JPS60210243A - Semiconductor composite sensor - Google Patents

Semiconductor composite sensor

Info

Publication number
JPS60210243A
JPS60210243A JP59066493A JP6649384A JPS60210243A JP S60210243 A JPS60210243 A JP S60210243A JP 59066493 A JP59066493 A JP 59066493A JP 6649384 A JP6649384 A JP 6649384A JP S60210243 A JPS60210243 A JP S60210243A
Authority
JP
Japan
Prior art keywords
sensor
semiconductor
pressure
diaphragm
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59066493A
Other languages
Japanese (ja)
Other versions
JPH0479650B2 (en
Inventor
勝規 西口
順一 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59066493A priority Critical patent/JPS60210243A/en
Publication of JPS60210243A publication Critical patent/JPS60210243A/en
Publication of JPH0479650B2 publication Critical patent/JPH0479650B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、化学的物1質の濃度測′定と圧力測定を同時
に行なうことが可能な半導体複合センサに関し、特に化
学的物質の濃度測定には電界効果を利用し、圧力測定に
はピエゾ抵抗効果を利用する半導体複合センサに関する
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field The present invention relates to a semiconductor composite sensor that can simultaneously measure the concentration of one chemical substance and the pressure. This field relates to a semiconductor composite sensor that uses electric field effect and piezoresistive effect for pressure measurement.

(2)背景技術 従来からゲート絶縁型電界効果l・ランジスク(MIS
FET)の構造を利用して、電解液中のイオン活はや化
の化学的物質の濃度などを測定する半導体センサは提案
されている。これらは、IonSensitiveFi
eldEffectTransistor(ISFE’
l’lまたはChemical FET (CHEMF
ET lと呼ばれ、特公昭54−24317 などにこ
れ等に関する記載がある。
(2) Background technology Conventionally, gate insulated field effect
A semiconductor sensor has been proposed that utilizes the structure of a FET (FET) to measure the concentration of ion-active chemical substances in an electrolyte. These are IonSensitiveFi
eldEffectTransistor(ISFE'
l'l or Chemical FET (CHEMF
It is called ETl, and there are descriptions about it in Japanese Patent Publication No. 54-24317, etc.

第1図はCIIEMFETのゲート部分を含む断面の基
本構成図である。これは、MISFETのゲー ト金属
を取り除き、ゲ−1・絶縁層を直接被測定雰囲気に接触
させる構造としたものである。
FIG. 1 is a basic configuration diagram of a cross section including a gate portion of a CIIEMFET. This is a structure in which the gate metal of the MISFET is removed and the gate 1/insulating layer is brought into direct contact with the atmosphere to be measured.

一方、半導体において・1幾1戒的応力が加イ)ると、
ピエゾ抵抗効果によりその抵抗圃が変化する曲質を利用
したシリコンダイアフラム型の半導体圧力士ンサも各種
構成のものが提案されている。
On the other hand, when a certain amount of stress is applied to a semiconductor,
Various configurations of silicon diaphragm type semiconductor pressure sensors have also been proposed, which utilize the curved nature of the piezoresistive field to change its resistance field.

その代表例を第2図に示す。これは、液体などの雰囲気
の圧力の測定に11ト用する際に測定対象雰囲気が含む
水分、アルカリ金属イオンなどが半導体センサに及ぼす
悪影響を防ぐように考慮したものである。
A typical example is shown in FIG. This is to prevent the adverse effects of moisture, alkali metal ions, etc. contained in the atmosphere to be measured on the semiconductor sensor when the sensor is used to measure the pressure of an atmosphere such as a liquid.

これらのセンサは共にシリコン基板を用いているので、
最近の高度なシリコンIC製造技術を駆使することによ
って小型化、補償回路の集積化が可能で新しい応用が種
々提案されている。例えば医学的な応用としてはセンサ
をカテーテルの先端に装着して血管内に挿入し、体内の
情報を直接に連続測定することが挙げられる。即ち、C
HEMFETによる血液中のイオン濃度や、生体機能性
利料をI’S 比換として用いたアセチルコリン、尿素
、ペニシリンなどの測定と圧力センサによる血管内また
は心臓内の血圧測定である。これらのCHEMFETお
よび圧力センザをそれぞれ単独に用いた体内連続測定も
非常に有効であるが、臨床医学的にはイオン濃度や他の
物質の濃度測定と同時に血圧をモニタしておくことは極
めて重要なデータとなる。
These sensors both use silicon substrates, so
By making full use of recent advanced silicon IC manufacturing technology, miniaturization and integration of compensation circuits are possible, and various new applications have been proposed. For example, in medical applications, a sensor may be attached to the tip of a catheter and inserted into a blood vessel to directly and continuously measure information inside the body. That is, C
Measurement of ion concentration in blood using a HEMFET, acetylcholine, urea, penicillin, etc. using biofunctional interest as an I'S ratio, and measurement of intravascular or intracardiac blood pressure using a pressure sensor. Continuous in-body measurements using these CHEMFET and pressure sensors individually are also very effective, but from a clinical medical point of view, it is extremely important to monitor blood pressure at the same time as measuring ion concentrations and other substance concentrations. It becomes data.

