JPS60209604A - Gas turbine stationary blade - Google Patents

Gas turbine stationary blade

Info

Publication number
JPS60209604A
JPS60209604A JP6592884A JP6592884A JPS60209604A JP S60209604 A JPS60209604 A JP S60209604A JP 6592884 A JP6592884 A JP 6592884A JP 6592884 A JP6592884 A JP 6592884A JP S60209604 A JPS60209604 A JP S60209604A
Authority
JP
Japan
Prior art keywords
blades
gas turbine
stationary blade
ceramic
superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6592884A
Other languages
Japanese (ja)
Inventor
Toshio Sakon
淑郎 佐近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6592884A priority Critical patent/JPS60209604A/en
Publication of JPS60209604A publication Critical patent/JPS60209604A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To contrive to decrease the cooling air by a method wherein only two blades at the both ends among stationary blade segments are integrally cast with a shroud, plural ceramic blades are fixed between those both end blades. CONSTITUTION:Only two blades 1 at the both ends among stationary blade segments are accurately and integrally cast with an inner shroud 4 and an outer shroud by a superalloy, plural ceramic blades 2 are fixed between those end blades. A cooling air which is not required for ceramic blades 2 is able to utilize for cooling of superalloy stationary blades 1, accordingly, the cooling air can be decreased.

Description

【発明の詳細な説明】 この発明はガスタービン静翼、ことにガスタービン静翼
セグメントの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas turbine stator vane, and more particularly to the structure of a gas turbine stator vane segment.

高温ガスタービン空冷静翼は従来、超合金の精密鋳造で
造られており、金属部の温度を極力低くするため、内部
から空気冷却している。一般にガスタービンの高効率化
を計るためにはガス温度を高める一方、冷却空気量は減
らす方が良いが、その場合には翼メタル温度が上昇し、
早期損傷につながる。
High-temperature gas turbine air-cooled blades have traditionally been made by precision casting of superalloys, and are air-cooled from within to keep the temperature of the metal parts as low as possible. Generally, in order to improve the efficiency of a gas turbine, it is better to increase the gas temperature while reducing the amount of cooling air, but in this case, the blade metal temperature increases,
leading to premature damage.

本ダ明は上記の状況に鑑み、少ない冷却空気でも、冷却
効率を低下させぬようにする、あるいは、空気量を変え
ずに冷細効率を上げることを目的とする。
In view of the above situation, the present invention aims to prevent the cooling efficiency from decreasing even with a small amount of cooling air, or to increase the cooling efficiency without changing the amount of air.

本発明は、内シュラウドと外シュラウドとその間の複数
の翼とを一体鋳造したガスタービン静翼セグメントにお
いて、このセグメントの両端のふたつの翼のみを金属に
よシ両シュラウドと共に一体鋳造し、これら両端の翼間
の空間に複数のセラミック表具を取付けてなるガスター
ビン静翼にある。
The present invention provides a gas turbine stationary blade segment in which an inner shroud, an outer shroud, and a plurality of blades therebetween are integrally cast. A gas turbine stationary blade has a plurality of ceramic fittings installed in the space between the blades.

以下、本発明を添付図面に例示したその好適な実施例に
よシ詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to preferred embodiments thereof, which are illustrated in the accompanying drawings.

高温ガスタービン静翼は第1図に示すようなセグメント
を連続並置して形成するが、このひとつひとつのセグメ
ントは内シュラウド4と外シュラウド3とこれらの間に
設けられる翼とを超合金の精密鋳造で一体鋳造している
。さて本発明によれば、まずこのセグメントの両端の静
翼1.1のみを残し、その中間の静翼は欠除した状態で
内外シュラウド4.3と共に超合金の精密鋳造で一体鋳
造する。この際超合金製の静翼1.1には従来とおシ空
冷構造とすることはもちろんである。
High-temperature gas turbine stationary blades are formed by consecutively juxtaposing segments as shown in Figure 1, and each segment consists of an inner shroud 4, an outer shroud 3, and a blade provided between them made of precision cast superalloy. It is cast in one piece. According to the present invention, first, only the stator blades 1.1 at both ends of this segment are left, and the intermediate stator blades are removed, and the inner and outer shrouds 4.3 are integrally cast by precision casting of superalloy. In this case, it goes without saying that the stator blade 1.1 made of superalloy has an air-cooled structure as compared to the conventional one.

さて、前述の欠除せしめた中間の静翼はセラミック材料
で別に製作する。これには空冷構造を採用せず無冷却方
式である。これを超合金一体鋳造のセグメントに嵌め込
んで取付けるのであシ、その取付けた状態を第1図に符
号2で示しである。
Now, the intermediate stator vane mentioned above is separately manufactured from a ceramic material. This is a non-cooling system that does not employ an air-cooled structure. This is installed by fitting it into a superalloy integrally cast segment, and its installed state is shown by reference numeral 2 in FIG.

セラミック静翼2の取付を第2図を参照しさらに説明す
る。
The attachment of the ceramic stator blade 2 will be further explained with reference to FIG. 2.

