JPS60211176A - Valve - Google Patents
ValveInfo
- Publication number
- JPS60211176A JPS60211176A JP59067122A JP6712284A JPS60211176A JP S60211176 A JPS60211176 A JP S60211176A JP 59067122 A JP59067122 A JP 59067122A JP 6712284 A JP6712284 A JP 6712284A JP S60211176 A JPS60211176 A JP S60211176A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric element
- laminated
- plunger
- displacement
- hydraulic pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 17
- 230000005684 electric field Effects 0.000 claims abstract description 8
- 239000000919 ceramic Substances 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 10
- 230000008602 contraction Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/004—Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
- F16K31/007—Piezoelectric stacks
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrically Driven Valve-Operating Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、水、空気、ガス、油、蒸気等の流量制御に用
いられるバルブに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a valve used for controlling the flow rate of water, air, gas, oil, steam, etc.
(従来技術)
この種のパルプとしては電磁パルプがよく知られており
、実用に供されている。(Prior Art) As this type of pulp, electromagnetic pulp is well known and is in practical use.
第1図は電磁パルプの構成を説明するための模式図であ
る。第1図において1は流体の入ロアおよび出口8を有
する本体で非動作時にはプランジで流体のパルプ内への
流入を防いでいる。4は鉄心であり巻線5に電流を流し
たとき、鉄心4は磁巻線5への電流を停止したときプラ
ンジャ2の重量とプランジャ2のばね力でプランジャ2
の底部全下方に押しつけ、出入口間は再び適数される。FIG. 1 is a schematic diagram for explaining the structure of electromagnetic pulp. In FIG. 1, reference numeral 1 denotes a main body having a lower fluid inlet and an outlet 8, and when not in operation, a plunge prevents fluid from flowing into the pulp. Reference numeral 4 denotes an iron core, and when current is applied to the winding 5, the iron core 4 acts as the plunger 2 due to the weight of the plunger 2 and the spring force of the plunger 2 when the current to the magnetic winding 5 is stopped.
Press it all the way down the bottom of the door, and the space between the entrance and exit is again adjusted to an appropriate number.
6はハウジングであり、以上述べた部品の格納および機
械的強度を保つ上で不可欠なものである。6 is a housing, which is essential for storing the above-mentioned parts and maintaining mechanical strength.
以上述べた動作原理に従えば1巻線5に電流は流す時間
が長い程入ロアから出口8へ流入する流量は大きいこと
になる。According to the operating principle described above, the longer the time for the current to flow through the first winding 5, the greater the flow rate flowing from the input lower to the outlet 8.
(従来技術の問題)
上記の構成を有する電磁パルプにおいて問題になるのは
、巻WA5に電流合流したときに生ずる漏洩磁束が他の
機器におよぼすノイズ的問題がある。(Problems with the Prior Art) A problem with the electromagnetic pulp having the above-mentioned configuration is the noise problem caused by leakage magnetic flux generated when current flows into the winding WA5 and which affects other devices.
近来、ディジタル回路およびマイクロコンピュータの進
展と、小型化に伴ない、電磁バルブの制御も以上述べた
電子機器で行うことが避けられなくなってきている。デ
ィジタル回路はTTLレベルの小レベルの信号で制御さ
れ、かつ大規模集積化された基板内にはインダクタンス
成分金有するリレー等の部品が多いため、漏洩磁束がイ
ンダクタンス成分と結合してノイズ源となって誤動作の
原因となる。従って電磁バルブからの漏洩磁束の問題を
解決するために電磁シールド等の対策を講じなけねばな
らない。In recent years, with the advancement and miniaturization of digital circuits and microcomputers, it has become inevitable to control electromagnetic valves using the above-mentioned electronic devices. Digital circuits are controlled by small-level signals at the TTL level, and there are many components such as relays that have inductance components in large-scale integrated boards, so leakage magnetic flux combines with the inductance components and becomes a noise source. This may cause malfunction. Therefore, in order to solve the problem of magnetic flux leakage from the electromagnetic valve, it is necessary to take measures such as electromagnetic shielding.