これはCHEMFETと半導体圧力センサを1本のカテ
ーテル内に同時に装着することにより可能ではあるが、
各々単独のセンサを同一カテーテル内に装着するのは非
常に複雑な手作業を要し、実作業」二このような実装は
ほぼ不可能である。
Although this is possible by simultaneously installing a CHEMFET and a semiconductor pressure sensor in one catheter,
Mounting each individual sensor in the same catheter requires very complicated manual work, and such implementation is almost impossible in real life.

このような問題点を克服したものとして、特願昭58−
23833 Uなどに半導体複合センサが提案されてい
る。これらは、第3図の構成断面図に′示すように、同
一半導体基板上に、ゲート絶縁型電界効果トランジスタ
のゲート部上に特定の被測定物質にのみ選択的に感応す
る層を設けたイ14造の電界効果型半導体センサとダイ
アフラム」二に形成した拡散抵抗を感圧部として用いる
構造の半導体圧力センサの2種類のセンサを1つの素子
として組み込んだ構造となっている。
As a solution to overcome these problems, the patent application 1983-
Semiconductor composite sensors have been proposed such as 23833U. As shown in the cross-sectional view of the structure in Figure 3, these are devices in which a layer selectively sensitive only to a specific substance to be measured is provided on the gate part of an insulated gate field effect transistor on the same semiconductor substrate. It has a structure that incorporates two types of sensors into one element: a 14-structure field-effect semiconductor sensor and a semiconductor pressure sensor that uses a diffused resistor formed on a diaphragm as a pressure sensing part.

しかしながら、単純に2種ノ′Jlの七ン雪を組合せた
だけでは小型化という面で限界があり、多J」i 1.
1の化学的物質の濃度測定と圧力測定を同時に行ない得
るカテーテル先端型のセンサを実現するには無理がある
However, there is a limit to miniaturization simply by combining two kinds of seven snowflakes, and multi-J'i 1.
It is impossible to realize a catheter tip type sensor that can simultaneously measure the concentration and pressure of chemical substance No. 1.

(3)発明の1」的 本発明は、多項l」の化学的物質の濃度測定と圧力測定
を同時に行なうことができ、かつカテーテルの先端など
に装着可能な超小型の半導体複合センサを提供すること
にある。
(3) Aspect 1 of the invention The present invention provides an ultra-small semiconductor composite sensor that can simultaneously measure the concentration and pressure of a polynomial chemical substance and can be attached to the tip of a catheter, etc. There is a particular thing.

(4)発明の構成 本発明による半導体複合センサは、基本的に全く別々の
素子であるゲート絶縁型電界効果トランジスクのゲ−1
・部上に特定の被測定物質にのみ選択的に感応する層を
設けた構造の電界効果型半導体センサとダイアフラム上
に形成した拡散抵抗を感圧部として用いる構造の半導体
圧力センサの2種類のセンサを単純に同一半導体基板上
に組み込むことのみによって1つの素子として実現する
のではなく、各々のセンサの構造を有機的に統合して真
に構造的な複合化を実現したものである。
(4) Structure of the Invention The semiconductor composite sensor according to the present invention consists of a gate insulated field effect transistor, which is basically a completely separate element.
・There are two types of semiconductor pressure sensors: a field-effect semiconductor sensor with a structure on which a layer is selectively sensitive only to a specific substance to be measured, and a semiconductor pressure sensor with a structure that uses a diffused resistor formed on a diaphragm as a pressure-sensitive part. Rather than simply incorporating the sensors on the same semiconductor substrate as a single element, the structure of each sensor is organically integrated to achieve true structural complexity.

