JPS60211756A - Ion microscope - Google Patents

Ion microscope

Info

Publication number
JPS60211756A
JPS60211756A JP6623384A JP6623384A JPS60211756A JP S60211756 A JPS60211756 A JP S60211756A JP 6623384 A JP6623384 A JP 6623384A JP 6623384 A JP6623384 A JP 6623384A JP S60211756 A JPS60211756 A JP S60211756A
Authority
JP
Japan
Prior art keywords
anode
sample
anodes
ion
ion particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6623384A
Other languages
Japanese (ja)
Inventor
Tadashi Sekiguchi
忠 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6623384A priority Critical patent/JPS60211756A/en
Publication of JPS60211756A publication Critical patent/JPS60211756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/285Emission microscopes, e.g. field-emission microscopes

Abstract

PURPOSE:To obtain an image of a sample surface expanded with high magnification by a method, in which a sample is made into a plane body while facing said plane body, one or plural anodes having ion passage holes are disposed and the anodes with the phosphor films arranged so as to overlap said anodes at a fixed distance are also disposed. CONSTITUTION:When a direct current supply is impressed on the electrodes 1, 2 and 3, the directions of the electric lines of force are those shown by the dotted lines. Accordingly, when a sample such as sodium or other metal materials is attached onto a plane electrode 1, its atoms are ionized and flying out vertically to every part of the face of the electrode 2 in the shape of a circular arc. Some of ion particles are made to pass through a minute hole 4 in the center part of the anode 2 while said ion particles being further accelerated by the voltage impressed between the anode 2 and the anode 3 so that said ion particles may expand in the directions of electric lines of force for vertically colliding with each part of the face of the anode 3 in the shape of the circular arc. Thereby, the ion particles having passed through the minute hole 4 further project an expanded image of a part of the sample surface.

Description

【発明の詳細な説明】 本発明は試料表面から放射される電子または1オンを用
いて、該試料の表7fi+状態の確認を行える1オンb
σ1微鏡に関するe 従来から、金属や半導体から放射さね、る熱電子、芹市
、子を加速直進させることにより、これら表面状態を螢
)1膜上に拡大した像として表出する1オン顕微鏡が提
供されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a 1-on b that can confirm the Table 7fi+ state of a sample using electrons or 1-on emitted from the surface of the sample.
σ1 Microscope Conventionally, by accelerating thermoelectrons and electrons emitted from metals and semiconductors, these surface states are expressed as an enlarged image on a film. A microscope is provided.

