JPS60209928A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS60209928A
JPS60209928A JP59063574A JP6357484A JPS60209928A JP S60209928 A JPS60209928 A JP S60209928A JP 59063574 A JP59063574 A JP 59063574A JP 6357484 A JP6357484 A JP 6357484A JP S60209928 A JPS60209928 A JP S60209928A
Authority
JP
Japan
Prior art keywords
magnetic
ferrite
recording medium
material particles
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59063574A
Other languages
Japanese (ja)
Other versions
JPH07105033B2 (en
Inventor
Koki Yokoyama
横山 弘毅
Akizo Hideyama
日出山 章蔵
Ryoichi Sato
良一 佐藤
Toshio Fukaya
深谷 敏雄
Takeo Ito
武男 伊藤
Masanori Isshiki
一色 正憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59063574A priority Critical patent/JPH07105033B2/en
Publication of JPS60209928A publication Critical patent/JPS60209928A/en
Publication of JPH07105033B2 publication Critical patent/JPH07105033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium which has large reproduced output and permits high-density recording by using fine magnetic material particles of which the average particle size is of a limited length and the volumetric packing rate of the fine magnetic material particles in the magnetic layer is specific % or above. CONSTITUTION:The particle size of fine magnetic material particles consisting of hexagonal ferrite is made 0.02-0.15mum and the volumetric packing rate of the fine magnetic material particles in a magnetic layer contg. said particles is made >=42% in a magnetic recording medium provided with said magnetic layer on a substrate. The fine magnetic material particles consisting of hexagonal ferrite are exemplified by, for example, M type (magneto-plumbite type), W type hexagonal barium ferrite, strontium ferrite, lead ferrite, orcium ferrite or the solid soln. thereof or ion substituted matter thereof. The fine magnetic material particles consisting of hexagonal ferrite having 200-2,000Oe coercive force are mainly used.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁気記録媒体の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in magnetic recording media.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体はポリエチレンテレフタレートなどの支持
体と、この支持体上に設けられた磁性体微粒子及びバイ
ンダ樹脂を主成分とする磁性層とによシ構成されている
。磁性体微粒子としては、従来よシγFe1OB、 C
r01 、 Co−γFe2O3などの針状磁性粒、子
が広く用いられている。最近、磁気記録密度の大巾な向
上を図るために、垂直磁化記録のできる磁気記録媒体が
強く望まれておシ、これに適する磁気記録媒体として六
方晶フェライトの超微粒子状磁性体を用いたものが研究
されておシ、高密度記録が可能であることが見い出され
ている。
A magnetic recording medium is composed of a support such as polyethylene terephthalate, and a magnetic layer provided on the support and containing magnetic fine particles and a binder resin as main components. Conventionally, as magnetic particles, γFe1OB, C
Acicular magnetic particles such as r01 and Co-γFe2O3 are widely used. Recently, in order to greatly improve magnetic recording density, a magnetic recording medium capable of perpendicular magnetization recording has been strongly desired. Things have been studied and it has been found that high-density recording is possible.

ところで、高密度記録の要請は単に記録トラック長手方
向のみならず、トラック幅を狭くし、トラック密度を高
める方向にも向っておシ、これに対応できる磁気記録媒
体が望まれている。
Incidentally, the demand for high-density recording is not limited to simply the longitudinal direction of the recording track, but is also directed toward narrowing the track width and increasing the track density, and a magnetic recording medium that can meet this demand is desired.

したがって、六方晶フェライト超微粒子を用いた磁気記
録媒体の場合でも、高密度記録においてトラック幅が狭
くなっても十分な再生出力が得られることが要求されて
おシ、この点が重要な開発課題であった。再生出力の増
加方法としては、磁性体微粒子の飽和磁化を高める方法
ζ保磁力を高める方法、磁性体微粒子の体積充填率を高
める方法が考えられる。しかしながら、磁性体微粒子の
飽和磁化を高めることは、六方晶フェライトの超微粒子
を用いる限シ大幅な向上は期待できず、また垂直記録を
主体とする磁気記録においては保磁力を高めることはあ
まシ効果的ではない。
Therefore, even in the case of magnetic recording media using ultrafine hexagonal ferrite particles, it is required to obtain sufficient reproduction output even when the track width becomes narrow in high-density recording, and this point is an important development issue. Met. Possible methods for increasing the reproduction output include a method of increasing the saturation magnetization of the magnetic fine particles, a method of increasing the coercive force, and a method of increasing the volume filling rate of the magnetic fine particles. However, increasing the saturation magnetization of fine magnetic particles cannot be expected to significantly improve unless ultrafine hexagonal ferrite particles are used, and increasing the coercive force is difficult in magnetic recording, which is mainly perpendicular recording. Not effective.

