JPS60210701A - Measuring apparatus for curved surface - Google Patents

Measuring apparatus for curved surface

Info

Publication number
JPS60210701A
JPS60210701A JP6664684A JP6664684A JPS60210701A JP S60210701 A JPS60210701 A JP S60210701A JP 6664684 A JP6664684 A JP 6664684A JP 6664684 A JP6664684 A JP 6664684A JP S60210701 A JPS60210701 A JP S60210701A
Authority
JP
Japan
Prior art keywords
measurement
curved surface
measured
measuring
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6664684A
Other languages
Japanese (ja)
Inventor
Hiroshi Kimura
博 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP6664684A priority Critical patent/JPS60210701A/en
Publication of JPS60210701A publication Critical patent/JPS60210701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To make an apparatus easy to operate, highly reliable and capable of performing a number of measurements in a short time, by conducting measurement automatically at a number of points after an object to be measured is set. CONSTITUTION:After an object 10 to be measured is mounted on a sample table 42 at a mounting position A, a driving motor 48 is started to move the object horizontally to a measuring position B and a sliding base 44 is fixed by a positioning block 54. Next, a detecting unit 14 is lowered by an air pressure cylinder 28, so as to make the fore end of a detector 12 contact with the curved surface of the object. When the unit 14 is lowered to a prescribed position, an integrated operation processor is driven to conduct measurement. The determination as to whether the result of measurement is acceptable or not is made by a method wherein the difference from a reference value at each measuring point is calculated, the mean square deviation of errors in the number of N is found and it is determined whether said deviation exceeds preset limits or not. When the deviation exceeds the limits, it is displayed in a display unit that the result is not acceptable, and the measurement is ended.

Description

【発明の詳細な説明】 本発明は、曲面測定装獣に関する。[Detailed description of the invention] The present invention relates to a curved surface measuring instrument.

球面ど放物面など三次元的な曲面形状の測定装置として
は、従来主として三次元測定機が使用され゛ていた。
Conventionally, three-dimensional measuring machines have been mainly used as devices for measuring three-dimensional curved shapes such as spherical surfaces and paraboloids.

この測定機は、測定点検出器を相互に直交するx、y、
z軸方向に移動さ゛せ、測定位置をそのままデジタル表
示したり、あるいはコンピュータを使用して演算処理し
て曲面形状を測定する。
This measuring machine uses measuring point detectors for mutually orthogonal x, y,
The curved surface shape can be measured by moving it in the z-axis direction and directly displaying the measurement position digitally, or by performing arithmetic processing using a computer.

しかし、一般的に曲面の測定は、一点の測定ではなく多
数点を測定して曲面が確定される。従って、上記測定機
では、各測定点に検出器を各軸、あるいはいずれかの軸
を固定して他の軸に沿って移動させ、多数の測定を繰り
返さなければならない。
However, in general, when measuring a curved surface, the curved surface is determined by measuring multiple points instead of measuring one point. Therefore, in the above-mentioned measuring device, it is necessary to repeat a large number of measurements by fixing the detector at each measurement point along each axis, or one of the axes, and moving it along the other axis.

このため、測定に時間がかかるとともに、各軸の精度も
必要なため高価となる。
For this reason, it takes time to measure and also requires precision in each axis, making it expensive.

ところで、近時通信衛星の実用化で、各家庭において衛
星通信放送の受信が可能となり、これを受信する比較的
小径のパラボラアンテナが提供されている。
By the way, with the recent practical use of communication satellites, it has become possible for each household to receive satellite communication broadcasts, and relatively small-diameter parabolic antennas for receiving these broadcasts have been provided.

パラボラアンテナは、放物線状の主反射板で受信した電
波を、焦点に位置させた副反射板で再び主反射板に向け
て反射させ、主反射板に取付けた受信器でこれを受信す
る。
In a parabolic antenna, radio waves received by a parabolic main reflector are reflected back toward the main reflector by a sub-reflector located at the focal point, and are received by a receiver attached to the main reflector.

従って、受信電波を最初に受ける主反射板の機能は、受
信電波を受ける上で極めて重要であって、特にその曲面
は厳格な精度管理が要求される。
Therefore, the function of the main reflector, which receives the received radio waves first, is extremely important in receiving the received radio waves, and particularly its curved surface requires strict accuracy control.