この1オン顕微鏡は例えば半径が103A’という球状
の先鋭度の高い陰極から放出きれる電子を環状陽極の2
〜15KVの電圧印加(Cよって牛しる電気力線の方向
に適寸せ、球面状の螢光膜に衝撃させて、陰極と螢光膜
の距離を例えば]0crnとした場合に106培の倍率
の試料表面画像を得る如く構成されているC しかしながら、かかる従来のイオン顕微鏡にあっては、
先端半径が10”A0以下の陰極を形成し、十分大きな
電界集中を図って、その先端から発生する電子や4オン
の加速を促進するものであるが、その陰極先端の尖端技
術に限界があり、したかつて電界集中が不十分となり、
従って十分な拡大像が得られていない0か、これ以」二
の倍率を確保することが難しい〇 本発明は上詑の点に着目してなされたもので、に電位差
を生じせしめ、螢光膜を持った陽極と陰極との間の他の
陽極にはイオン通過孔を設けた構成としたものであり、
これによって陰極捷たけ試料の面捜索を可能にするとと
もに、試料表面の高倍率の拡大像を螢光膜上に表出する
様(でしたイオン顕微鏡を)にイノ(することを目的と
するC以下に、水元Iυ1の実施例を図面について具体
的に音、明する0 図はこの一実、畑例の動作原理図である。1は面状電極
としての陰極で、例えば特に融点の高い金属例え−°タ
ングステンなどの不活性金属桐材が用いられる。2.3
は面状電極1に対し対向設置した陽極で、円弧状117
.極として形成さ))7、これらも上記の如き融点の高
い全国を用いて形成されている。
This 1-on microscope, for example, collects electrons that can be emitted from a highly sharp spherical cathode with a radius of 103A' into two rings of an annular anode.
When a voltage of ~15 KV is applied (adjusted to the direction of the electric line of force, and the spherical fluorescent film is impacted, and the distance between the cathode and the fluorescent film is set to 0 crn), a voltage of 106 times is applied. However, such conventional ion microscopes are configured to obtain magnified sample surface images.
This method forms a cathode with a tip radius of 10" A0 or less, and aims to concentrate a sufficiently large electric field to accelerate the acceleration of electrons and 4-ons generated from the tip. However, there are limits to the advanced technology at the tip of the cathode. , the electric field concentration was insufficient,
Therefore, it is difficult to secure a magnification of 0 or more than 2, where a sufficiently enlarged image cannot be obtained. The other anode between the anode and the cathode with a membrane has an ion passage hole,
This makes it possible to search the surface of a cathode-exposed sample, and is also an innovation that allows a highly magnified image of the sample surface to be displayed on a fluorescent film (similar to the ion microscope). Below, the embodiment of Mizumoto Iυ1 will be explained in detail with reference to the drawings.The figure is a diagram of the operating principle of this example.1 is a cathode as a planar electrode, for example, a material with a particularly high melting point. Metal analogy - inert metal such as tungsten is used.2.3
is an anode installed opposite to the planar electrode 1, and has a circular arc shape 117.
.. Formed as a pole))7, these are also formed using the above-mentioned materials with high melting points.

また、陽極2の上記面状電極対向部位には、例えは1(
JOA0〜100OA0のザ4ズの微小孔4が夛設さハ
、ていて、この微小孔4を通じて、1n1状電極2′−
iたはこのi11状電極2に設けた胱利表面から放射さ
h−る1111子やイオンのいくつかを選択して;i1
1必させる様になっている。
In addition, for example, 1 (
A micro hole 4 of JOA0 to 100OA0 is provided, and through this micro hole 4, a 1n1-shaped electrode 2'-
Select some of the 1111 molecules and ions emitted from the cystic surface provided on this i11-shaped electrode 2; i1
1 is required.

なお−上古C3つの市、極1.2,3niには不活性カ
スな介在させることによって、絶縁特性の改善並ひに電
気力線の平均分布を図ることができるC5は面状電極1
と陽極2との1Tij VC接続する直流電源で、観測
しようとする試料からの4オン発生に適応する電圧を発
生ずるにの電圧として例えば8KVから2 CI KV
程度が選ばれる。この直流電源として発電機を用いるこ
とができるが、高価fつくので例えはDC−DCコンバ
ータか使われるC6は陽極2.3間に接続する直流電源
で、n測しようとする試別から直進する1オンを、再加
速する様なレベルの電圧しこ設定さfl、るC捷た、陽
(夕3の内偵1面には1オンの衝突を受けて輝点を作ら
ぜる螢光膜7か塗着さ、1′シている0次に、かかる構
成になるイオン顕微鏡の動作原」411について述べる
By intervening inert scum in the three electrodes 1, 2 and 3 of the old C5, it is possible to improve the insulation properties and average distribution of the lines of electric force.C5 is the planar electrode 1.
With a DC power supply connected to the anode 2 and the anode 2, a voltage suitable for the 4-on generation from the sample to be observed is generated.For example, the voltage ranges from 8 KV to 2 CI KV
The degree is chosen. A generator can be used as this DC power source, but it is expensive, so for example, a DC-DC converter is used.C6 is a DC power source connected between the anodes 2 and 3. The voltage was set at a level that would re-accelerate the 1-on light. The principle of operation of an ion microscope having such a configuration will be described below.

