JPS6021155B2 - Method for producing dichloromaleic anhydride - Google Patents

Method for producing dichloromaleic anhydride

Info

Publication number
JPS6021155B2
JPS6021155B2 JP51141040A JP14104076A JPS6021155B2 JP S6021155 B2 JPS6021155 B2 JP S6021155B2 JP 51141040 A JP51141040 A JP 51141040A JP 14104076 A JP14104076 A JP 14104076A JP S6021155 B2 JPS6021155 B2 JP S6021155B2
Authority
JP
Japan
Prior art keywords
reaction
anhydride
weight
maleic anhydride
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51141040A
Other languages
Japanese (ja)
Other versions
JPS5365818A (en
Inventor
浩 橋爪
友彦 吉川
峰雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP51141040A priority Critical patent/JPS6021155B2/en
Publication of JPS5365818A publication Critical patent/JPS5365818A/en
Publication of JPS6021155B2 publication Critical patent/JPS6021155B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はジクロロ無水マレィン酸の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing dichloromaleic anhydride.

ジクロロ無水マレィン酸は農薬、医薬等の原料として有
用な物質であり、通常は無水マレィン酸および塩素を直
接反応させて製造されている。しかしてその反応機構は
下式で示される塩素化及び脱塩酸反応からなるものと考
えられている。無氷マレイメ酸 ジクロロ無水コハク酸 モノクロロ無氷マレイメ酸 トリクロロ無氷コハク酸 ジクロロ無氷マレイオ酸 従来は上記反応の触媒としては無水塩化第2鉄や無水塩
化アルミニウムが用いられているが、これらの触媒では
ジクロロ無水マレイン酸の収率が低く、反応温度が高く
しかも反応に長時間を要する。
Dichloromaleic anhydride is a substance useful as a raw material for agricultural chemicals, medicines, etc., and is usually produced by directly reacting maleic anhydride and chlorine. However, the reaction mechanism is thought to consist of chlorination and dehydrochlorination reactions shown by the following formula. Ice-free maleic acid dichlorosuccinic anhydride monochloro ice-free maleic acid trichloro ice-free succinic acid dichloro-ice free maleic acid Anhydrous ferric chloride and anhydrous aluminum chloride have conventionally been used as catalysts for the above reaction; However, the yield of dichloromaleic anhydride is low, the reaction temperature is high, and the reaction takes a long time.

そこで、かかる欠点を補う方法として、無水塩化第二鉄
とジカルボン酸の存在下に反応を実施する方法を提案し
た。
Therefore, as a method to compensate for this drawback, we proposed a method in which the reaction is carried out in the presence of anhydrous ferric chloride and a dicarboxylic acid.

本発明者等はか)る方法について、更に工業的有利に反
応を実施するため鋭意検討したところ、反応の際に上記
m〜【4’の反応のうち律速反応である■の反応速度が
時間の経過とともに低下し、同時にこの反応速度の低下
は過反応生成物であるテトラクロロ無水コハク酸の生成
を惹起することを知った。
The present inventors have conducted intensive studies on the above method in order to carry out the reaction in an industrially advantageous manner, and have found that during the reaction, the reaction rate of It was found that the reaction rate decreases with the passage of time, and at the same time, this decrease in the reaction rate causes the formation of tetrachlorosuccinic anhydride, which is an overreaction product.

そこで、か)る知見に基づき更に検討を重ねたところ、
反応の途中でジカルボン酸を添加すれば、反応速度の低
下を極めて効果的に抑制し、テトラクロロ無水コハク酸
の生成を抑制出釆ることを見し、出し、本発明に到達し
た。
Therefore, after further consideration based on the above knowledge, we found that
The present inventors have discovered that adding a dicarboxylic acid during the reaction can extremely effectively suppress the reduction in reaction rate and suppress the production of tetrachlorosuccinic anhydride, and have thus arrived at the present invention.