次に磁気記録媒体中の磁性粒子の体積光てん率について
述べる。針状の磁性粒子を用いた従来の塗布型磁気記録
媒体においては磁性粒子の体積光てん率は30〜40%
である。最近のVTRテーノのように高い記録密度で用
いられる媒体においては、長軸の径が0.3〜0.4μ
mといった小粒径の磁性粒子が用いられるために、これ
らをよく結着するだめのバインダをよシ多く必要とする
ようになシ、また媒体の帯電を防止するために、超微粒
子のカーデンブラックが添加されることもあって、磁性
粒子の体積光てん率をあまシ高くすることができない。
Next, we will discuss the volumetric optical density of magnetic particles in a magnetic recording medium. In conventional coated magnetic recording media using acicular magnetic particles, the volumetric optical density of the magnetic particles is 30 to 40%.
It is. In media used with high recording density, such as recent VTR technos, the diameter of the major axis is 0.3 to 0.4μ.
Because magnetic particles with small particle diameters such as m are used, a large amount of binder is required to bind them well, and in order to prevent charging of the medium, ultrafine particles of caden black are used. is added, and therefore the volumetric optical density of the magnetic particles cannot be made very high.

具体例を述べると標準のグレードのVTRチーf(β用
あるいはVH8用)では磁性粒子の体積光てん率約38
チ、粒子サイズのよシ小さい磁性粉を用いた高性能級の
VTRテーテーは磁性粒子の体積光てん率は32チ程度
まで低下しているものもある。このような磁気記録媒体
において磁性粒子の体積光てん率を高めるためにはバイ
ンダの量を減少させるか、カーゼンブラックの量を減少
させる必要があるが、バインダの減少では塗膜強度の低
下、耐久性の低下を生じ、カーがンプシックの減少では
、媒体帯電の発生をもたらし、いずれも磁気記録媒体と
して望ましくない結果を生ずる。
To give a specific example, in a standard grade VTR Chif (for β or VH8), the volume optical density of magnetic particles is approximately 38.
In some high-performance VTR systems that use magnetic powder with a much smaller particle size, the volumetric optical density of the magnetic particles is as low as about 32 inches. In order to increase the volume optical density of magnetic particles in such magnetic recording media, it is necessary to reduce the amount of binder or the amount of carzen black, but reducing the amount of binder causes a decrease in coating strength and This results in a decrease in durability, and a decrease in kerptic density leads to the generation of medium charging, both of which are undesirable results for a magnetic recording medium.

〔発明の目的〕[Purpose of the invention]

本発明は再生出力が大きく、高密度記録が可能な磁気記
録媒体を提供しようとするものである。
The present invention aims to provide a magnetic recording medium that has a large reproduction output and is capable of high-density recording.

〔発明の概要〕[Summary of the invention]

本発明者らは、六方晶フェライト微粒子を用いた磁気記
録媒体について種々研究を重ねた結果、所定寸法の大方
晶フェライト結晶微粒子を用い、六方晶7工ライト微粒
子の体積充填率を42%以上と、従来の体積充填率を範
囲を越えた領域に設定することによって、再生出力が著
しく向上されることを見い出し、本発明の磁気記録媒体
を開発するに至った。特に、大方晶フェライト微粒子と
して板状のものを用いると、従来の針状の六方晶フェラ
イト微粒子の場合と異なシ、バインダ樹脂を大幅に減ら
すことが可能となることによって、六方晶7エ2イト微
粒子の体積充填率を増大でき、しかも塗膜強度も十分な
値に保持できる。
As a result of various studies on magnetic recording media using hexagonal ferrite fine particles, the present inventors have found that using macrogonal ferrite crystal fine particles of a predetermined size, the volume filling rate of hexagonal heptagonal ferrite fine particles is 42% or more. They discovered that the reproduction output can be significantly improved by setting the volume filling factor beyond the conventional range, and have developed the magnetic recording medium of the present invention. In particular, when plate-shaped macrogonal ferrite particles are used, unlike the case of conventional needle-shaped hexagonal ferrite particles, it becomes possible to significantly reduce the amount of binder resin. The volume filling rate of fine particles can be increased, and the strength of the coating film can also be maintained at a sufficient value.