もう一つの大きな問題は、上記の電磁バルブの動作原理
から分るように、流量の細かな制御が行えないことであ
る。すなわち、プランジャの移動距離は定まっているの
で、流量を小さくしようとすればコイルの電流のオンオ
フ間隔や電流値金車さくするしかない。またプランジャ
バネの動作時間は、ディジタル化時代に要求される速さ
には遅く、高速度でオン・オフ動作をさせる場合にはバ
ネの周波数特性を解決したプランジャバネ′(il−特
別に設計しなければならない。また上記の電流値を制御
しても電流値の変化などにより正確なプランジャの制御
を行うことが難しい。また上記のバネ等の問題により、
電磁バルブは将来の微細で高速性を要求される流量バル
ブとしては不適当とみなされている。Another major problem is that, as can be seen from the operating principle of the electromagnetic valve described above, fine control of the flow rate cannot be performed. That is, since the moving distance of the plunger is fixed, the only way to reduce the flow rate is to reduce the on/off interval of the current in the coil or the current value. In addition, the operating time of plunger springs is too slow to meet the speeds required in the digital age, and when performing on/off operations at high speeds, plunger springs with specially designed springs with solved frequency characteristics are required. In addition, even if the above current value is controlled, it is difficult to control the plunger accurately due to changes in the current value.Also, due to the above problems with the spring, etc.
Electromagnetic valves are considered unsuitable as future flow valves that will require fine, high-speed performance.
すなわち、上記のようにディジタル回路およびマイクロ
コンビエータの進展にともない、システムの動作速度お
よび経済性を高めるために、流量の制御はより微細であ
り、かつ高速であるものを要求される。That is, as described above, with the development of digital circuits and microcombinators, finer and faster control of flow rate is required in order to increase system operating speed and economy.
一方、上記のプランジャの開閉用の制御に圧電素子全採
用し、上記の電磁バルブの欠点全解決したバルブ全作成
する考えもある。On the other hand, there is also an idea to use piezoelectric elements in all of the above-mentioned plunger opening/closing controls, thereby solving all of the drawbacks of the above-mentioned electromagnetic valves.
第4図は圧電素子の基本的性質を説明するための模式図
である。分極した圧電素子9(矢印は分極方向を示す。FIG. 4 is a schematic diagram for explaining the basic properties of a piezoelectric element. Polarized piezoelectric element 9 (arrows indicate polarization direction).
)の両端に電極10.10’t−設け、電源Blがスイ
ッチSlf介して接続される。) are provided at both ends of the electrode 10.10't-, and are connected to a power source Bl via a switch Slf.
スイッチ81 f閉じ、電界を図のようにかけると圧電
素子9は電界方向に伸び、スイッチSli切るともとの
寸法に縮み、電界の変化に数10 n5ecの速度で追
従する。しかし圧電素子の欠点は伸縮率が小さいことで
ある。圧電材料の伸縮率は電界強度にほぼ比例するため
、圧電素子の肉厚を大きくして伸縮量を稼ごうとすれば
、高電圧電源を必要とする。具体的に例を示せば伸び量
は肉厚1ml′r1の圧電素子に600Vの電圧を印加
して2〜3μmである。原理的には印加電圧を大きくし
て伸縮量を稼ぐことはできるが、より高速でバルブ全動
作させる上で好ましくなく、また高電圧電源使用のため
安全性の上からも好ましくない。When the switch 81f is closed and an electric field is applied as shown in the figure, the piezoelectric element 9 expands in the direction of the electric field, and when the switch Sli is turned off, it contracts to its original size and follows changes in the electric field at a speed of several tens of n5ec. However, a drawback of piezoelectric elements is that their expansion and contraction ratio is small. Since the expansion/contraction rate of piezoelectric materials is approximately proportional to the electric field strength, if the thickness of the piezoelectric element is increased to increase the amount of expansion/contraction, a high-voltage power source is required. To give a specific example, the amount of elongation is 2 to 3 μm when a voltage of 600 V is applied to a piezoelectric element with a thickness of 1 ml'r1. In principle, it is possible to increase the amount of expansion and contraction by increasing the applied voltage, but this is not preferable in terms of fully operating the valve at a higher speed, and is also not preferable in terms of safety because it uses a high voltage power source.
すなわち、前に述べた圧電素子の動作原理から分るよう
に、圧電素子をより高速に伸縮させるにはスイッチSs
f高速度で動作させることが必要であり、トランジス
タが用いられる。従って、圧電素子の印加電圧を大きく
することは、等画的に高電圧で高速度で動作するトラン
ジスタの開発が必要である。That is, as can be seen from the operating principle of the piezoelectric element described above, in order to expand and contract the piezoelectric element at a higher speed, the switch Ss
It is necessary to operate at high speed, and transistors are used. Therefore, in order to increase the voltage applied to the piezoelectric element, it is necessary to develop a transistor that can operate at high voltage and high speed in an isometric manner.
