecule means, for example, that the molecule has both one woody group and one hydrophobic group as described above, or one When it has the above-mentioned lignophilic groups and hydrophobic groups, in the overall structure of the molecule, a certain part is lignophilic in relation to other parts, and - the latter part is inferior in relation to the former part. It means to have a hydrophobic relationship.

本発明における単分子膜又は単分子累積膜を構成する分
子としては、下記の如き機能性を有することが所望され
る。
The molecules constituting the monomolecular film or monomolecular cumulative film in the present invention are desired to have the following functionality.

■所望の機能性を荷う部位、即ち機能性部分(例えばπ
電子系)が同時に強い親水性(又は強い疎水性)として
の性質を併有する分子、あるいは■機能性部分が特に親
木性、疎水性を有さす、上記の如き親木基、疎水基等を
導入することで、分子内に親水性部分と疎水性部位を構
成する分子、例えば、 イ9機能性部分が親木性部分の側にあるもの、例えば、
光導電性を有する長鎖アルキル置換のメロシアニン色素
等、 口1機能性部分が疎水性部分の側にあるもの、例えば、
ピレンに長鎖アルキルカルボン酸を結合したもの等、 ハ1機能性部分が中央付近、即ち疎水性部分と親木性部
分の中間にあるもの、例えば、アントラセン誘導体、ジ
アゾ色素の誘導体等、二0機能性部分がなく、疎水性部
分と親水性部分のみでできているもの、例えば、長鎖飽
和脂肪酸であるステアリン酸、アラキシン酸等が具体的
なものとして挙げられる。
■ Parts that carry the desired functionality, i.e., functional parts (for example, π
Molecules that have strong hydrophilic (or strong hydrophobic) properties at the same time (electronic system), or ■ The functional moiety has especially xylemophilicity or hydrophobicity, such as xylemophilic groups, hydrophobic groups, etc. Molecules that have a hydrophilic part and a hydrophobic part in the molecule by introducing them, e.g.
Those in which the functional part is on the side of the hydrophobic part, such as long-chain alkyl-substituted merocyanine dyes with photoconductivity, for example,
Those with a long-chain alkyl carboxylic acid bonded to pyrene, etc., where the functional part is near the center, that is, between the hydrophobic part and the woody part, such as anthracene derivatives, diazo dye derivatives, etc. Specific examples include those that have no functional moiety and are made only of hydrophobic and hydrophilic moieties, such as long-chain saturated fatty acids such as stearic acid and alaxic acid.

特に好ましくは、長鎖アルキル置換のメロシアニン色素
、アントラセン誘導体、アラキシン酸などが挙げられる
Particularly preferred are long-chain alkyl-substituted merocyanine dyes, anthracene derivatives, alaxic acid, and the like.

本発明を更に具体的に説明するために、以下に実施例を
示す。
EXAMPLES In order to explain the present invention more specifically, Examples are shown below.

実施例1 第1図に示す方法にてパターンを形成した。Example 1 A pattern was formed by the method shown in FIG.

Si(+00)基板1−1の表面にLB法でアラキシン
酸の単分子累積膜1−2を形成し、)°地を作成した。
A monomolecular cumulative film 1-2 of araxic acid was formed on the surface of a Si (+00) substrate 1-1 by the LB method to create a ) substrate.

アラキシン酸の単分子膜M1nyは1表面圧3゜dyn
e/cm、引き上げ速度5 cm/sinの形成条件で
1層積層した。
Araxic acid monolayer M1ny has 1 surface pressure of 3°dyn.
One layer was laminated under conditions of e/cm and pulling rate of 5 cm/sin.

次に、前記ド地を真空中に置き、波長0.01へのガン
マ−線をマスクを用い、 100J /c+++ 2で
ト地表面を走査した。走査部分1−4のアラキシン酸の
疎水基部分が変質し、ff11図(C)に示す様にパタ
ーンが形成された。
Next, the substrate was placed in a vacuum, and the surface of the substrate was scanned with gamma rays at a wavelength of 0.01 at 100 J/c+++2 using a mask. The hydrophobic group portion of araxic acid in scanning portion 1-4 was altered, and a pattern was formed as shown in ff11 diagram (C).

次に、LB法で7ラキジン酸とメロシアニンの誘導体の
単分子累積膜を形成した。アラキシン酸とメロシアニン
の誘導体(I)を1=1のmol比で混合し、前記混合
物を1xlO’鳳01/1 となるようクロロホルムに
溶かした溶液を水面に展開した後、表面圧 40 dy
ne/層in 、引き上げ速俄3cm/winにて4層
積層した。
Next, a monomolecular cumulative film of 7-rachidic acid and merocyanine derivatives was formed by the LB method. Araxic acid and merocyanine derivative (I) were mixed at a molar ratio of 1=1, and the mixture was dissolved in chloroform to give a concentration of 1xlO'01/1. A solution was spread on the water surface, and the surface pressure was 40 dy.
Four layers were laminated at a pulling speed of 3 cm/win and a pulling speed of 3 cm/win.

次に出力 100Wの超音波発生装置を用いて水中で約
5分超音波を加えると1−4の部分の単分子累積膜は剥
離して、1−3の部分のみに単分子累積膜1−5が第1
図(d)に示す様にパターンに従って形成された。
Next, when ultrasonic waves are applied in water for about 5 minutes using an ultrasonic generator with an output of 100 W, the monomolecular cumulative film in the area 1-4 is peeled off, and the monomolecular cumulative film 1-4 is peeled off only in the area 1-3. 5 is the first
It was formed according to the pattern as shown in Figure (d).