一方、この種のパラボラアンテナは、大量生産してコス
トを低減させる要求が強い、さもなければ家庭用として
普及しないからである。
On the other hand, there is a strong demand for this type of parabolic antenna to be mass-produced to reduce costs, otherwise it would not be popular for household use.

このような条件を勘案すると、上記三次元測定機は上述
した問題があって適さなかった。
Taking these conditions into consideration, the above three-dimensional measuring machine was not suitable due to the problems mentioned above.

そこで、本件発明者らは現存する測定機および測定方法
について検討してみた。
Therefore, the inventors of the present invention investigated existing measuring devices and measuring methods.

まず、球面の測定としては、中心とその外側に3木の脚
を備えた球指と呼ばれる測定機があるが、これは放物線
には使用できない。
First, for measuring spherical surfaces, there is a measuring device called a spherical finger that has three legs at the center and outside, but this cannot be used for parabolas.

また、例えば球面鏡の場合には、光学的な方法による測
定も可能であるが、パラボラアンテナは通常金属表面に
塗装が施される場合が多く、反射率がよくなくて、この
方法も採用できない。
In addition, for example, in the case of a spherical mirror, measurement can be performed by an optical method, but parabolic antennas usually have a metal surface coated with paint, and this method cannot be used because the reflectance is poor.

さらに、電波特性を利用する方法も考えられるが、この
場合はアンテナと発信源との間隙を大きくする必要があ
って、装置が大型化する。
Furthermore, a method using radio wave characteristics may be considered, but in this case, it is necessary to increase the gap between the antenna and the transmission source, resulting in an increase in the size of the device.

以上のように、大量生産される曲面を有する、例えばパ
ラボラアンテナ10曲面を比較的精度よく、しかも短時
間に測定できる装置は従来提供されていなかったのであ
る。
As described above, there has been no device available that can measure the curved surface of a mass-produced parabolic antenna, for example, 10 curved surfaces with relatively high accuracy and in a short time.

本発明は、このような背景に鑑みてなされたものであっ
て、その目的とするところは、操作が容易であって、信
頼度が高く、しかも短時間に多数の測定が可能な曲面測
定装置を提供するところにある。
The present invention has been made in view of this background, and its purpose is to provide a curved surface measuring device that is easy to operate, highly reliable, and capable of performing a large number of measurements in a short period of time. It is in a place where we provide.

以下、この発明の好適な実施例を添付図面を参照して詳
細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図から第4図は、この発明に係る曲面測定装置の一
実施例を示している。
1 to 4 show an embodiment of a curved surface measuring device according to the present invention.

第1図は、同装置の全体構成を示すものであって、装置
は曲面を有する測定対象物10、例えばパラボラアンテ
ナの所定位置に当接し、深度を電気信号に変換する複数
の検出器12.12・・・・・・を有し、測定対象物1
0の直上を上下移動する検出ユニット14と、前記検出
器12の出力信号と基準値とを順次比較するとともに、
測定対象物の良否を判断する比較弁別手段16と、前記
測定対象物10を着脱可能に保持し、前記検出ユニット
14の直下までこれを水平移動させる移動位置決めユニ
ット18とから概略構成されている。
FIG. 1 shows the overall configuration of the device, which includes a plurality of detectors 12, which abut a predetermined position of a measurement object 10 having a curved surface, such as a parabolic antenna, and convert the depth into an electrical signal. 12..., and the measuring object 1
A detection unit 14 that moves up and down directly above 0 sequentially compares the output signal of the detector 12 with a reference value,
It is generally composed of a comparison/discrimination means 16 that determines the quality of the object to be measured, and a moving positioning unit 18 that detachably holds the object 10 to be measured and moves it horizontally to just below the detection unit 14.