すなわち、本発明の要旨は無水塩化第2鉄或いは無水塩
化アルミニウム触媒の存在下、無水マレィン酸を塩素化
してジクロロ無水マレィン酸を製造するに当り、無水マ
レイン酸の残存量が反応開始時の4の重量%となった時
以降にジカルボン酸を添加することを特徴とするジクロ
ロ無水マレィン酸の製造方法に存する。
That is, the gist of the present invention is that when maleic anhydride is chlorinated in the presence of an anhydrous ferric chloride or anhydrous aluminum chloride catalyst to produce dichloromaleic anhydride, the remaining amount of maleic anhydride is 4 at the start of the reaction. The method of producing dichloromaleic anhydride is characterized in that the dicarboxylic acid is added after the weight % of the dicarboxylic acid reaches .

本発明を更に詳細に説明するに、原料の無水マレィン酸
及び塩素は通常のものが用いられる。
To explain the present invention in more detail, ordinary maleic anhydride and chlorine are used as raw materials.

反応温度は高い程創生した塩酸ガスが除去され、反応速
度が速くなるが、あまり高すぎると原料の無水マレィン
酸或いは反応中間体のモノク。ロ無水マレィン酸等が昇
華し収率が低下するだけでなく、反応器材質の腐食の問
題を惹起するので、か)る点を考慮し、通常は100〜
2000○の範囲から選ばれ好ましくは140〜170
00の範囲から選ばれる。塩素は理論的には無水マレィ
ン酸に対して2モルが消費される。
The higher the reaction temperature, the more generated hydrochloric acid gas is removed and the reaction rate becomes faster; however, if the reaction temperature is too high, maleic anhydride as a raw material or monochloride as a reaction intermediate may be used. (b) Maleic anhydride, etc. sublimes, which not only reduces the yield, but also causes corrosion of the reactor material.
Selected from the range of 2000○, preferably 140 to 170
Selected from the range 00. Theoretically, 2 moles of chlorine are consumed based on maleic anhydride.

塩素の吹き込み速度或いは損枠状態で塩素利用率が異な
るための一概にはいえないが、通常は無水マレィン酸に
対して2.5〜3.0倍モル程度あれば十分である。反
応時間については、反応温度、塩素吹き込み速度、吹き
込み形式、凝拝形式、灘梓速度により異なるが普通3〜
2倣寺間でよい。
Although it cannot be generalized because the utilization rate of chlorine varies depending on the chlorine blowing rate or the frame loss condition, it is usually sufficient if the amount is about 2.5 to 3.0 times the molar amount of maleic anhydride. The reaction time varies depending on the reaction temperature, chlorine blowing rate, blowing type, chlorine blowing type, and Nada Azusa speed, but is usually 3~
2 Imitation temples are fine.

触媒の無水塩化第2鉄、又は無水塩化アルミニウムの使
用量は無水マレィン酸に対して通常0.3〜15重量%
、好ましくは0.5〜5重量%が用いられる。
The amount of anhydrous ferric chloride or anhydrous aluminum chloride used as a catalyst is usually 0.3 to 15% by weight based on maleic anhydride.
, preferably 0.5 to 5% by weight.

また、無水塩化第2鉄の代りに鉄粉を加え、反応系内で
無水塩化第2鉄を形成させる等の手段を用いてもよい。
本発明は上記触媒で反応を開始し、反応の途中でジカル
ボン酸を添加することを特徴とする。
Alternatively, a method such as adding iron powder instead of anhydrous ferric chloride to form anhydrous ferric chloride within the reaction system may be used.
The present invention is characterized in that the reaction is started with the above catalyst and the dicarboxylic acid is added during the reaction.

ジカルボン酸としては、フマール酸、マレィン酸、ジク
ロロマレイン酸、モノクロロマレィン酸、コハク酸、グ
ルタン酸、アジピン酸、フタル酸等を挙げることができ
、これらのうち炭素数4のジカルボン酸が好ましい。ジ
カルボン酸の添加時期は、無水マレィン酸の残存量が反
応開始時の4の重量%以下となった時が好ましく、15
〜2重量%である時が特に好ましい。
Examples of the dicarboxylic acid include fumaric acid, maleic acid, dichloromaleic acid, monochloromaleic acid, succinic acid, glutanic acid, adipic acid, phthalic acid, etc. Among these, dicarboxylic acids having 4 carbon atoms are preferred. The timing of addition of the dicarboxylic acid is preferably when the remaining amount of maleic anhydride is 4% by weight or less at the start of the reaction, and 15% by weight or less.
Particularly preferred is ~2% by weight.