第3図(a)およびtb)は電力用の合金形接合トラン
ジスタの構造を説明するための模式図で、11はベース
、12はエミッタ% 13はコレクタ、14は半導体基
板を示す。図から分るように、エミヴタ、コレクタの面
積をできるだけ大キくシて、電流密度が過大にならない
よう工夫されている。スイッチング速度が早くなればな
るほど、表皮効果の影響で、電極表面の近傍しか電流が
流れなくなるため、さらに電極の表面積を大きくする工
夫が必要である。従って、高速で高耐圧のトランジスタ
になればなるほど、半導体および電極の表面積も大きく
なり、低耐圧のものに比べて歩留りも悪く高価になる。3(a) and 3(tb) are schematic diagrams for explaining the structure of a power alloy junction transistor, in which 11 is a base, 12 is an emitter, 13 is a collector, and 14 is a semiconductor substrate. As can be seen from the figure, the area of the emitter and collector is made as large as possible to prevent the current density from becoming excessive. As the switching speed increases, current flows only near the electrode surface due to the skin effect, so it is necessary to further increase the surface area of the electrode. Therefore, the higher the speed and the higher the voltage resistance, the larger the surface area of the semiconductor and electrode, and the lower the yield and the higher the cost compared to the transistors with lower voltage resistance.
また複数個の低耐圧のトランジスタを用いて高電圧を分
割してスイッチングさせる方法もあるが、ディレィの問
題や各トランジスタのバランスの問題全解決するための
調整時間を必要とする。上記の理由で、圧電素子の印加
電圧をさらに大きくして伸縮量を稼ぐことは、より高速
でバルブを動作させる上で好ましくなく、バルブの廉価
性、小型化を計る上で大きな障害と・なっている。There is also a method of dividing and switching a high voltage using a plurality of low-voltage transistors, but this requires adjustment time to solve all the problems of delay and balance of each transistor. For the above reasons, increasing the voltage applied to the piezoelectric element to increase the amount of expansion and contraction is not desirable in order to operate the valve at higher speeds, and is a major obstacle in making the valve more affordable and smaller. ing.
以上、説明したとおり、従来のバルブは電磁バルプにせ
よまた圧電素子バルブにしても、近来のエレクトロニク
スの進展に伴ない要求される。高速度化、耐ノイズ特性
、高性能化および経済性等の要求を満足できないという
問題点がある。As explained above, conventional valves, whether electromagnetic valves or piezoelectric element valves, are required as electronics progresses in recent years. There is a problem that requirements such as high speed, noise resistance, high performance, and economic efficiency cannot be satisfied.
(発明の目的)
本発明の目的は、上記の問題点を解消することにより、
より微細に高速で制御でき、かつノイズの発生もなく安
定に動作するところのバルブを提供することにある。(Object of the invention) The object of the invention is to solve the above problems,
It is an object of the present invention to provide a valve that can be controlled more finely and at high speed and operates stably without generating noise.
(発明の構成)
本発明のバルブは、薄板状圧電素子を積層一体化してな
る積層型圧電素子と、該積層型圧電素子の印加電界によ
る軸方向の変位を拡大する変位拡大機構と、該変位拡大
機構に連結されたプランジャとを含むことから構成され
る。(Structure of the Invention) The valve of the present invention includes a laminated piezoelectric element formed by laminating and integrating thin plate-like piezoelectric elements, a displacement amplifying mechanism that magnifies the displacement of the laminated piezoelectric element in the axial direction due to an applied electric field, and a plunger coupled to an expansion mechanism.