上記検出器12は、例えば直線変位型のポテンションメ
ーターが使用され、各検出器12.12・・・・・・は
、例えば厚みの異なる複数の標準スケールを用いて、変
位量と深度との関係を較正して、関係式をめ、これを後
述するROM、もしくは電池によりバックアップされた
RAMに記憶しておき、対応する各検出器12の変位に
応じてこの式を読み出し、変位量を深度に変換する。
The detector 12 is, for example, a linear displacement potentiometer, and each detector 12, 12, etc. uses, for example, a plurality of standard scales with different thicknesses to calculate the difference between the amount of displacement and the depth. Calibrate the relationship, find a relational expression, store it in ROM (described later) or RAM backed up by a battery, read out this expression according to the displacement of each corresponding detector 12, and calculate the amount of displacement to the depth. Convert to

検出ユニット14は、上記検出器12.12・・・・・
・を取付ビーム19を介して所定の位置に固定保持する
保持ブロック20と、この保持ブロック20を基台22
Fに立設した複数の案内軸24,24で支持するととも
に、各案内軸24.24にはコイルバネ26が装着され
、さらに、保持ブロック20上には、これを上下動させ
る空圧シリンダー28が載置されており、空圧シリンダ
ー28の反力は基台22上に立設された反力受30で確
保している。
The detection unit 14 includes the above-mentioned detectors 12.12...
- A holding block 20 for fixing and holding the holder in a predetermined position via the mounting beam 19, and a base 22 for holding the holding block 20.
The holding block 20 is supported by a plurality of guide shafts 24, 24 installed vertically, and a coil spring 26 is attached to each guide shaft 24. The reaction force of the pneumatic cylinder 28 is secured by a reaction force receiver 30 erected on the base 22.

上記比較弁別手段16は、−り記検出器12.12・・
・・・・と個別に接続される接点と、これらの接点を順
に走査する可動接点を有し、順次検出器12の出力信号
を取り出すステッピングリレー32と、取り出された信
号をパルス信号に変換するA/D変換器34と、弯挨信
号をインターフェース35を介して入力し、予め設定さ
れた基準信号と比較したり、この信号に基づいて演算処
理をする集中演梓処理装置36と、処理結果を記録する
プリンタ38.および処理結果の判別を表示する表示ユ
ニット40とから構成されている。
The comparison and discrimination means 16 includes detectors 12, 12, . . .
A stepping relay 32 has contacts that are individually connected to ... and a movable contact that sequentially scans these contacts, and sequentially extracts the output signals of the detector 12, and converts the extracted signals into pulse signals. An A/D converter 34, an integrated processing device 36 which inputs the signal through an interface 35, compares it with a preset reference signal, and performs arithmetic processing based on this signal, and a processing result. Printer 38 for recording. and a display unit 40 that displays the determination of the processing results.

集中凍算処理装[36は、いわゆるパーソナルコンピュ
ータであって、CPU36a 、RAM36b 、RO
M36c 、I10ボート36dから構成されている。
The centralized freezing calculation processing unit [36 is a so-called personal computer, which includes a CPU 36a, a RAM 36b, an RO
It consists of M36c and I10 boat 36d.

なお、同図に示す符号36eは上記ステッピングリレー
32の駆動回路でCPU36aによって制御される。
Note that reference numeral 36e shown in the figure is a drive circuit for the stepping relay 32, which is controlled by the CPU 36a.

一方、上記移動位置決めユニット18は、上記測定対象
−10を定位置に固定するサンプル台42と、これを載
置して対象物10の装着位11Aから測定位1tBに水
平移動させる摺動ベース44とを有している。
On the other hand, the movable positioning unit 18 includes a sample stage 42 for fixing the measurement object 10 in a fixed position, and a sliding base 44 on which the sample stage 42 is placed and horizontally moved from the mounting position 11A of the object 10 to the measurement position 1tB. It has

摺動ベース44は、これを貫通するようにして基台22
に渡設された複数本のレール46によって支持されてい
るとともに、摺動ベース44の下方には、このベース4
4の下向に突設された駆動モータ48の回転軸に取付け
られたピニオン5゜と噛合するラック52が、基台22
に取付けられており、また、基台22には装着位@Aお
よび測定位fffBで摺動ベース44を係止して、正確
に位置決め固定する位置決めブロック54.54’が取
付番ノられている。
The sliding base 44 extends through the base 22.
This base 4
A rack 52 that meshes with a pinion 5° attached to a rotating shaft of a drive motor 48 protruding downward from the base 22
In addition, the base 22 has a mounting number marked with a positioning block 54, 54' that locks the sliding base 44 at the installation position @A and the measurement position fffB to accurately position and fix it. .