また、ジカルボン酸の添加量は原料無水マレィン酸に対
し1〜2の重量%程度、好ましくは2〜15重量%の範
囲から選ばれる。反応形態は特に規定されるものではな
く従来の方法に従って行なわれ、通常無溶媒下で回分式
で実施される。
Further, the amount of dicarboxylic acid added is selected from a range of about 1 to 2% by weight, preferably 2 to 15% by weight, based on the raw material maleic anhydride. The form of the reaction is not particularly limited, and the reaction is carried out according to conventional methods, and is usually carried out batchwise in the absence of a solvent.

例えば蝿梓機付グラスラィニング製の槽型反応器数個を
並列に並べて一方向から塩素ガスを導入し、禾反応塩素
ガスを次の反応槽へ吸収させ、最初に塩素ガスを導入し
た反応槽の反応終了後塩素ガスの導入方向を逆にして交
互に反応を行なうと、塩素の利用率が更に大きくなり好
ましい。またこの方式によれば、本反応で多量に副生す
る塩酸ガスの回収も容易である。本発明は反応の途中で
少量のジカルボン酸を加えるという極めて簡単な操作に
よりジクロロ無水マレィン酸を工業的有利に製造するこ
とができる。
For example, several glass-lined tank-type reactors with a flywheel are arranged in parallel, chlorine gas is introduced from one direction, and the chlorine gas is absorbed into the next reaction tank. After the reaction in the tank is completed, it is preferable to reverse the direction of introduction of chlorine gas and carry out the reactions alternately, as this further increases the utilization rate of chlorine. Furthermore, according to this method, it is also easy to recover hydrochloric acid gas, which is produced in large amounts as a by-product in this reaction. In the present invention, dichloromaleic anhydride can be industrially advantageously produced by an extremely simple operation of adding a small amount of dicarboxylic acid during the reaction.

以下に、本発明を実施例により更に詳細に説明するが、
本発明はその要旨を超えない限り以下の実施例に制約さ
れるものではない。
The present invention will be explained in more detail by examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

なお、実施例中「収率」は仕込無水マレィン酸に対する
収率を表わす。
In the examples, "yield" refers to the yield based on the maleic anhydride charged.

実施例 1 反応槽に無水マレィン酸294夕、無水塩化第二鉄5.
9夕を仕込み16000に加熱、熔融する。
Example 1 In a reaction tank, 294 g of maleic anhydride and 5 g of anhydrous ferric chloride were added.
Prepare for 9 days and heat to 16,000℃ to melt.

反応温度を160ooに保ち反応液を強網洋下、反応槽
に塩素ガスを44夕/hrの速度で吹込む。約軸r後、
無水マレイン酸濃度が反応開始時の5重量%になったと
ころで塩素化吹込速度を19夕/hrに切換え、フマー
ル酸15夕を添加し、更に反応を行った。反応時間が合
計1靴r後になったところで塩素の吹込みを止め反応物
を常圧蒸留したところジクロロ無水マレィン酸475夕
(純度90重量%、収率92%)を得た。実施例 2 フマール酸のかわりにジクロロ無水マレィン酸26夕を
添加する他は実施例1と同様に反応、蒸留を行ったとこ
ろ、ジクロロ無水マレィン酸479夕(純度9亀重量%
、収率92%)を得た。
The reaction temperature was maintained at 160 oo, and the reaction solution was placed under a strong net offshore, and chlorine gas was blown into the reaction tank at a rate of 44 pm/hr. After about axis r,
When the concentration of maleic anhydride reached 5% by weight at the start of the reaction, the chlorination blowing rate was changed to 19 min/hr, 15 min/hr of fumaric acid was added, and the reaction was further carried out. When the reaction time was 1 hour in total, the blowing of chlorine was stopped and the reactant was distilled under normal pressure to obtain 475 g of dichloromaleic anhydride (purity 90% by weight, yield 92%). Example 2 The reaction and distillation were carried out in the same manner as in Example 1, except that 26% of dichloromaleic anhydride was added instead of fumaric acid, and 479% of dichloromaleic anhydride (purity: 9% by weight) was obtained.
, yield 92%).