具体的には圧力センサの全素子面積の大部分を占める受
圧部たるダイアフラムを電界効果型半導体センサの感応
部として同時に利用することにより実現し℃いる。即ち
、圧力センサのダイアフラム部には、通常拡散抵抗が形
成されているだけでダイアフラム部を機械的には利用し
ているが、他に半導体素子としてはダイアフラムのたわ
みに起因する特性の変化により全く利用できないと考え
られる。この圧力センサとしては必須の構成要素であり
なからセンサの高感度化、多重化には利用しにくいダイ
アフラム部を、同じく半導体素子としてではなく、被測
定雰囲気との接触部分として素子表面面積だけが必要な
電界効果型半導体−レンザの化学感応部として利用する
ことにより、複合比されたセンサの素子表面を余すとこ
ろなく]良能的に活用し全体として素子の小型化が実現
できる。
Specifically, this is achieved by simultaneously using the diaphragm, which is the pressure-receiving part that occupies most of the total element area of the pressure sensor, as the sensitive part of the field-effect semiconductor sensor. In other words, the diaphragm part of a pressure sensor normally only has a diffused resistance formed thereon and is used mechanically, but as a semiconductor element, it is completely unusable due to the change in characteristics caused by the deflection of the diaphragm. It is considered unavailable. Although the diaphragm is an essential component of this pressure sensor, it is difficult to use for increasing sensor sensitivity and multiplexing. Similarly, the diaphragm is not used as a semiconductor element, but as a contact part with the atmosphere to be measured, and only the surface area of the element is small. By using the necessary field effect semiconductor as the chemical sensing part of the laser, the element surface of the composite sensor can be efficiently utilized and the overall element can be miniaturized.

実際、このような半導体複合センサを1史用するときに
は半導体圧力センサは1個組み込んであればよく、複数
個組み込んでも各センサの出力値を゛1乙均して精度が
若干向上することが期待されるのみであるが、電界効果
型′−1′−導体センサは種々の感応j換を形成した数
多くのセンサを組み込むことにより多項目の同時測定が
可能となり大変イJ効である。
In fact, when such a semiconductor composite sensor is used for one time, it is sufficient to incorporate one semiconductor pressure sensor, and even if multiple semiconductor pressure sensors are incorporated, it is expected that the accuracy will improve slightly by averaging the output values of each sensor. However, the field-effect type '-1'-conductor sensor is very effective because it can measure many items simultaneously by incorporating a large number of sensors forming various types of sensitivity.

この感応膜の種類として考えられるものを〔〕内に示す
その測定対象物と共に列挙すると、別3N4゜AI 2
03 、 ’I’a305 (H−’−イオン〕、各種
NAS (NagO−A1g03−5 i02合成1ガ
ラス(K+イオンNa+イオン〕バリノマインン固定1
1%(K’−イオン〕、各種クラウンエーテル固定)y
;t、 [: K++イオンAg+イオン、TI+イオ
ンetc:]ウレアーゼ固定膜〔尿素〕、リパーゼ固定
IN [中性側W)、ベニシリナーゼ固定11% Cペ
ニシリン]、坑アルブミン抗体固定膜〔アルブミン)、
アセチルコリンエステラーゼ固定膜〔アセチルコリン〕
すどがある。
Possible types of this sensitive film are listed together with the measurement target shown in brackets: 3N4゜AI 2
03, 'I'a305 (H-'- ion), various NAS (NagO-A1g03-5 i02 synthetic 1 glass (K+ ion Na+ ion) Valino Mine fixation 1
1% (K'-ion, fixed with various crown ethers) y
;t, [: K++ ions, Ag+ ions, TI+ ions, etc.:] urease-immobilized membrane [urea], lipase-immobilized IN [neutral side W), benicillinase-immobilized 11% C-penicillin], anti-albumin antibody-immobilized membrane [albumin],
Acetylcholinesterase fixed membrane [acetylcholine]
There is a door.

さらに、多種類の感応)換を同時に形成する場合には参
照電極として用いるために如何なる化学的物質にも感応
しないような疎水性有機高分子膜を形成することも考え
られる。このような高分子膜としては、ポリエチレン、
ポリプロピレン、ポリ塩化ビニルヶフロンなどが考えら
れる。
Furthermore, when forming multiple types of sensitizers at the same time, it is conceivable to form a hydrophobic organic polymer film that is not sensitive to any chemical substance for use as a reference electrode. Such polymer membranes include polyethylene,
Possible materials include polypropylene and polyvinyl chloride.