上記構成の測定装置は、第3図に示すようにまず、装着
位置へでサンプル台42上に測定対象物10の取付【ノ
を行ない、駆動士−夕48を起動してこれを測定位[f
B、即ち、検出ユニット14の直下まで水平移動させ、
摺動ベース44を位置決めブロック54によって固定す
る。
As shown in FIG. 3, the measuring device configured as described above first mounts the object 10 to be measured on the sample stage 42 to the mounting position, starts the driver 48, and moves it to the measurement position. f
B, that is, horizontally moved to just below the detection unit 14,
The sliding base 44 is fixed by a positioning block 54.

次いで、検出ユニット14を空圧シリンダー28によっ
て降下させる。
The detection unit 14 is then lowered by the pneumatic cylinder 28.

この操作は、空圧シリンダー28の排気により、保持ブ
ロック20が自重によって降下することで行なうが、急
激な下降を防止するため、シリンダー28の排気は緩か
な速度が好ましい。
This operation is performed by the holding block 20 being lowered by its own weight due to the exhaust of the pneumatic cylinder 28, but it is preferable that the cylinder 28 is exhausted at a slow speed in order to prevent a sudden descent.

また、検出器12の先端が測定対象物10の曲面に当接
する直前には、案内軸24に装着されたコイルバネ26
の弾性でもって、これが柔軟に接触するように考處され
ている。
Further, just before the tip of the detector 12 comes into contact with the curved surface of the measurement target 10, a coil spring 26 attached to the guide shaft 24
It is designed to have flexible contact due to its elasticity.

そして、検出ユニット14が所定の位買まで降下すると
、上記集中演算処理装@36が駆動される。
When the detection unit 14 descends to a predetermined position, the centralized processing unit @36 is activated.

この装置36の作動手順は、第4図に示す流れで行なわ
れ、まず電源が投入されるとステッピングリレー32お
よびインターフェース35の初期化が行なわれる(ステ
ップ■)。
The operating procedure of this device 36 is performed according to the flow shown in FIG. 4. First, when the power is turned on, the stepping relay 32 and the interface 35 are initialized (step 2).

そして、検出器12からの測定値の読み込み(ステップ
■)、各測定点によって異なる基準値との比較(ステッ
プ■)およびステッピングリレー32の切替操作を順に
行ないながら、測定点の数(N)だけ繰り返しくステッ
プ■)、合否の判定(ステップ■)を行なって終了する
Then, while reading the measured value from the detector 12 (step ■), comparing it with a reference value that varies depending on each measurement point (step ■), and switching the stepping relay 32, the number of measurement points (N) is increased. Repeat step (2), pass/fail judgment (step (2)), and end.

合否の判定は、例えば各測定点における基準値との差を
演算し、そのNヶの誤差の平均二乗偏差などをめ、これ
が予め設定した範囲を越えるか否かによって行ない、越
える場合には表示ユニ4ト40に不合格である旨を表示
する。
Judgment of pass/fail is made by, for example, calculating the difference from the reference value at each measurement point, calculating the mean square deviation of the N errors, and checking whether this exceeds a preset range. A message indicating that the test has failed is displayed on unit 40.

このよ・うにして測定が終了すると、保持ブロック20
は、空圧シリンダー28の作動により、所定ストローク
の上死点まで上昇し、摺動ベース44と位置決めブロッ
ク54の係止を解除して、サンプル台42を測定対象物
1oの装着位11Aまで水平移動し、位置決めブロック
54′で摺動ベース44を固定し゛(、測定対象物10
を取り外して、1回の測定サイクルを終了する。
When the measurement is completed in this way, the holding block 20
is raised to the top dead center of a predetermined stroke by the operation of the pneumatic cylinder 28, the sliding base 44 and the positioning block 54 are unlocked, and the sample stage 42 is horizontally moved to the mounting position 11A of the measurement object 1o. move and fix the sliding base 44 with the positioning block 54' (the object to be measured 10
to complete one measurement cycle.