実施例 2 反応槽に無水マレィン酸294夕、無水塩化第二鉄5.
9夕及びフマール酸4夕を仕込み16000に加熱、熔
融する。
Example 2 In a reaction tank, 294 g of maleic anhydride and 5 g of anhydrous ferric chloride were added.
Pour 9 tbsp and 4 tbsp of fumaric acid, heat to 16,000 ℃, and melt.

反応温度を160ご0に保ち、反応液を強渡洋下、反応
槽に塩素ガスを44夕/hrの速度で吹込む。
The reaction temperature was maintained at 160 °C, the reaction solution was forced to float under the ocean, and chlorine gas was blown into the reaction tank at a rate of 44 min/hr.

約甑r後、無水マレィン酸濃度が反応開始時の6重量%
になったところで塩素吹込速度を19夕/hrに切換え
、マレィン酸11夕を添加し更に反応を行った。反応時
間が合計1甑rになったところで塩素の吹込みを止め反
応物を常圧蒸留したところでジクロロ無水マレィン酸4
77夕(純度96重量%、収率92%)を得た。実施例
4 反応槽に無水マレィン酸294夕、無水塩化第二鉄5.
9夕を仕込み160q0に加熱溶融した。
After about 30 minutes, the maleic anhydride concentration was 6% by weight at the start of the reaction.
At this point, the chlorine injection rate was changed to 19 min/hr, and 11 min/hr of maleic acid was added for further reaction. When the reaction time reached 1 liter in total, the injection of chlorine was stopped and the reactant was distilled under normal pressure, and dichloromaleic anhydride 4 was extracted.
77% (purity 96% by weight, yield 92%) was obtained. Example 4 In a reaction tank, 294 g of maleic anhydride and 5 g of anhydrous ferric chloride were added.
The mixture was heated and melted to 160q0.

反応温度を16000に保ち、反応液を強盗梓下、反応
槽に塩素ガスを100夕/hrの速度で吹込む。約枇r
後、無水マレィン酸濃度が反応開始時の4重量%になっ
たところでフマール酸29夕を加え更に反応を続行した
。反応時間が合計8.劫r後に塩素吹込みを止め反応物
を常圧蒸留したところジクロロ無水マレィン酸478夕
(純度95重量%、収率91%)を得た。比較例 1 フマール酸の添加を行わない以外は実施例1と同様に反
応を行った。
The reaction temperature was maintained at 16,000 ℃, the reaction solution was heated under pressure, and chlorine gas was blown into the reaction tank at a rate of 100 pm/hr. Approximately
Thereafter, when the concentration of maleic anhydride reached 4% by weight at the start of the reaction, 29 g of fumaric acid was added and the reaction was further continued. Total reaction time is 8. After 3 hours, the chlorine injection was stopped and the reaction product was distilled under normal pressure to obtain 478 g of dichloromaleic anhydride (purity 95% by weight, yield 91%). Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that fumaric acid was not added.

1曲時間後にまだ反応は完結しておらず反応液中には反
応中間体のジクロロ無水コハク酸が滋重量%も残ってお
り、又、過反応生成物のテトラクロロ無水コハク酸が6
重量%生成していた。
After one hour, the reaction has not yet been completed, and the reaction intermediate, dichlorosuccinic anhydride, remains in the reaction solution as much as 6% by weight, and the overreaction product, tetrachlorosuccinic anhydride, remains at 6% by weight.
% by weight.

反応温度を180qoに昇温し更に塩素ガスを19夕/
hrの速度で吹込み反応を続行したがジクロロ無水コハ
ク酸は31重量%にまでしか減少せず、更にテトラクロ
ロ無水コハク酸が14重量%までに増加していた。
The reaction temperature was raised to 180 qo and chlorine gas was added for 19 q/min.
Although the blowing reaction was continued at a rate of 1.5 hr, dichlorosuccinic anhydride was reduced to only 31% by weight, and tetrachlorosuccinic anhydride was further increased to 14% by weight.

実施例 5 実施例1において、無水塩化第二鉄5.99の代りに、
無水塩化アルミニウム4.5夕を用い、実施例1と同様
な条件で反応及び蒸留を行なったところ、ジクロロ無水
マレィン酸の収量は474夕(純度9丸重量%、収率8
8%)であった。
Example 5 In Example 1, instead of 5.99% of anhydrous ferric chloride,
When reaction and distillation were carried out under the same conditions as in Example 1 using 4.5 mm of anhydrous aluminum chloride, the yield of dichloromaleic anhydride was 474 mm (purity: 9% by weight, yield: 8%).
8%).