即ち、本発明は支持体上に六方晶7エ2イトの磁性体微
粒子を含有する磁性層を設けてなる磁気記録媒体におい
て、前記磁性体微粒子の粒子径が0.02〜0.15μ
mで、かつ磁性層中の磁性体微粒子の体積充填率が42
−以上であることを特徴とするものである。
That is, the present invention provides a magnetic recording medium in which a magnetic layer containing hexagonal 7E2ite magnetic particles is provided on a support, wherein the magnetic particles have a particle diameter of 0.02 to 0.15μ.
m, and the volume filling factor of the magnetic fine particles in the magnetic layer is 42
- or more.

本発明に用いる六方晶7エライトの磁性体微粒子として
杜、例えばM型(Magn@to−plumbit。
Magnetic particles of hexagonal 7-elite used in the present invention include M type (Magn@to-plumbit), for example.

type)、W型の六方晶バリウム7エ2イト、ストロ
ンチウム7エライト、鉛フェライト、オルシラ4フエラ
イト、或いはこれらの固溶体もしくはイオン置換体など
を挙げることができる。
type), W-type hexagonal barium 7-elite, strontium 7-elite, lead ferrite, orcilla 4-ferrite, or solid solutions or ion-substituted products thereof.

こうした大方晶7エライトの磁性体微粒子は主として保
磁力が200〜20000eのものが用いられる。
These macrogonal hepteralite magnetic fine particles mainly have a coercive force of 200 to 20,000 e.

上記磁性体微粒子の寸法を限定した理由は、その粒子径
を0.02μm未満にすると、磁化の値が減少し、記録
媒体として高密度記録再生時に出力が低下し、かといっ
てその粒子径が0.15μmを越えると、高密度記録再
生時のノイズが増大するからである。
The reason for limiting the size of the magnetic fine particles is that if the particle size is less than 0.02 μm, the magnetization value will decrease and the output will decrease during high-density recording and reproduction as a recording medium. This is because if the thickness exceeds 0.15 μm, noise during high-density recording and reproduction increases.

本発明において、磁性層中の磁性体微粒子の体積充填率
を限定した理由は、その体積充填率゛を42gb未満に
すると、高密度記録再生時の再生出力の向上を達成でき
なくなる。
In the present invention, the reason why the volume filling rate of the magnetic fine particles in the magnetic layer is limited is that if the volume filling rate is less than 42 gb, it becomes impossible to improve the reproduction output during high-density recording and reproduction.

本発明において、磁性体微粒子と共に磁性層を構成する
バインダ樹脂としては、例えば塩化ビニル−酢酸ビニル
共重合体、塩化ビニリデン系共重合体、アクリル酸エス
テル系共重合体、ポリビニルゾチラール系樹脂、ポリウ
レタン系樹脂、テリエステル系樹脂、セルロース誘導体
エポキシ樹脂或いはこれら2種以上の混合物などが用い
られる。また、磁性層中には前記磁性体微粒子やバイン
ダ樹脂の他に、分散剤、潤滑剤、研磨剤、帯電防止剤な
どの添加剤が必要に応じて適宜含ませることができる。
In the present invention, examples of the binder resin constituting the magnetic layer together with the magnetic fine particles include vinyl chloride-vinyl acetate copolymer, vinylidene chloride copolymer, acrylic ester copolymer, polyvinylzotyral resin, Polyurethane resins, terester resins, cellulose derivative epoxy resins, or mixtures of two or more of these resins are used. Further, in addition to the magnetic fine particles and the binder resin, additives such as a dispersant, a lubricant, an abrasive, and an antistatic agent can be appropriately contained in the magnetic layer as necessary.