第2図は第1図の中央の部分のみのく超合金静翼1を除
く)拡大縦断面図であって、セラミック静翼2の取付構
造がよく示されている。この図から明かなように、外シ
ュラウド3には断面逆円錐の溝5を設け、セラミック静
翼2の断面円錐形の頭部6を前記溝に挿入し、セラミッ
ク静翼2の先端7を内シュラウド4の溝8に挿入しであ
る。外シュラウド3の外側にはカバー9をポルト10に
よシ取伺け、セラミック静翼2の頭部6と前記カバー9
との間にはコイルばね11が設けである。
FIG. 2 is an enlarged longitudinal cross-sectional view of only the center portion of FIG. 1 (excluding the superalloy stator vane 1), and clearly shows the mounting structure of the ceramic stator vane 2. As is clear from this figure, the outer shroud 3 is provided with a groove 5 having an inverted conical cross section, the head 6 of the ceramic stator blade 2 having a conical cross section is inserted into the groove, and the tip 7 of the ceramic stator blade 2 is inserted into the groove. It is inserted into the groove 8 of the shroud 4. A cover 9 is placed on the outside of the outer shroud 3 by a port 10, and the head 6 of the ceramic stator vane 2 and the cover 9
A coil spring 11 is provided between the two.

このコイルばね11の付勢力によシセラミック静翼2は
下方に押し付けられている。
The ceramic stationary blade 2 is pressed downward by the biasing force of the coil spring 11.

セラミック静翼は剛高温強度が高い、すなわち高温に耐
え、かつ高温下での強度が犬であるのて、無冷却でよい
。又セラミック静翼2と超合金の外シュラウド3とは高
温下においては熱膨張差によシその頭部6と溝5との間
がずれる。しかし上述のように頭部6をコイルばね11
によシ押し込むので頭部6のテーパと溝5のテーパとが
密着し、セラミック静翼2が外シュラウド3から緩むこ
とがない。
Ceramic stator blades have high rigidity and high temperature strength, that is, they can withstand high temperatures and have excellent strength at high temperatures, so they do not need to be cooled. Furthermore, at high temperatures, the ceramic stator vane 2 and the superalloy outer shroud 3 are misaligned between their heads 6 and grooves 5 due to a difference in thermal expansion. However, as mentioned above, the head 6 is connected to the coil spring 11.
Since it is pushed in firmly, the taper of the head 6 and the taper of the groove 5 come into close contact, and the ceramic stator vane 2 does not come loose from the outer shroud 3.

本発明によシ、セラミック静翼では冷却空気が不要にな
る分だけ超合金の静翼1に冷却空気を振り向けることが
てきるため静翼1のメタル翼温度を低減できる。冷却効
率を一定とすれば冷却空気量を少なくすることができる
。又セラミック静翼を、コイルばねにより押圧している
ので金属の熱膨張があってもセラミック静翼を強固に保
持することができる。
According to the present invention, the temperature of the metal blade of the stator blade 1 can be reduced because cooling air can be directed to the superalloy stator blade 1 to the extent that the ceramic stator blade does not require cooling air. If the cooling efficiency is kept constant, the amount of cooling air can be reduced. Furthermore, since the ceramic stator vanes are pressed by the coil springs, the ceramic stator vanes can be firmly held even if there is thermal expansion of the metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガスタービン静翼セiメントの斜視図
、第2図はその要部の縦断正面図である。 1・・超金属静翼、2・・セラミック静翼、3・・外シ
ュラウド、4番・内シュラウド、5・・溝、6・・頭部
、7・・先端、8・・溝、9−・カバー、10・・ボル
ト、11・・コイルばね。 第1図 第こ図
FIG. 1 is a perspective view of a gas turbine stationary blade cement according to the present invention, and FIG. 2 is a longitudinal sectional front view of the main parts thereof. 1. Super metal stator vane, 2. Ceramic stator vane, 3. Outer shroud, 4. Inner shroud, 5. Groove, 6. Head, 7. Tip, 8. Groove, 9-・Cover, 10... Bolt, 11... Coil spring. Figure 1 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 内シュラウドと外シュラウドとその間の複数の翼とを一
体鋳造したガスタービン静翼セグメントにおいて、この
セグメントの両端のふたつの翼のみを金属によシ両シュ
ラウドと共に一体鋳造し、これら両端の翼間の空間に複
数のセラミック表具を取付けてなるガスタービン静翼。
In a gas turbine stator vane segment in which an inner shroud, an outer shroud, and a plurality of blades in between are integrally cast, only the two blades at both ends of this segment are integrally cast in metal together with both shrouds, and the gap between the blades at both ends is A gas turbine stationary blade is made up of multiple ceramic fittings installed in a space.
JP6592884A 1984-04-04 1984-04-04 Gas turbine stationary blade Pending JPS60209604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6592884A JPS60209604A (en) 1984-04-04 1984-04-04 Gas turbine stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6592884A JPS60209604A (en) 1984-04-04 1984-04-04 Gas turbine stationary blade