い捷、上記3つの電極L 2.3に」二記の如き直流電
源を印加するこ、この直流電源電圧が例えは15KVと
高圧であるため、これら各電極間にC1市、界が発生し
、その電気力線の方向は仮想的に点線で示す如くなるC そこで、」−記面状電極1上に試料のナトリウムやその
他の金属桐材を取り伺けておけば、これらの原子が1オ
ン1じして円弧状電極2の各面r対して垂直方向に飛び
出していくにのイオン化した粒子は100A0〜100
0 A0程度の太ききで、仮IC陽極2上に螢光膜が塗
着されていれば・これに」−記1オンが衝突して上記試
料の表面状態の拡大像を得ることができるC しかし、この発明では、上記イオン粒子のいくつかを陽
極2中央部の上記微小孔4を通過させ、@極3とのLH
I pc印加した電圧によってそのイオン粒子をづらに
加速することによって、そのいくつかの1オン粒子は点
線で示す電気力線の方向に拡大して円弧状陽極3の各i
?iiに垂直に衝突するにのため、微小孔4f辿過して
きたイオン粒子は、さらに試料表面の一部の拡大像を螢
光膜7上に映出することになる。
However, by applying a DC power source as described in 2.2 to the above three electrodes L2.3, since this DC power source voltage is high voltage, for example 15KV, a C1 field will be generated between these electrodes. , the direction of the lines of electric force is virtually as shown by the dotted lineC The number of ionized particles that fly out in the direction perpendicular to each surface r of the arc-shaped electrode 2 is 100A0 to 100.
If a fluorescent film is coated on the temporary IC anode 2 with a thickness of about 0 A0, the 1-on will collide with this and an enlarged image of the surface state of the sample can be obtained. However, in this invention, some of the ion particles are passed through the micropore 4 in the center of the anode 2, and the LH between the electrode 3 and the
By accelerating the ion particles slowly by the applied voltage I pc, some of the 1-on particles expand in the direction of the lines of electric force shown by the dotted lines and reach each i of the arc-shaped anode 3.
? Since the ion particles collide perpendicularly to ii, the ion particles that have followed the microhole 4f further project an enlarged image of a portion of the sample surface on the fluorescent film 7.

かくして、試料の一部を更に拡大して観6111できる
ことになり、」−記微小孔4の位債f変えることにより
、試料の一部を捜索しながら、その一部の拡大1象?観
測できるcしたがって、かかる技術を利用すり、ば、半
導体を試料とした場合に、すべり結晶欠陥を捜し当てる
作業も容易になる01だ、同様にして高倍率で試料とし
ての半導体結晶構造や原子パターンの配列なども容易i
c 観i1!11でpるものであるCまた、集積回路素
子ではP形半導体、N型半導体の拡散層やエヒタキンヤ
ル層さらπは電極パターンの各接合部構造の観察も行え
る0以上詳述した通り、本発明によれは、陰棲捷たほこ
の陰極に取り句けられる試料をmJ状体となし、これF
対向する様に、1オン通過孔を持った1−または複数の
陽極と、該陽極に対し一定距踊を隔てて互いに重なる様
に配した螢光膜イτ」き陽極とを配設し、こhら谷陰極
および陽極間(で電位差を生じ−しめる構成としたこと
によって、」−詫陰極せたは試料の一部を選んでその拡
大像を螢光膜」二に於いて容易に観測できるものであり
、輸質性状を高分解能で認知しうるものとなる。
In this way, a part of the sample can be further enlarged and viewed, and by changing the position of the microhole 4, the part of the sample can be enlarged while searching for it. Therefore, by using such technology, it becomes easier to find slip crystal defects when a semiconductor is used as a sample. Similarly, it is possible to observe the semiconductor crystal structure and atomic patterns of the sample at high magnification. Easy to arrange etc.
C In addition, in integrated circuit elements, diffusion layers of P-type semiconductors and N-type semiconductors, Ehita Kinyal layer, and π can also be used to observe the structure of each junction of the electrode pattern. According to the present invention, the sample placed on the cathode of the negative electrode is an mJ-shaped body, which is F.
One or more anodes each having a one-on passage hole and anodes having a phosphor film arranged so as to overlap each other at a certain distance from the anode are disposed so as to face each other, By creating a potential difference between the valley cathode and the anode, it is possible to select a part of the sample from the cathode or the anode and easily observe its magnified image on the fluorescent film. This makes it possible to recognize the properties of transport substances with high resolution.