以上のよう2に、下地をガンマ−線で改質することによ
り、下地表面にパターン状に単分子膜又は単分子累積膜
を形成することがU(能である。
As described above, by modifying the base with gamma rays, it is possible to form a monomolecular film or a monomolecular cumulative film in a pattern on the surface of the base.

マスクを用いることによりガンマ−線で微細なパターン
形成が可能である。従ってSi集積回路への応用も可能
である。また、ガンマ−線の強さを変化させ、下地表面
への単分子膜又は単分子累積膜の付着力を変えたり、同
時に単分子膜又は単分子累積膜の構成分子として親木部
分、疎水部分の強さの異なる分子を用いることによって
、植種の分子による二次元配置もrif能である。また
、これらの組合わせにより複雑な三次元構造のデバイス
の製造も可能である。
By using a mask, it is possible to form fine patterns with gamma rays. Therefore, application to Si integrated circuits is also possible. In addition, by changing the intensity of gamma rays, it is possible to change the adhesion force of the monomolecular film or monomolecular cumulative film to the underlying surface, and at the same time, it is possible to By using molecules with different strengths, two-dimensional arrangement of inoculum molecules is also rifable. Moreover, by combining these, it is also possible to manufacture devices with complicated three-dimensional structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のパターン形成方法の実施態様をボす
。 1−1・・・Si (100)基板 特許出願人 キマノン株式会社 第1図 手続補正書(自発) 昭和59年 7月 C日 特許庁長官 殿 1、事件の表示 昭和58年 特許願 第087586
号2、発明の名称 パターン形成方法 3、補正をする者 事件との関係 特許出願人 (100)キャノン株式会社 4、代 理 人 住所 東京都港区赤坂L−r目9番?0号第16興和ビ
ル8階 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書第11頁第11行一般式(I) に補正する。
FIG. 1 illustrates an embodiment of the pattern forming method of the present invention. 1-1...Si (100) Substrate patent applicant Kimanon Co., Ltd. Figure 1 procedural amendment (voluntary) July 1980 Commissioner of the C-day Patent Office Mr. 1, Indication of case 1982 Patent application No. 087586
No. 2, Invention name pattern formation method 3, Relationship with the case of the person making the amendment Patent applicant (100) Canon Co., Ltd. 4, Agent address No. 9, Akasaka L-r, Minato-ku, Tokyo? No. 0, No. 16, Kowa Building, 8th Floor, 5, Detailed Description of the Invention, Column 6, Contents of the Amendment, page 11, line 11, general formula (I) in the specification to be amended.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも下地表面を雰囲気ガス不存在下でガンマ−線
を走査し、単分子膜又は単分子界M1膜のパターンを形
成後、超音波振動を加えることを特徴とするパターン形
成方法。
A pattern forming method comprising scanning at least a base surface with gamma rays in the absence of atmospheric gas to form a pattern of a monomolecular film or a monomolecular field M1 film, and then applying ultrasonic vibration.
JP59067566A 1984-04-06 1984-04-06 Forming method for pattern Pending JPS60211831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067566A JPS60211831A (en) 1984-04-06 1984-04-06 Forming method for pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067566A JPS60211831A (en) 1984-04-06 1984-04-06 Forming method for pattern

Publications (1)

Publication Number Publication Date
JPS60211831A true JPS60211831A (en) 1985-10-24

Family

ID=13348632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067566A Pending JPS60211831A (en) 1984-04-06 1984-04-06 Forming method for pattern

Country Status (1)

Country Link
JP (1) JPS60211831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512328A (en) * 1992-08-07 1996-04-30 Hitachi, Ltd. Method for forming a pattern and forming a thin film used in pattern formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512328A (en) * 1992-08-07 1996-04-30 Hitachi, Ltd. Method for forming a pattern and forming a thin film used in pattern formation

Similar Documents

Publication Publication Date Title
JPH0434818B2 (en)
JP3377215B2 (en) Method for oriented deposition of chemically defined bodies
US6746819B1 (en) Use of polyimide for adhesive layers, lithographic method for producing microcomponents and method for producing composite material
CN107210197A (en) Orientation self assembly for block copolymer mixes pattern and chemical pre-fabricated patterns
JPH02183230A (en) Organic nonlinear optical material and production thereof
US20150010869A1 (en) Methods of providing patterned chemical epitaxy templates for self-assemblable block copolymers for use in device lithography
JPS60211831A (en) Forming method for pattern
JP2005252080A (en) Wave absorber and its manufacturing method
JPS60211826A (en) Pattern forming means
JPS60211830A (en) Forming method for pattern
JPS60211922A (en) Forming method of pattern
JPS60211927A (en) Method for formation of pattern
JPS60211929A (en) Method for formation of pattern
JPS60211930A (en) Method for formation of pattern
JPS60211924A (en) Method for formation of pattern
JPS60211933A (en) Method for formation of pattern
JPS60211926A (en) Method for formation of pattern
JPS60211828A (en) Pattern forming means
JPS60211923A (en) Method for formation of pattern
JPS60211827A (en) Pattern forming means
JPS60211921A (en) Forming method of pattern
JPS60211915A (en) Forming method of pattern
JPS60211925A (en) Method for formation of pattern
JPS60211917A (en) Forming method of pattern
JPS60211835A (en) Forming method for pattern