なお、上述した駆動モータ48の起動から、装着位置A
まで戻す一連の装置の操作手順は、上記ROM36Cに
これを予め記憶させ、適宜個所和センリーを配置してお
けば、測定対象物10の着脱以外は自動的に行なうこと
も可能である。
Note that from the start of the drive motor 48 described above, the mounting position A
If the series of operating procedures for the apparatus to return to the previous point are stored in advance in the ROM 36C and the sensors are placed at appropriate locations, it is possible to automatically perform operations other than the attachment and detachment of the measurement object 10.

また、上記検出器12.12・・・・・・の配置は、そ
の測定点の顧量とともに適宜選択され、例えば測定対象
物10の曲面形状が、軸対称の場合には、対象軸と一定
の角度をなす複数の軸に沿りて取付ビーム19を配置し
て、各軸の所定個所に検出器12を取付ける。
In addition, the arrangement of the detectors 12, 12, etc. is selected appropriately in consideration of the measurement points. For example, when the curved shape of the object to be measured 10 is axially symmetrical, The mounting beams 19 are arranged along a plurality of axes forming an angle of , and the detector 12 is mounted at a predetermined location on each axis.

以上、実施例で詳細に説明したように、本発明に係る曲
面測定装置にあっては、従来使用されでいた三次元測定
装置に比べ、測定対象物10をセットした後は、スイッ
チ操作あるいは全自動で多数点の測定を自動的に行える
ため、操作が極めて簡単となるとともに、IIIR以外
は人手の介在を排除しているため、測定の均一・均質化
が達皮され、信頼性も大幅に向上する。
As described above in detail in the embodiments, in the curved surface measuring device according to the present invention, compared to conventional three-dimensional measuring devices, after setting the measurement target 10, it is possible to operate the switch or Since it can automatically measure multiple points, it is extremely easy to operate, and since it eliminates human intervention except for IIIR, it achieves uniformity and homogenization of measurements, greatly increasing reliability. improves.

また、設置スペースも少くて済み且つ測定時間も短いた
め、例えばパラボラアンブナのように大量生産されるも
のの曲面測定にも適したものである。
In addition, since the installation space is small and the measurement time is short, it is also suitable for measuring curved surfaces of items that are mass-produced, such as parabolic umbilical cords.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体説明図、第2図は
比較弁別手段の説明図、第3図は装置の操作順を示すフ
ローチャート、第4図は中央演算処理装置のフローチャ
ートである。 10・・・・・・測定対象物 12・・・・・・検出器
14・・・・・・検出ユニット 16・・・・・・比較
弁別手段18・・・・・・移動位置決めユニット19・
・・・・・取付ど−ム 20・・・・・・保持ブロック
22・・・・・・基 台 24・・・・・・案内軸26
・・・・・・コイルバネ 28・・・・・・空圧シリン
ダー30・・・・・・反力受 32・・・・・・ステッ
ピングリレー34・・・・・・A/D変換器 36・・・・・・集中演算処理装置 36.a・・・C
PLJ36b・・・RAM 360・・・ROM36d
・・・I10ボート 36e・・・駆動回路38・・・
・・・プリンタ 40・・・・・・表示ユニット42・
・・・・・サンプル台 44・・・・・・摺動ベース4
6・・・・・・レール 50・・・・・・ピニオン54
・・・・・・位置決めブロック ゛特許出願人 宇部日
東化成株式会社 代 理 人 弁理士 −色健輔 第1図
FIG. 1 is an overall explanatory diagram showing one embodiment of the present invention, FIG. 2 is an explanatory diagram of the comparison and discrimination means, FIG. 3 is a flowchart showing the operating order of the device, and FIG. 4 is a flowchart of the central processing unit. be. 10... Measurement object 12... Detector 14... Detection unit 16... Comparison/discrimination means 18... Movement positioning unit 19.
... Mounting dome 20 ... Holding block 22 ... Base 24 ... Guide shaft 26
...... Coil spring 28 ... Pneumatic cylinder 30 ... Reaction force receiver 32 ... Stepping relay 34 ... A/D converter 36 ...Centralized processing unit 36. a...C
PLJ36b...RAM 360...ROM36d
...I10 boat 36e...drive circuit 38...
...Printer 40...Display unit 42.
...Sample stand 44...Sliding base 4
6...Rail 50...Pinion 54
・・・・・・Positioning block ゛Patent applicant: Ube Nitto Kasei Co., Ltd. Agent: Patent attorney - Kensuke Iro Figure 1