本発明において、磁性粉の体積光てん率を4部チ以上と
する手段としては、磁性粉以外の添加剤の量を制御すれ
ばよい。磁気記録媒体の磁性層中においては磁性粉以外
では帯電防止剤としてのカーがンブラックの体積比率が
大きく、このカーボンブラックの量を制御すれば所望の
体積光てん率は容易に得られる。このように磁性層中の
添加物のうち、帯電防止のためのカーボンブラックは全
く除いてしまうか、おるいは少量のみとし、代シにカー
ボンブラック含有の下塗シ層あるい往バックコート層(
または下塗υ層およびパンクコート層)として設けるこ
とによシ、帯電対策を行なう。このようにすると六方晶
7工ライト磁性粒子として用いた磁気記録媒体において
は、バインダレジンの量を大幅に減少させることによシ
、磁性粒子の体積光てん率を高めることができ、しかも
塗膜強度とじて十分な値を保つことができる。本発明に
おいて少ないバインダ量で磁性粒子の体積光てん率が高
くなシ塗膜強度が得られる理由はまだ十分明らかでない
が、六方晶フェライトが板状粒子であるために粒子が互
いの板面を接しながら層状に重なることができる点が従
来の針状粒子と大きく異なる点と考えられる。
In the present invention, the volume optical content of the magnetic powder can be increased to 4 parts or more by controlling the amount of additives other than the magnetic powder. In the magnetic layer of a magnetic recording medium, carbon black as an antistatic agent has a large volume ratio other than magnetic powder, and a desired volumetric optical transmittance can be easily obtained by controlling the amount of carbon black. In this way, among the additives in the magnetic layer, carbon black for antistatic purposes is completely removed, or only a small amount is added, and the carbon black-containing undercoat layer or backcoat layer (
Alternatively, by providing it as an undercoat υ layer and puncture coat layer), antistatic measures are taken. In this way, in a magnetic recording medium using hexagonal hexagonal heptagonal light magnetic particles, the volume optical density of the magnetic particles can be increased by significantly reducing the amount of binder resin, and the coating film The strength can be maintained at a sufficient value. The reason why the present invention is able to obtain high volume optical density and coating film strength of magnetic particles with a small amount of binder is not yet fully clear, but since hexagonal ferrite is plate-shaped particles, the particles touch each other's plate surfaces. It is thought that the major difference from conventional acicular particles is that they can overlap in layers while being in contact with each other.

とうして磁気記録媒体の磁性層の磁性粒子の体積光てん
率を4部チ以上に高めることによ)、再生出力が著しく
向上することを見出した。このようにして得られた再生
出力の向上はこれまでの低体積光てん率領域における体
積光てん率と再生出力の関係からの推定値を大幅に上ま
わるものである。
It has been found that by increasing the volumetric optical density of the magnetic particles in the magnetic layer of a magnetic recording medium to 4 parts or more, the reproduction output can be significantly improved. The improvement in reproduction output obtained in this manner significantly exceeds the value estimated from the relationship between the volumetric light transmittance and the reproduction output in the low volumetric light transmittance region.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の詳細な説明する。なお、実施例中の部は
重量部を意味するものである。
Next, the present invention will be explained in detail. Note that parts in the examples mean parts by weight.

実施例1 まず、下記第1表にする量の六方晶バリウムフエライ)
 CoTi 置換体(平均粒径0.08μm1保磁力8
000e)、塩化ビニル−酢酸ビニル共重合体及びポリ
ウレタンと、酸化アルミニウム2部、潤滑剤1.5部、
メチルエチルケト760部、トルエン60部、シクロヘ
キサノン60部、硬化剤6部とからなる6種の磁性塗料
を調製した。
Example 1 First, hexagonal barium ferrite in the amount shown in Table 1 below.
CoTi substituted material (average particle size 0.08 μm 1 coercive force 8
000e), vinyl chloride-vinyl acetate copolymer and polyurethane, 2 parts of aluminum oxide, 1.5 parts of lubricant,
Six kinds of magnetic paints were prepared consisting of 760 parts of methyl ethyl keto, 60 parts of toluene, 60 parts of cyclohexanone, and 6 parts of a hardening agent.

次いで、各磁性塗料を厚さ1.5μmのポリエチレンテ
レフタレートフィルム上に塗布し、カレンダ処理、スリ
ッティングを行なって厚さ約3.5μmの磁性層を有す
る6種の磁気チーブを作製した。
Next, each magnetic paint was applied onto a polyethylene terephthalate film having a thickness of 1.5 μm, and calendering and slitting were performed to produce six types of magnetic chips each having a magnetic layer approximately 3.5 μm thick.