(5)発明の実施例 以1で、本発明を実施例の図面にもとずい℃説明する。(5) Examples of the invention In the following, the present invention will be explained based on the drawings of the embodiments.

第4図は本発明の一実施例としての半導体複合センサの
構造を示す図である。この図は4・個の電界効果型セン
サと7個のダイアフラム型圧力センサを同一素子」二に
形成した場合のもので、(a)はその平面図、(b)は
電界効果型センサ部を中心とした断面図である。
FIG. 4 is a diagram showing the structure of a semiconductor composite sensor as an embodiment of the present invention. This figure shows a case where 4 field-effect sensors and 7 diaphragm-type pressure sensors are formed into the same element. FIG.

図において、センサの大きさは1.0mm X 3.0
mm、厚みに0.15 mm、ダイアフラム部の厚みは
20μmを想定している。
In the figure, the size of the sensor is 1.0mm x 3.0
mm, the thickness is assumed to be 0.15 mm, and the thickness of the diaphragm part is assumed to be 20 μm.

この構造の複合化センサを実現するためには、特願昭5
8〜51145 などに記載されているように電界効果
型センサのゲート酸rヒ1俟と化学感応層の間を金属な
どの導電性層を含む多層構造とすることが必須であり、
この導電性層を利用してゲート部t1−1造と化学感応
部の位置を引きell[さなくてはならない。即ち、本
実施例の場合、4・個のゲ−1・部構造(35,36,
37,381がシリコン単結晶基板(32)の上に形成
されており、それぞれのゲート部多層tfa造に含まれ
る導電性層(39i・0,4・1,4・2)によって導
ひかれたダイアフラム部(331上もしくはその周辺部
に4・種類の16学感応層(4,8,1,45,4,6
1が形成され−Cいる。
In order to realize a composite sensor with this structure, a patent application
8-51145, it is essential to have a multilayer structure including a conductive layer such as a metal between the gate acid layer and the chemically sensitive layer of a field effect sensor.
Using this conductive layer, the positions of the gate part t1-1 and the chemically sensitive part must be connected. That is, in the case of this embodiment, there are 4 game 1 part structures (35, 36,
37 and 381 are formed on a silicon single crystal substrate (32), and are guided by conductive layers (39i, 0, 4, 1, 4, 2) included in the multilayer TFA structure of each gate part. (4 types of 16 science sensitive layers (4, 8, 1, 45, 4, 6) on or around 331
1 is formed and -C exists.

従って第49図(a)の左半分、換Jするとダイアフラ
ム部(33)とその周辺部に感圧部たる4個の拡散ピエ
ゾ抵抗(34)と4・種類の被測定物質に選択的な化学
+、q応部(4・3,4・1・、4・5,401 が集
中的に形成された4’l造となる。このとき注意すべき
ことは、ブリッジを形成している4個の拡散抵抗(34
)に加わる機械的応力が正確に等しく伝わるがもしくは
少なくとも規則的な対称性を持って伝わるような構造に
なっていることである。例えば、ダイアフラム部は総合
的な厚みは約211μmでその大部分は単結晶シリコン
基板(32)であるが、その上部には約1μmの5i0
22どの絶縁層(49)、AIまたは不純物イオンの注
入により導電性を持ったポリシリコンなどの導電性層+
39.4・U、4・1,4□2)4種類の化学感応層(
43,44,45,4・6)および1呆護層たる絶、縁
層(50)が形成されているが、少なくとも機械的強度
が異なる導電性)・;グ(39,4・(1,4,1,4
21はダイアフラム部(33)上において拡散ピエゾ抵
抗(34)に対し、幾何学的に対称な位置に形成されて
いるべきであり、かつ保護層たる絶縁層ω)も不自然な
応力が超重つらないように平担化されている必要がある
Therefore, in the left half of Fig. 49(a), there are 4 diffused piezoresistors (34) as pressure sensitive parts in the diaphragm part (33) and its surrounding area, and 4. +, q reaction part (4, 3, 4, 1, 4, 5, 401) is formed in a concentrated manner, resulting in a 4'l structure. At this time, it is important to note that the four parts forming the bridge diffusion resistance (34
) is such that the mechanical stress applied to it is transmitted exactly equally, or at least with regular symmetry. For example, the diaphragm part has a total thickness of about 211 μm, and most of it is a single crystal silicon substrate (32), but the upper part has a 5i0 thickness of about 1 μm.
22 Which insulating layer (49), conductive layer such as polysilicon made conductive by implanting AI or impurity ions +
39.4・U, 4・1, 4□2) Four types of chemically sensitive layers (
43, 44, 45, 4, 6) and an insulating layer (50) serving as a protective layer, conductive layers (39, 4, (1, 4,1,4
21 should be formed on the diaphragm part (33) at a geometrically symmetrical position with respect to the diffused piezoresistor (34), and the insulating layer ω), which is a protective layer, should also be formed under unnatural stress. It needs to be flattened so that it does not.