Claims (1)

【特許請求の範囲】[Claims] 曲面を有する測定対象物の所定位置に当接し、深度を電
気信号に変換する複数の検出器を有し、該測定対象物の
直上を上下移動する検出ユニットと、該検出器の出力信
号と基準値とを順次比較するとともに該測定対象物の良
否を判断する比較弁別手段と、該測定対象物を着脱自在
に保持し該検出装置の直下まで水平移動させる移動位置
決めユニットとを備えたことを特徴とする曲面測定装蒙
A detection unit that has a plurality of detectors that come into contact with a predetermined position of a measurement target having a curved surface and converts depth into an electrical signal, and that moves up and down directly above the measurement target, and the output signal of the detector and a reference. The method is characterized by comprising a comparison/discrimination means for sequentially comparing the values and determining whether the object to be measured is good or bad, and a moving positioning unit that detachably holds the object to be measured and horizontally moves it to directly below the detection device. Curved surface measurement equipment.
JP6664684A 1984-04-05 1984-04-05 Measuring apparatus for curved surface Pending JPS60210701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6664684A JPS60210701A (en) 1984-04-05 1984-04-05 Measuring apparatus for curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6664684A JPS60210701A (en) 1984-04-05 1984-04-05 Measuring apparatus for curved surface

Publications (1)

Publication Number Publication Date
JPS60210701A true JPS60210701A (en) 1985-10-23

Family

ID=13321864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6664684A Pending JPS60210701A (en) 1984-04-05 1984-04-05 Measuring apparatus for curved surface

Country Status (1)

Country Link
JP (1) JPS60210701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023000339A (en) * 2021-06-17 2023-01-04 Necプラットフォームズ株式会社 Measuring system, measuring method, and measuring program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561307A (en) * 1979-06-20 1981-01-09 Hitachi Ltd Measuring device for deformation of curved surface at can barrel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561307A (en) * 1979-06-20 1981-01-09 Hitachi Ltd Measuring device for deformation of curved surface at can barrel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023000339A (en) * 2021-06-17 2023-01-04 Necプラットフォームズ株式会社 Measuring system, measuring method, and measuring program

Similar Documents

Publication Publication Date Title
CN107479040B (en) Compact range vehicle-mounted millimeter wave radar test system
CN110225534B (en) Road side unit testing method, device, equipment, system and readable storage medium
CN212569114U (en) Radar performance evaluation system
CN104037486A (en) Antenna stand of anechoic chamber testing system of quasi single station
CN213658910U (en) Chip test calibration device
JP2001133495A (en) Antenna-measuring instrument
JPS60210701A (en) Measuring apparatus for curved surface
CN113447895B (en) Automobile millimeter wave radar compact range test system and method
CN210719022U (en) Full-size measuring equipment for watch case
CN216815959U (en) Rapid high-precision wide-spectrum optical wave plate detection system
KR100651741B1 (en) Appratus for measurement of read range between RFID tag and reader
CN114859141A (en) Spherical surface near-field test system and test method
CN111044968A (en) Device and method for measuring direction finding precision and acting distance of airborne search positioning terminal
KR20050113772A (en) Phased array antenna measurement system and method of the same
CN210070867U (en) High-precision intelligent aperture testing device
JPH06174703A (en) Curved surface shape-follow-up type ultrasonic flaw detector and control method for probe attitude
CN113504516A (en) Position registration device and method before millimeter wave radar test
CN209764717U (en) Miniature near-infrared spectrometer transflectance survey appearance device
CN113188650A (en) Method and system for measuring parallelism of mechanical axis and acoustic beam collimation axis of sound field
JP2676697B2 (en) GPS antenna device
CN111398917A (en) Antenna beam pointing test method
CN217687814U (en) Light field testing device
CN217687044U (en) Stable in structure's simulation angle measuring device
CN211698161U (en) Measuring device for direction finding precision and acting distance of airborne searching and positioning terminal
CN219799778U (en) Barrier testing device for laser radar for vehicle