比較例 まず、下記第2表にする量の六方晶ノ々リウム7エライ
トCo Tl置換体(平均粒径0.08μm1保、磁力
 8000@)、塩化ビニル−酢酸ビニル共重合体、ポ
リウレタン及びカーがンブラックと、酸化アルミニウム
2部、潤滑剤1.5部、メチルエチルケトン60部、ト
ルエン60部、シクロヘキサノン60部、硬化剤6部と
からなる4種の磁性塗料を調製した。
Comparative Example First, hexagonal nororium 7-elite Co Tl-substituted product (average particle size 0.08 μm 1, magnetic force 8000@), vinyl chloride-vinyl acetate copolymer, polyurethane and carbon were used in the amounts shown in Table 2 below. Four kinds of magnetic paints were prepared, each consisting of black, 2 parts of aluminum oxide, 1.5 parts of lubricant, 60 parts of methyl ethyl ketone, 60 parts of toluene, 60 parts of cyclohexanone, and 6 parts of hardener.

次いで、前記各磁性塗料を厚さ1,5μmのポジエチレ
ンテレフタレートフィルム上に夫々塗布し、カレンダ処
理、スリッティングを行なって厚さ約3.5μmの磁性
層を有する4種の磁気テープを作製した。
Next, each of the magnetic paints was applied onto a 1.5 μm thick positive ethylene terephthalate film, and calendering and slitting were performed to produce four types of magnetic tapes each having a magnetic layer about 3.5 μm thick. .

しかして、本実施例1及び比較例1の各磁気テープにつ
いて磁性体微粒子の磁性層中の体積充填率を調べたとこ
ろ、下記第3表に示す結果を得た。また、各磁気テープ
について、記録再生出力を測定した。その結果を同第3
表に示した。なお、記録再生出力の測定は、ヘッドチー
ブ相対速度3.75 m/sec 、記録再生信号周波
数4MHz、記録ヘッド(ギャツ7’ 0.3μm、ト
ラック幅35μm1巻数18ターンのリングヘッド)の
条件で行なった。
When the volume filling factor of the magnetic fine particles in the magnetic layer of each of the magnetic tapes of Example 1 and Comparative Example 1 was investigated, the results shown in Table 3 below were obtained. Furthermore, the recording and reproducing output was measured for each magnetic tape. The results are shown in the same third column.
Shown in the table. The recording and reproducing output was measured under the conditions of a head chive relative speed of 3.75 m/sec, a recording and reproducing signal frequency of 4 MHz, and a recording head (Gatsu 7' 0.3 μm, a ring head with a track width of 35 μm and a number of turns of 18). .

一方、本実施例1及び比較例1の磁性体微粒子の体積充
填率と再生出力の関係を図示の特性図に示した。
On the other hand, the relationship between the volume filling rate of the magnetic fine particles of Example 1 and Comparative Example 1 and the reproduction output is shown in the illustrated characteristic diagram.

第 3 表 上記第3表及び図示した特性図から明らかな如く、六方
晶バリウムフエライ)CoT1置換体(磁性体微粒子)
の磁性層中での体積充填率が42%以上である本発明の
磁気テープは比較例のものに比べて再生出力が顕著に増
大していることがわかる。
Table 3 As is clear from the above Table 3 and the illustrated characteristic diagram, hexagonal barium ferrite) CoT1 substituted product (magnetic fine particles)
It can be seen that the magnetic tape of the present invention, in which the volume filling factor in the magnetic layer is 42% or more, has significantly increased reproduction output compared to the comparative example.

実施例2 六方晶バリウムフェライトCo Ti置換体として平均
粒子径が0.02μrIL〜0.15μmの範囲にある
5種のものを選び、これら磁性体微粒子を用いて実施例
1と同様な方法で磁性塗料を調製し、ポリエチレンテレ
フタレートフィルム上に体積充填率が47%にコントロ
ールした磁性層を形成し、5種の磁気チーブを作製した
Example 2 Five types of hexagonal barium ferrite Co Ti substituents with average particle diameters in the range of 0.02 μrIL to 0.15 μm were selected, and magnetic fine particles were used in the same manner as in Example 1 to make them magnetic. A coating material was prepared, a magnetic layer with a volume filling rate controlled to 47% was formed on a polyethylene terephthalate film, and five types of magnetic chips were produced.