導電性層(39,40,41,421は、厚さI Ii
m程度なので拐質はAIまたはポリシリコンであればダ
イアフラムのたわみ方に大きな影響を与えるとは考えら
れない。
The conductive layers (39, 40, 41, 421 have a thickness I Ii
Since the thickness of the diaphragm is approximately 1.5 m, it is not thought that if the particle is made of AI or polysilicon, it will have a large effect on the way the diaphragm bends.

また保護層としては、プラズマCVDなと低温で形成可
能なSi 3N4 、 AI 203 、 SiOxN
y 、 Al0xNyP SG (Phospho−3
il 1cate P20b 5iO21,PbO−A
I20a・5iO2(Lead −Al umino−
5i l 1cate l 、 PbOB2O3−3i
02(Lead−Boro−5ilicate l、 
PbO・A120a ・B20;し5iO2(Lead
−Alumino−Boro−5i l ica te
 l もしくはポリイミド系1剌脂の単層構造、または
これらのnjみ合せによる多層構造が考えられる。さら
に化学感応層(43,44,45,4(i )に関して
もそのIIか厚および機械的強度を考慮してその配置を
決定しなくてはならない。
In addition, as a protective layer, Si 3N4, AI 203, SiOxN, which can be formed at low temperature by plasma CVD, can be used.
y, Al0xNyPSG (Phospho-3
il 1cate P20b 5iO21,PbO-A
I20a・5iO2(Lead -Al umino-
5i l 1cate l , PbOB2O3-3i
02 (Lead-Boro-5ilicate l,
PbO・A120a・B20; 5iO2(Lead
-Alumino-Boro-5ilicate
A single layer structure of 1 or polyimide resin, or a multilayer structure of a combination of these materials can be considered. Furthermore, the arrangement of the chemically sensitive layers (43, 44, 45, 4(i)) must be determined in consideration of their thickness and mechanical strength.

一方、第4図(b)の右半分には電界効果型センサのゲ
ート部[35,30,37,38+および4悶の電界効
果型センサと拡散ピエゾ抵抗(財)のブリッジから取り
出される信号を処理する信号処理回路部(4′711さ
らにこの回路と入出力を行なうためのリード線を接続す
るためのコンタクト用金属層(48)が形成されている
On the other hand, the right half of Fig. 4(b) shows the signals taken out from the gate part of the field effect sensor [35, 30, 37, 38+ and 4 field effect sensors and the bridge of the diffused piezoresistor]. A signal processing circuit section (4'711) to be processed is further formed with a contact metal layer (48) for connecting lead wires for input/output to this circuit.

信号処理の内容としては(1)拡散ピエゾ抵抗ブリッジ
により検出される電位差の温度補償、感度補償とそれの
圧力値への変換、(11)電界効果型センサの経時変化
補正と各測定値への変換、011)各測定項目の正異常
の判断などが考えられる。
The contents of the signal processing include (1) temperature compensation and sensitivity compensation of the potential difference detected by the diffusion piezoresistive bridge and its conversion to a pressure value, (11) time-dependent change correction of the field effect sensor and conversion to each measured value. Conversion, 011) Judgment of whether each measurement item is normal or abnormal can be considered.

(6)発明の効果 本発明の最大の効果は、シリコンダイアフラム型の圧力
センサと電界効果型半導体センサの複合化、多重化が容
易になったことである。特に1個の圧力センサと複数個
の電界効果型半導体センサを組み合せる場合に有効で、
素子の大きさを圧力センサ単独の素子と比べてほとんど
大きくすることなく電界効果型センサを組み入れること
が可能となる。
(6) Effects of the Invention The greatest effect of the invention is that it has become easier to combine and multiplex silicon diaphragm pressure sensors and field effect semiconductor sensors. It is especially effective when combining one pressure sensor and multiple field effect semiconductor sensors.
It becomes possible to incorporate a field effect sensor without increasing the size of the element compared to a pressure sensor alone.