(IN成の詳細な説明)
本発明は、上記の構成をとることにより従来技術の欠点
を解決したものである。すなわち、圧電素子として従来
の接着剤上用いて薄板状圧電素子を積層した積層を圧電
素子に代夕て、接着剤によらず薄板状圧電素子を積層セ
ラミヅクコンデンサの技術を応用することで積層一体化
してなる積層型圧電素子(電子通信学会超音波研究会資
料US83−8.頁55〜59.昭和58年5月。)と
、この積層型圧電素子の変位を拡大する変位拡大機構全
プランジャに連結することにより、前記積層を圧電素子
の高性能と前記変位拡大機構による変位の拡大とにより
、低電圧・高速駆動全可能としたものである。(Detailed Description of IN Formation) The present invention solves the drawbacks of the prior art by adopting the above configuration. In other words, instead of the conventional piezoelectric element being a laminated layer of thin plate piezoelectric elements using an adhesive, thin plate piezoelectric elements can be laminated without using an adhesive by applying the technology of laminated ceramic capacitors. An integrated multilayer piezoelectric element (IEICE Ultrasound Study Group Material US83-8, pp. 55-59, May 1983) and a displacement magnification mechanism full plunger that magnifies the displacement of this multilayer piezoelectric element. By connecting the laminated layers to the piezoelectric element, the high performance of the piezoelectric element and the expansion of displacement by the displacement magnification mechanism make it possible to drive the laminated layers at low voltage and at high speed.
(実施例)
以下1本発明の実施例について図面を参照して説明する
。(Example) An example of the present invention will be described below with reference to the drawings.
第4図は本発明の一実施例の構成を説明するための模式
図、第5図は本実施例に用いる積層型圧電素子を説明す
るための模式図である。FIG. 4 is a schematic diagram for explaining the configuration of one embodiment of the present invention, and FIG. 5 is a schematic diagram for explaining the laminated piezoelectric element used in this embodiment.
本実施例は、薄板状圧電素子としての圧電セラミック板
20′金積層一体化してなる積層型圧電素子20と、こ
の積層型圧電素子20の印加電界による軸方向の変位を
拡大する変位拡大機構しての油圧ポンプ22と、この油
圧ポンプ22に連結されたプランジャ23とを含むこと
から構成される。This embodiment includes a laminated piezoelectric element 20 formed by integrally laminating a piezoelectric ceramic plate 20' with gold as a thin piezoelectric element, and a displacement amplifying mechanism that magnifies the displacement of the laminated piezoelectric element 20 in the axial direction due to an applied electric field. The hydraulic pump 22 includes a hydraulic pump 22 and a plunger 23 connected to the hydraulic pump 22.
なお、第4図において、21は本体、24゜24′およ
び25はそれぞれ積層型圧電素子の外部電極および内部
電極、26はハウジング、27はボルト、28は入口%
29は出口で、積層を圧電素子20の外部電極24と2
4′は可変式の電−源E2がスイッチ82f介して接続
されている。In FIG. 4, 21 is the main body, 24°, 24' and 25 are the external and internal electrodes of the laminated piezoelectric element, 26 is the housing, 27 is the bolt, and 28 is the inlet percentage.
29 is an exit, and the lamination is connected to the external electrodes 24 and 2 of the piezoelectric element 20.
4' is connected to a variable power source E2 via a switch 82f.
第5図を参照すると、積層型圧電素子2oは。Referring to FIG. 5, the laminated piezoelectric element 2o.
多数の圧電セラミック板20′が積層され一つのセラミ
ックブロックとして一体化されたもので、多数の内部電
極層25がセラミック内部に層状に埋め込まれており、
素子端面で露出している形状をなしている。この露出し
ている内部電極25を一つおきに絶縁体30で覆い、こ
の上から外部電極24.24’が被着せしめられている
ため、各内部電極層25は互に電気的に並列に接続され
ることになる。また圧電セラミック板20′は厚み方向
に分極処理が施されているために、外部電極素子20は
3Qmmφで長さが53mmであり内部電極間隔は50
μmのものがもちいてあり、電源E2 として100v
の電圧を印加した場合に108着され、上面は油圧ポン
プ22の上面のピストン部に接続されている。油圧ポン
プ22はハウジング26に固定されている。油圧ポンプ
22の下面のピストン部には、プランジャ23が連結さ
れて圧電素子20の変位量25倍の2700μmに拡大
できる。従来の電磁バルブでは変位量は800μm程度
なので変位量としては3倍以上大きくとれる。A large number of piezoelectric ceramic plates 20' are laminated and integrated as one ceramic block, and a large number of internal electrode layers 25 are embedded inside the ceramic in a layered manner.
It has a shape that is exposed at the end face of the element. Every other exposed internal electrode 25 is covered with an insulator 30, and the external electrodes 24, 24' are applied from above, so that the internal electrode layers 25 are electrically parallel to each other. It will be connected. Furthermore, since the piezoelectric ceramic plate 20' is polarized in the thickness direction, the external electrode element 20 has a diameter of 3Q mm and a length of 53 mm, and the internal electrode spacing is 50 mm.