比較例 2 実施例5において、反応途中でのフマール酸の添加を行
なうことなく、実施例5と同様な条件で反応を行なった
ところ、反応開始1斑時間後においては、中間体である
ジクロロ無水コハク産が4町重量%も残っており、又、
過反応生成物のテトラクロロ無水コハク酸が5重量%生
成していた。
Comparative Example 2 In Example 5, the reaction was carried out under the same conditions as in Example 5 without adding fumaric acid during the reaction. One hour after the start of the reaction, the intermediate dichloroanhydride Amber production remains at 4% by weight, and
Tetrachlorosuccinic anhydride, an overreaction product, was produced in an amount of 5% by weight.

Claims (1)

【特許請求の範囲】[Claims] 1 無水塩化第2鉄或いは無水塩化アルミニウム触媒の
存在下、無水マレイン酸を塩素化してジクロロ無水マレ
イン酸を製造するに当り、無水マレイン酸の残存量が反
応開始時の40重量%となつた時以降にジカルボン酸を
添加することを特徴とするジクロロ無水マレイン酸の製
造方法。
1. When producing dichloromaleic anhydride by chlorinating maleic anhydride in the presence of anhydrous ferric chloride or anhydrous aluminum chloride catalyst, when the remaining amount of maleic anhydride reaches 40% by weight at the start of the reaction. A method for producing dichloromaleic anhydride, which comprises subsequently adding dicarboxylic acid.
JP51141040A 1976-11-24 1976-11-24 Method for producing dichloromaleic anhydride Expired JPS6021155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51141040A JPS6021155B2 (en) 1976-11-24 1976-11-24 Method for producing dichloromaleic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51141040A JPS6021155B2 (en) 1976-11-24 1976-11-24 Method for producing dichloromaleic anhydride

Publications (2)

Publication Number Publication Date
JPS5365818A JPS5365818A (en) 1978-06-12
JPS6021155B2 true JPS6021155B2 (en) 1985-05-25

Family

ID=15282831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51141040A Expired JPS6021155B2 (en) 1976-11-24 1976-11-24 Method for producing dichloromaleic anhydride

Country Status (1)

Country Link
JP (1) JPS6021155B2 (en)

Also Published As

Publication number Publication date
JPS5365818A (en) 1978-06-12

Similar Documents

Publication Publication Date Title
US3711549A (en) Process for manufacturing cyclopropylamine
JP2850471B2 (en) Method for producing unsaturated dicarboxylic acid monoester
JP4012568B2 (en) Method for producing halo-substituted aromatic acid
JPS6330448A (en) Manufacture of chlorocarboxylic acid chloride
US3876691A (en) Process for the hydrolysis of nitriles
JPS6021155B2 (en) Method for producing dichloromaleic anhydride
JP3918883B2 (en) Method for producing benzoyl chlorides
US3052712A (en) Production of dimethyl tetrachloro-terephthalate
US6452046B2 (en) Process for producing 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid
US2881209A (en) Preparation of phenylmalonic acid
JPS625899B2 (en)
JPS6252730B2 (en)
US3708523A (en) Process of manufacturing acrylic derivatives
JPS603304B2 (en) Method for producing dichloromaleic anhydride
JPS6251252B2 (en)
JP3164284B2 (en) Method for producing 2-chloro-4-trifluoromethylbenzal chloride
JP3208458B2 (en) Method for producing 1,4-dihydroxy-2-naphthoic acid
JPH05155805A (en) Production of halogenated carboxylic acid
JPH05125017A (en) Production of chloromethyl pivalate
JP3199618B2 (en) Method for producing 1,4-dihydroxy-2-naphthoic acid
JPS6016952A (en) Production of aromatic carboxylic acid ester
JPH0583533B2 (en)
JPS5959650A (en) Manufacture of meta-chloraniline
JP2657642B2 (en) Method for producing chloroalkylamine hydrochlorides
JPS5953915B2 (en) Method for producing dichloromaleic anhydride