本発明の半導体複合センサの最も有力な応用例である医
学応用のカテーテル先端型センサにおいて、このように
半導体センサの大きな特長である小型化という利点を保
ったまま多重化が可能であるということは、カテーテル
への実装が容易となるため従来技術では臨床医学的に大
きな意義があるとされながら事実」二手可能であった体
内の同一部位の圧力と種々の化学的物質濃度の同時測定
が初めて実現されることとなり、その臨床医学的意義は
計り知れない。
In catheter tip type sensors for medical applications, which is the most promising application example of the semiconductor composite sensor of the present invention, the fact that multiplexing is possible while maintaining the advantage of miniaturization, which is a major feature of semiconductor sensors, is as follows. Although conventional technology is said to have great clinical significance because it can be easily installed in a catheter, it is the first time that it has been possible to simultaneously measure pressure and the concentration of various chemical substances at the same site in the body, which was possible with two hands. The clinical medical significance of this is immeasurable.

本発明の副次的な効果は、圧力と多種;i+1の化学的
物質に対する感応部をダイアフラム部周辺に集中的に形
成することができるので、カテーテルなどへの実装が単
一機能のセンサと同程度に容易となることである。
A secondary effect of the present invention is that the sensitive part for pressure and various i+1 chemical substances can be formed centrally around the diaphragm part, so that it can be mounted on a catheter etc. in the same way as a single-function sensor. It will be easy to some extent.

即ち、血液中という非常に劣悪な?1り体中で半導体セ
ンサを使用するためには感応部は直接血液に接触するよ
うにしてリード線などは完全に血液から絶縁分離しなく
てはならない。実際にはエポキシ樹脂、シリコン樹脂な
どを接着剤兼絶縁剤として用いて実装を行なうため感応
部が組れた位置に河箇所も存在すると現状の樹脂塗布技
術では対応できなくなるため感応部が一箇所に集中して
いるのが望ましいのである。
In other words, it's in the blood, which is very bad? In order to use a semiconductor sensor in a single body, the sensitive part must be in direct contact with the blood, and the lead wires must be completely insulated and separated from the blood. In reality, epoxy resin, silicone resin, etc. are used as adhesives and insulators for mounting, so if there are river spots at the locations where the sensitive parts are assembled, the current resin coating technology will not be able to deal with this, so the sensitive parts will be placed in one place. It is desirable to concentrate on