A μm type is used, and the power supply E2 is 100V.
When a voltage of 108 is applied, the upper surface is connected to the piston portion on the upper surface of the hydraulic pump 22. Hydraulic pump 22 is fixed to housing 26. A plunger 23 is connected to the piston portion on the lower surface of the hydraulic pump 22, and the displacement can be expanded to 2700 μm, which is 25 times the displacement of the piezoelectric element 20. In a conventional electromagnetic valve, the amount of displacement is about 800 μm, so the amount of displacement can be more than three times larger.
効率よく伝わるようになっている。また、電源E2とス
イッチS2は実際にはコンビーータ制御される。It is communicated effectively. Further, the power source E2 and the switch S2 are actually controlled by a converter.
本実施例を用いて動作試験を行った結果、電源電圧lo
o vで、従来の電磁バルブよりも動作速度は5倍早く
、かつ微細に制御でき、雑音は全く生じなかった。As a result of an operation test using this example, the power supply voltage lo
OV, the operating speed was five times faster than conventional electromagnetic valves, it could be controlled finely, and there was no noise at all.
(発明の効果)
以上詳細説明したとおり1本発明のパルプは、プランジ
ャの位置制御に小形高性能な積層賊圧電素子全採用した
構成により
(1)ノイズ的問題がない。(Effects of the Invention) As described in detail above, the pulp of the present invention (1) has no noise problem because of the structure in which small, high-performance laminated piezoelectric elements are entirely used to control the position of the plunger.
(2)流量の微細かつ高速な制御ができる。(2) Fine and high-speed control of flow rate is possible.
(3) 低電圧駆動化が可能であり、装置、駆動回路の
簡略化、小形化が可能である。(3) It is possible to drive at a low voltage, and it is possible to simplify and downsize the device and drive circuit.
等の効果を有している。従って、経済的9機能的。It has the following effects. Therefore, economical 9 functional.
信頼性的に優れたバルブ全得ることができる。You can get all the valves with excellent reliability.
第1図は従来の電磁パルプの一例のtloり成會説明す
るための模式図、第2図は圧電素子の基本的性質を説明
するための模式図、第3図は電力用の含金形接合トラン
ジスタ全説明するための模式図、第4図は本発明の一実
施例の構成全説明するだめの模式図、第5図は本実施例
に使用される積層載圧電素子を説明するための模式図で
ある。
1・・・・・・本体、2・・・・・・プランジャ、3・
・・・・・プランジャはね、4・・・・・・鉄心、5・
・・・・・巻線、6・・・・・・ハウジング、7・・・
・・・入口、8・・・・・・出口、9・・−・・・圧電
素子、10.10’・・・・・・電極、11.11’・
・・・・・ベース、12.12’・・・・・・エミッタ
、13.13’・・・・・・コレクタ、14・・・・・
J半導体基板、20・・・・・・積層壁圧電素子、20
′・・・・・・圧覧包ラミー・7板、21・・・・・・
本体、22・・・・・・油圧ポンプ、23・・・・・・
プランジャ、24,24 ’・・・・・・外部電極、2
5・・・・・・内部電極、26・・・・・・ハウジング
、27・・・・・・ボルト、28・・・・・・入口、2
9・・・・・・出口、30・・・・・・絶縁物。
El、E2・・・・・・電源、81.82・・・・・・
スイッチ。
代理人 弁理士 内 原 晋(゛)
・ −1〉′
榮1ヅ
竿2日
Y左ンFigure 1 is a schematic diagram to explain the production of an example of conventional electromagnetic pulp, Figure 2 is a schematic diagram to explain the basic properties of a piezoelectric element, and Figure 3 is a metal-containing type for electric power. FIG. 4 is a schematic diagram for fully explaining the structure of an embodiment of the present invention, and FIG. 5 is a schematic diagram for explaining the structure of an embodiment of the present invention. It is a schematic diagram. 1...Main body, 2...Plunger, 3.
... Plunger, 4... Iron core, 5.
...Winding, 6...Housing, 7...
...Inlet, 8...Outlet, 9...Piezoelectric element, 10.10'... Electrode, 11.11'.
...Base, 12.12'...Emitter, 13.13'...Collector, 14...
J semiconductor substrate, 20... laminated wall piezoelectric element, 20
'...... Viewing envelope Rummy, 7 boards, 21...