比較例2 六方晶バリウムフェライトCo Ti置換体として平均
粒子径が0.01511m 、 0.20fimのもの
を選び、これら磁性体微粒子を用いて実施例1と同様な
方法で磁性塗料を調製し、ポリエチレンテレフタレート
フィルム上に体積充填率が47チとなるようにコントロ
ールした磁性層を形成し、2種の磁気テープを作製した
Comparative Example 2 Hexagonal barium ferrite CoTi substituted materials with average particle diameters of 0.01511 m and 0.20 fim were selected, and magnetic paint was prepared using these magnetic fine particles in the same manner as in Example 1, and polyethylene Two types of magnetic tapes were produced by forming a magnetic layer on a terephthalate film with a controlled volumetric filling rate of 47 cm.

しかして、本実施例2及び比較例2の各磁気テープにつ
いて再生出力及び変調ノイズを調べたところ、下記第4
表に示す結果を得た。
However, when we investigated the reproduction output and modulation noise for each magnetic tape of Example 2 and Comparative Example 2, we found that
The results shown in the table were obtained.

上記第4表から明らかな如く、本実施例2の磁気テープ
は再生出力、変調ノイズの点で良好な性能を示すことが
わかる。これに対し、平均粒子径が0.015μmの磁
性体微粒子を用いた磁気チー76(Hlll 6 )で
は再生出力が著しく低く、一方、平均粒子径が0.20
μmと大きい磁性体微粒子を用いた磁気テープでは変調
ノイズが著しく増大することがわかる。
As is clear from Table 4 above, the magnetic tape of Example 2 exhibits good performance in terms of reproduction output and modulation noise. On the other hand, the reproduction output of Magnetic Chee 76 (Hllll 6), which uses magnetic fine particles with an average particle size of 0.015 μm, is extremely low;
It can be seen that the modulation noise increases significantly in a magnetic tape using magnetic fine particles as large as μm.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば再生出力が高く、S
A比の高い高密度記録が可能で、しかも塗膜強度が高い
等の耐久性を有する磁気記録媒体を提供できる。
As detailed above, according to the present invention, the reproduction output is high and the S
It is possible to provide a magnetic recording medium that is capable of high-density recording with a high A ratio and has durability such as high coating film strength.

【図面の簡単な説明】[Brief explanation of the drawing]

図面性磁気テープにおける磁性層中の磁性体微粒子の体
積充填率と再生出力との関係を示す特性図である。 出願人代理人 弁理士 鈴 江 武 彦1庇・陛イ本餐
欠対子f)イト潴克蟻辛 (0ム)手続補正書 61轟、1o、先58 特許庁長官 志 賀 学 殿 1、事件の表示 特願昭59−63574号 2、発明の名称 磁気記録媒体 3、補正をする者 事件との関係 特許出願人 (307)株式会社 東芝 6 補正の対象 明細書 7、補正の内容 (1) 明細書中箱4頁18行目において、「体積充填
率を範囲」とあるを「体積充填率の範囲」と訂正する。 (2) 明細書中箱5頁17及び188行目かけて。 「オルシウムフェライト」とあるを「オルシウムフェラ
イト」と訂正する。 (3)明細書中箱6頁18及び199行目かけて。 「セルロース誘導体工Iキシ樹脂」とあるを「セルロー
ス誘導体、エポキシ樹脂」と訂正する。 (4) 明細書中箱8頁19行目において、「第1表に
する−1とあるを「第1表に示す」を訂正する。 (5)明細書中箱9真下から5行目、及び第10頁下か
ら1行目において、rl、5μm」と訂正する。
FIG. 3 is a characteristic diagram showing the relationship between the volume filling rate of magnetic fine particles in the magnetic layer and the reproduction output in a drawing magnetic tape. Applicant's representative Patent attorney Takehiko Suzue 1. His Majesty's Honshan Kazuko f) Katsutaka Ito (0mu) Procedural amendment 61 Todoroki, 1o, 58 Commissioner of the Patent Office Manabu Shiga 1, Indication of the case Japanese Patent Application No. 59-63574 2, Name of the invention Magnetic recording medium 3, Person making the amendment Relationship to the case Patent applicant (307) Toshiba Corporation 6 Specification to be amended 7, Contents of the amendment (1) ) In box 4, line 18 of the specification, the phrase "volume filling rate range" is corrected to "volume filling rate range." (2) Box 5, lines 17 and 188 of the specification. Correct "Olsium ferrite" to "Orsium ferrite". (3) In the specification box, page 6, lines 18 and 199. "Cellulose derivative engineering I xy resin" has been corrected to "cellulose derivative, epoxy resin." (4) In box 8, line 19 of the specification, correct the statement ``Show in Table 1-1'' instead of ``Show in Table 1.'' (5) In the 5th line from the bottom of box 9 in the specification and the 1st line from the bottom of page 10, the correction is made to ``rl, 5 μm''.