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術のシリコン単結晶基板を用いた電界
効果型半導体センサのゲート部分を含む断面の基本構成
を示す図、第2図は、従来技術による耐雰囲気性を向上
させた半導体圧力士ンサの基本(111成11」1面を
示す図である。 第3図は、従来技術による電界効果型センサとダイアフ
ラム型圧力センサを同−素子」二に形成した半導体複合
センサの構成断面を示す図である。 第4図は、本発明の一実施例たる41個の電界効果型セ
ンサと1個のダイアフラム型圧力センサを同一素子」二
に形成した半導体複合センサの411¥造を示す図で、
(a)はその平面図、(1))は電界効果型センサ部を
中心とした断面図である。 】 シリコン単結晶基板(p−型) 2 ソース拡散領域 (n生型) 3 ドレイン拡散領域 (n+型) 4 チャンネル部 5 絶縁層(その1.3iO21 6絶縁層(その2. 5iaN4) 7 化学感応層 8 リードコンタクト用金属WJ(Al19 シリコン
単結晶基板(n−型) 10 ダイアフラム部 11 拡散ピエゾ抵抗 (p−型) 12 拡11にリード部 (p′l−型)■3 シリコ
ンエピクキシャル成長N (n −型114 p十型拡
散領域 15 絶縁層(ex 5i3N41 16 リードコンタクト用金属層(All17 シリコ
ン単結晶基板(p−型) 18 ダイアフラム部 19 拡散ピエゾ抵抗 (n−型) 20 拡散リー ド部 (n生型) 21 シリコンエピクキシャル成長層(p″″型)22
 ソース拡散領域 (n−(型) 23 ドレイン拡散領域 (n生型) 24 チャンネル部 25 基板コンタクト用拡散領域(p生型)2fi n
十型拡散領域 27 絶縁層(Sil1 28 化学感応層 29 拡散抵抗リードコンタクト用金属層(Al130
 ソース・基板共通リードコンタクト用金属層(A1)
31 Fレイン・リードコンタクト用金属層(Al13
2 シリコン単結晶基板 33 ダイアフラム部 34 拡散ピエゾ抵抗(4・個) 35 電界効果型センサゲ−1・部(その1)36 η
 (その2) 37〃(その3) 38(その4) 39 導電性物質層(その1) 4(1ft (その2) 4.1 // (その3) 4・2 〃 (その4・) 4・3 化学感応層(その1) 44 化学感応層(その2) 45〃(その3) 46 ’/ (その4) 47 信号処理回路部 48 リードコンタクト用金属層(A1)4.9 絶縁
層(ex 5iO21 50保護用絶縁層(ex Si3N4]代理人 弁理士
 」−代 ■ 司・l:、ニア、’1官1図 芳2図 所3図 W4図 (G) (b)
Figure 1 is a diagram showing the basic configuration of a cross section including the gate part of a field-effect semiconductor sensor using a conventional silicon single crystal substrate, and Figure 2 is a diagram showing a semiconductor pressure sensor with improved atmospheric resistance according to the conventional technology. Fig. 3 is a diagram showing the first side of the basic sensor (111 structure). Fig. 3 is a cross-sectional view of a semiconductor composite sensor in which a field effect sensor and a diaphragm pressure sensor are formed in the same element according to the prior art. Fig. 4 is a diagram showing the structure of a semiconductor composite sensor in which 41 field-effect sensors and one diaphragm-type pressure sensor are formed in the same element, which is an embodiment of the present invention. in,
(a) is a plan view thereof, and (1)) is a sectional view centered on the field effect sensor section. ] Silicon single crystal substrate (p-type) 2 Source diffusion region (n-type) 3 Drain diffusion region (n+ type) 4 Channel section 5 Insulating layer (1.3iO21) 6 Insulating layer (2.5iaN4) 7 Chemical sensitivity Layer 8 Metal WJ for lead contact (Al19 Silicon single crystal substrate (n-type) 10 Diaphragm part 11 Diffused piezoresistance (p-type) 12 Lead part in expansion 11 (p'l-type) ■3 Silicon epixaxial growth N (n-type 114 p-type diffusion region 15 insulating layer (ex 5i3N41) 16 metal layer for lead contact (All 17 silicon single crystal substrate (p-type) 18 diaphragm part 19 diffused piezoresistance (n-type) 20 diffusion lead Part (n green type) 21 Silicon epitaxial growth layer (p″″ type) 22
Source diffusion region (n-(type)) 23 Drain diffusion region (n-type) 24 Channel section 25 Diffusion region for substrate contact (p-type) 2fin
Ten-shaped diffusion region 27 Insulating layer (Sil1 28 Chemical sensitive layer 29 Metal layer for diffused resistance lead contact (Al130)
Metal layer for source/substrate common lead contact (A1)
31 F rain/lead contact metal layer (Al13
2 Silicon single crystal substrate 33 Diaphragm part 34 Diffused piezoresistor (4 pieces) 35 Field effect sensor gate 1 part (part 1) 36 η
(Part 2) 37 (Part 3) 38 (Part 4) 39 Conductive material layer (Part 1) 4 (1ft (Part 2) 4.1 // (Part 3) 4・2 (Part 4) 4・3 Chemically sensitive layer (Part 1) 44 Chemically sensitive layer (Part 2) 45 (Part 3) 46 '/ (Part 4) 47 Signal processing circuit section 48 Metal layer for lead contact (A1) 4.9 Insulating layer ( ex 5iO21 50 protective insulating layer (ex Si3N4) Agent Patent attorney - Representative ■ Tsukasa L:, Near, '1 Official 1 Figure 2 Figure W4 Figure (G) (b)

Claims (1)

【特許請求の範囲】 (])ゲート絶縁型電界効果l・ランジスクのゲート部
」−に’4−r定の被測定物質にのみ選択的に感応する
層を設けた電界効果型半導体センサとダイアフラム」二
に形成した拡散抵抗を感圧部として用いる半導体圧力ー
ヒンザがそれぞれ少なくとも1個ずつ以」二同−半導体
基板に形成されている半導体複合センサにふ・いて、圧
力センサの受圧部たるダイアフラム上に電界効果型半導
体センサの感応層を1個あるいは複数個形成したことを
特徴とする半導体複合センサ。 (2)l肥土導体基板が単結晶シリコン基板であること
を特徴とする特許請求の範囲第1項記載の半導体複合セ
ンサ。
[Claims] (]) A field-effect semiconductor sensor and a diaphragm in which a layer selectively sensitive only to a 4-r constant measured substance is provided in the gate portion of a gate-insulated field-effect l-range disk. A semiconductor pressure sensor using the diffused resistor formed on the semiconductor substrate as a pressure sensing part. A semiconductor composite sensor comprising one or more sensitive layers of a field effect semiconductor sensor formed therein. (2) The semiconductor composite sensor according to claim 1, wherein the soil conductor substrate is a single crystal silicon substrate.
JP59066493A 1984-04-02 1984-04-02 Semiconductor composite sensor Granted JPS60210243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066493A JPS60210243A (en) 1984-04-02 1984-04-02 Semiconductor composite sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066493A JPS60210243A (en) 1984-04-02 1984-04-02 Semiconductor composite sensor