Main body, 22...Hydraulic pump, 23...
Plunger, 24, 24'...External electrode, 2
5...Internal electrode, 26...Housing, 27...Volt, 28...Inlet, 2
9...Exit, 30...Insulator. El, E2...Power supply, 81.82...
switch. Agent Patent Attorney Susumu Uchihara (゛) ・ -1〉'
Claims (1)
、該積層を圧電素子の印加電界による軸方向の変位全拡
大する変位拡大機構と、該変位拡大機構に連結されたプ
ランジャとを含むことを特徴とするバルブ。A laminated piezoelectric element formed by integrating all laminated layers of thin plate-like piezoelectric elements, a displacement amplifying mechanism that fully expands the displacement of the laminated layer in the axial direction due to an electric field applied to the piezoelectric element, and a plunger connected to the displacement amplifying mechanism. A valve featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59067122A JPS60211176A (en) | 1984-04-04 | 1984-04-04 | Valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59067122A JPS60211176A (en) | 1984-04-04 | 1984-04-04 | Valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60211176A true JPS60211176A (en) | 1985-10-23 |
Family
ID=13335777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59067122A Pending JPS60211176A (en) | 1984-04-04 | 1984-04-04 | Valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60211176A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140179A (en) * | 1986-12-01 | 1988-06-11 | Esutetsuku:Kk | Minute flow control valve |
JPH01112086A (en) * | 1988-08-15 | 1989-04-28 | Esutetsuku:Kk | Fine flow rate control valve |
EP0784349A1 (en) | 1996-01-11 | 1997-07-16 | Wac Data Services Co. Ltd. | Stacked piezoelectric actuator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60139981A (en) * | 1983-12-27 | 1985-07-24 | Saginomiya Seisakusho Inc | Valve utilizing piezo-electric element |
-
1984
- 1984-04-04 JP JP59067122A patent/JPS60211176A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60139981A (en) * | 1983-12-27 | 1985-07-24 | Saginomiya Seisakusho Inc | Valve utilizing piezo-electric element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140179A (en) * | 1986-12-01 | 1988-06-11 | Esutetsuku:Kk | Minute flow control valve |
JPH01112086A (en) * | 1988-08-15 | 1989-04-28 | Esutetsuku:Kk | Fine flow rate control valve |
EP0784349A1 (en) | 1996-01-11 | 1997-07-16 | Wac Data Services Co. Ltd. | Stacked piezoelectric actuator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Design of a piezoelectric-hydraulic pump with active valves | |
US11373966B2 (en) | Embedded thin-film magnetic inductor design for integrated voltage regulator (IVR) applications | |
US6512322B1 (en) | Longitudinal piezoelectric latching relay | |
US6366186B1 (en) | Mems magnetically actuated switches and associated switching arrays | |
AU2014375953B2 (en) | Driving apparatus and device fabrication method | |
GB2385989A (en) | Piezoelectrically actuated liquid metal switch | |
US20120103768A1 (en) | Magnetically Actuated Micro-Electro-Mechanical Capacitor Switches in Laminate | |
KR970011621B1 (en) | Cooling device | |
CN102797872B (en) | Planar coil driving-type microvalve based on super-magnetostriction film driver | |
JP2004343976A (en) | Multi-output microminiature power conversion device | |
Williams et al. | Microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology | |
JPS60211176A (en) | Valve | |
US7830066B2 (en) | Micromechanical device with piezoelectric and electrostatic actuation and method therefor | |
JP2005251549A (en) | Microswitch and driving method for microswitch | |
GB2381595A (en) | Piezoelectric actuated optical latching relay with movable liquid | |
JP4573498B2 (en) | Ultra-compact power converter | |
JP3767296B2 (en) | Power converter | |
WO2004063090A2 (en) | High displacement bistable micro actuator | |
DE19510250C1 (en) | Magnetostrictive thin film actuator as drive for miniaturised valve, bending element, or pump | |
JP2002225183A (en) | Membrane laminated film structure for electrostatic or magnetic application apparatus and method for manufacturing the same | |
JP2008503876A (en) | Bistable small valve | |
US3109973A (en) | Differential magnetostrictive actuator | |
US6927529B2 (en) | Solid slug longitudinal piezoelectric latching relay | |
SU1492145A1 (en) | Electromagnetic valve | |
US20200135388A1 (en) | Entangled inductor structures |