【図面の簡単な説明】 図は本発明のイオン顕微鏡の概略構成を示す説明Iヌ]
である。 1・・陰極 2.3・・・陽極 4・・・づオン通過孔 5.6・電源 持n′F出願人 関 口 忠 QQ −
[BRIEF DESCRIPTION OF THE DRAWINGS] The figure is an explanatory diagram showing the schematic configuration of the ion microscope of the present invention]
It is. 1... Cathode 2.3... Anode 4... On passing hole 5.6... Power supply n'F Applicant Tadashi Sekiguchi QQ -

Claims (1)

【特許請求の範囲】[Claims] 陰極またけ該陰極に取り付けられる試料を面状体となし
、これに動向する様に、イオン通過孔を持った1捷たけ
複数の陽極と該陽極に対し一定圧める構成とし7たこと
を特徴とするイオン穐微鏡0
The sample attached to the cathode was made into a planar body, and the structure was such that a plurality of anodes each having ion passage holes and a constant pressure were applied to the anodes. Features of Ion Aki Microscope 0
JP6623384A 1984-04-03 1984-04-03 Ion microscope Pending JPS60211756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6623384A JPS60211756A (en) 1984-04-03 1984-04-03 Ion microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6623384A JPS60211756A (en) 1984-04-03 1984-04-03 Ion microscope

Publications (1)

Publication Number Publication Date
JPS60211756A true JPS60211756A (en) 1985-10-24

Family

ID=13309929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6623384A Pending JPS60211756A (en) 1984-04-03 1984-04-03 Ion microscope

Country Status (1)

Country Link
JP (1) JPS60211756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093615A1 (en) * 2001-03-26 2002-11-21 Kanazawa Institute Of Technology Scanning atom probe and analysis method using scanning atom probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093615A1 (en) * 2001-03-26 2002-11-21 Kanazawa Institute Of Technology Scanning atom probe and analysis method using scanning atom probe

Similar Documents

Publication Publication Date Title
US4119688A (en) Electro-lithography method
CN100359626C (en) A particle beam generator
JPS6213789B2 (en)
EP0155283B1 (en) Focused ion beam column
TW451239B (en) Field emission type cathode, electron emission apparatus and electron emission apparatus manufacturing method
DE102005000644A1 (en) An electron beam inspection apparatus and method for inspecting through-holes using clustered nanotube arrays
JPH11213934A (en) Method for observing secondary ion image formed by focused ion beam
US7576341B2 (en) Lithography systems and methods for operating the same
JPS60211756A (en) Ion microscope
JP4393899B2 (en) Sample for atom probe apparatus and processing method thereof
JP4902712B2 (en) Atom probe analysis method
JPH10162769A (en) Ion beam work device
US11615938B2 (en) High-resolution multiple beam source
KR20040052505A (en) Method and Apparatus for Electron Projection Lithography
Latif Nanofabrication using focused ion beam
JPH11329321A (en) Tandem acceleration electrostatic lens
US20060151719A1 (en) Electron beam duplication lithography method
JP3022948B2 (en) Ultra-fine processing method
Shedd et al. Building a micrometer-scale electrostatic lens by hand
JP2845910B2 (en) Sputtering equipment
JPH0451438A (en) Electron beam exposure device and method
JP2001006523A (en) Electron element
JP2007227076A (en) Field emission electron source and manufacturing method
JPS60218752A (en) Ion source
JPH08241691A (en) Deceleration focusing ion beam device