Publications (2)

Publication Number Publication Date
JPS60210243A true JPS60210243A (en) 1985-10-22
JPH0479650B2 JPH0479650B2 (en) 1992-12-16

Family

ID=13317383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066493A Granted JPS60210243A (en) 1984-04-02 1984-04-02 Semiconductor composite sensor

Country Status (1)

Country Link
JP (1) JPS60210243A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8933664B2 (en) 2006-03-31 2015-01-13 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9039975B2 (en) 2006-03-31 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9323898B2 (en) 2005-11-04 2016-04-26 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9962091B2 (en) 2002-12-31 2018-05-08 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US10039881B2 (en) 2002-12-31 2018-08-07 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US10478108B2 (en) 1998-04-30 2019-11-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066697B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9042953B2 (en) 1998-04-30 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326714B2 (en) 1998-04-30 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10478108B2 (en) 1998-04-30 2019-11-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066694B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9610034B2 (en) 2001-01-02 2017-04-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10750952B2 (en) 2002-12-31 2020-08-25 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US10039881B2 (en) 2002-12-31 2018-08-07 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US9962091B2 (en) 2002-12-31 2018-05-08 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US10231654B2 (en) 2005-11-01 2019-03-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11103165B2 (en) 2005-11-01 2021-08-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11911151B1 (en) 2005-11-01 2024-02-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11399748B2 (en) 2005-11-01 2022-08-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11363975B2 (en) 2005-11-01 2022-06-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11272867B2 (en) 2005-11-01 2022-03-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10952652B2 (en) 2005-11-01 2021-03-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10201301B2 (en) 2005-11-01 2019-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9669162B2 (en) 2005-11-04 2017-06-06 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9323898B2 (en) 2005-11-04 2016-04-26 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11538580B2 (en) 2005-11-04 2022-12-27 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8933664B2 (en) 2006-03-31 2015-01-13 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9039975B2 (en) 2006-03-31 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9743863B2 (en) 2006-03-31 2017-08-29 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9625413B2 (en) 2006-03-31 2017-04-18 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9380971B2 (en) 2006-03-31 2016-07-05 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9801545B2 (en) 2007-03-01 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems

Also Published As

Publication number Publication date
JPH0479650B2 (en) 1992-12-16

Similar Documents

Publication Publication Date Title
Ko et al. Development of a miniature pressure transducer for biomedical applications
Samaun et al. An IC piezoresistive pressure sensor for biomedical instrumentation
JPS60210243A (en) Semiconductor composite sensor
US4023562A (en) Miniature pressure transducer for medical use and assembly method
US8286510B2 (en) Force sensor and method for detecting at least one force component
Wise et al. An IC piezoresistive pressure sensor for biomedical instrumentation
JPS6341080A (en) Semiconductor acceleration sensor
US3918019A (en) Miniature absolute pressure transducer assembly and method
JPS5921495B2 (en) Capillary pressure gauge
JP2002531822A (en) Pressure sensor
CN105067016B (en) Integrated Temperature Humidity Sensor and preparation method thereof
KR910001842B1 (en) The method of coordination of bridge circuit
Burns et al. Fabrication technology for a chronic in-vivo pressure sensor
JPS60200154A (en) Isfet sensor and manufacture thereof
JPS62229882A (en) Capacitive pressure detector and manufacture of the same
EP3056865B1 (en) Sensor arrangement
JPS6114563A (en) Semiconductor composite sensor
JP2599354B2 (en) Infrared detector
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH04225B2 (en)
JPS6097676A (en) Semiconductor pressure sensor and manufacture thereof
GB1586968A (en) Pressure transducer
JPS62132160A (en) Biosensor using separation gate type isfet
JPS62147781A (en) Manufacture of semiconductor pressure sensor
JPH03239938A (en) Capacity type pressure sensor