Claims (1)

【特許請求の範囲】[Claims] 支持体上に六方晶フェライトの磁性体微粒子を含有する
磁性層を設けてなる磁気記録媒体において、前記磁性体
微粒子の平均粒子径が0.02〜0.15μmで、かつ
磁性層中の磁性体微粒子の体積充填率が42チ以上であ
ることを特徴とする磁気記録媒体。
A magnetic recording medium comprising a magnetic layer containing hexagonal ferrite magnetic fine particles on a support, wherein the magnetic fine particles have an average particle diameter of 0.02 to 0.15 μm, and the magnetic layer includes a magnetic layer. A magnetic recording medium characterized in that the volume filling rate of fine particles is 42 inches or more.
JP59063574A 1984-03-31 1984-03-31 Magnetic recording medium Expired - Lifetime JPH07105033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063574A JPH07105033B2 (en) 1984-03-31 1984-03-31 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063574A JPH07105033B2 (en) 1984-03-31 1984-03-31 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60209928A true JPS60209928A (en) 1985-10-22
JPH07105033B2 JPH07105033B2 (en) 1995-11-13

Family

ID=13233156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063574A Expired - Lifetime JPH07105033B2 (en) 1984-03-31 1984-03-31 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07105033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134824A (en) * 1985-12-07 1987-06-17 Konishiroku Photo Ind Co Ltd Magnetic recording medium
DE102008037347A1 (en) * 2008-08-12 2010-02-25 Siemens Aktiengesellschaft Method and control device for controlling a sectional image recording system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586103A (en) * 1978-12-22 1980-06-28 Toshiba Corp High density magnetic recording unit
JPS5661101A (en) * 1979-10-24 1981-05-26 Toshiba Corp Magnetic recording medium
JPS60143429A (en) * 1983-12-29 1985-07-29 Fuji Photo Film Co Ltd Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586103A (en) * 1978-12-22 1980-06-28 Toshiba Corp High density magnetic recording unit
JPS5661101A (en) * 1979-10-24 1981-05-26 Toshiba Corp Magnetic recording medium
JPS60143429A (en) * 1983-12-29 1985-07-29 Fuji Photo Film Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134824A (en) * 1985-12-07 1987-06-17 Konishiroku Photo Ind Co Ltd Magnetic recording medium
DE102008037347A1 (en) * 2008-08-12 2010-02-25 Siemens Aktiengesellschaft Method and control device for controlling a sectional image recording system

Also Published As

Publication number Publication date
JPH07105033B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4874633A (en) Method of producing magnetic recording medium
JPS6111924A (en) Magnetic recording medium
JPS593723A (en) Magnetic recording medium
JP2644322B2 (en) Magnetic recording media
JP2581583B2 (en) Magnetic recording media
US4911997A (en) Magnetic recording medium
JPS60209928A (en) Magnetic recording medium
JPH0479054B2 (en)
JPH03701B2 (en)
JPH0935245A (en) Magnetic recording medium
JPH0765345A (en) Magnetic recording medium
JP2509558B2 (en) Magnetic powder for high density magnetic recording and magnetic recording medium using the same
JPS63259826A (en) Magnetic recording medium
JPS60171630A (en) Magnetic recording medium
JP2581587B2 (en) Magnetic recording media
JPH10326415A (en) Magnetic recording medium
JPH10326414A (en) Magnetic recording medium
JPS60125926A (en) Magnetic recording medium
JPS6032123A (en) Magnetic recording medium
JP2005004823A (en) Magnetic recording medium
JPH03278313A (en) Magnetic recording medium and its production
JPS6246432A (en) Magnetic recording medium
JP2002230736A (en) Magnetic recording medium
JPS61202332A (en) Magnetic recording medium
JPS62236133A (en) Horizontally oriented magnetic recording medium