Publications (1)

Publication Number Publication Date
JPS60209604A true JPS60209604A (en) 1985-10-22

Family

ID=13301111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6592884A Pending JPS60209604A (en) 1984-04-04 1984-04-04 Gas turbine stationary blade

Country Status (1)

Country Link
JP (1) JPS60209604A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085342A (en) * 2005-09-19 2007-04-05 General Electric Co <Ge> Seal-less cmc blade/platform border plane
JP2007255224A (en) * 2006-03-20 2007-10-04 Mitsubishi Heavy Ind Ltd Turbine blade and gas turbine
US20100124493A1 (en) * 2008-11-14 2010-05-20 Alstom Technology Ltd. Multi-vane segment design and casting method
JP2011144805A (en) * 2010-01-14 2011-07-28 General Electric Co <Ge> Turbine nozzle assembly
WO2014107217A1 (en) * 2012-12-21 2014-07-10 General Electric Company Hybrid turbine nozzle
US20150093249A1 (en) * 2013-09-30 2015-04-02 MTU Aero Engines AG Blade for a gas turbine
EP3339575A1 (en) * 2016-11-17 2018-06-27 United Technologies Corporation Airfoil with tie member and spring
FR3078100A1 (en) * 2018-02-16 2019-08-23 Safran Aircraft Engines AUBAGEE CROWN FOR TURBOMACHINE STATOR, WHOSE AUBES ARE CONNECTED TO THE EXTERNAL VIROLE BY CONICAL SUPPORT AND FRANGIBLE PIONEER
WO2019240754A3 (en) * 2018-06-11 2020-02-06 Siemens Aktiengesellschaft Composite ceramic and metallic vane for combustion turbine engine
CN112523820A (en) * 2019-09-17 2021-03-19 通用电气波兰有限公司 Turbine engine assembly
GB2555211B (en) * 2016-08-29 2021-10-20 Safran Aircraft Engines Turbomachine vane provided with a structure reducing the risk of cracks

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085342A (en) * 2005-09-19 2007-04-05 General Electric Co <Ge> Seal-less cmc blade/platform border plane
EP1764481A3 (en) * 2005-09-19 2008-12-17 General Electric Company Stator vane with ceramic airfoil and metallic platforms
JP2007255224A (en) * 2006-03-20 2007-10-04 Mitsubishi Heavy Ind Ltd Turbine blade and gas turbine
US20100124493A1 (en) * 2008-11-14 2010-05-20 Alstom Technology Ltd. Multi-vane segment design and casting method
US8371808B2 (en) * 2008-11-14 2013-02-12 Alstom Technology Ltd Multi-vane segment design and casting method
JP2011144805A (en) * 2010-01-14 2011-07-28 General Electric Co <Ge> Turbine nozzle assembly
WO2014107217A1 (en) * 2012-12-21 2014-07-10 General Electric Company Hybrid turbine nozzle
CN104870754A (en) * 2012-12-21 2015-08-26 通用电气公司 Hybrid turbine nozzle
EP2853688A3 (en) * 2013-09-30 2015-07-22 MTU Aero Engines GmbH Blade for a gas turbine
US20150093249A1 (en) * 2013-09-30 2015-04-02 MTU Aero Engines AG Blade for a gas turbine
GB2555211B (en) * 2016-08-29 2021-10-20 Safran Aircraft Engines Turbomachine vane provided with a structure reducing the risk of cracks
EP3339575A1 (en) * 2016-11-17 2018-06-27 United Technologies Corporation Airfoil with tie member and spring
US10428663B2 (en) 2016-11-17 2019-10-01 United Technologies Corporation Airfoil with tie member and spring
FR3078100A1 (en) * 2018-02-16 2019-08-23 Safran Aircraft Engines AUBAGEE CROWN FOR TURBOMACHINE STATOR, WHOSE AUBES ARE CONNECTED TO THE EXTERNAL VIROLE BY CONICAL SUPPORT AND FRANGIBLE PIONEER
US10907489B2 (en) 2018-02-16 2021-02-02 Safran Aircraft Engines Vaned ring for turbomachine stator having vanes connected to an outer shell by conical seating and frangible pin
WO2019240754A3 (en) * 2018-06-11 2020-02-06 Siemens Aktiengesellschaft Composite ceramic and metallic vane for combustion turbine engine
CN112523820A (en) * 2019-09-17 2021-03-19 通用电气波兰有限公司 Turbine engine assembly
US11846193B2 (en) 2019-09-17 2023-12-19 General Electric Company Polska Sp. Z O.O. Turbine engine assembly
CN112523820B (en) * 2019-09-17 2024-01-23 通用电气波兰有限公司 Turbine engine assembly

Similar Documents

Publication Publication Date Title
US4786234A (en) Turbine airfoil
US5248240A (en) Turbine stator vane assembly
US5222865A (en) Platform assembly for attaching rotor blades to a rotor disk
EP2758634B1 (en) Impingement cooling of turbine blades or vanes
JP4713423B2 (en) Oblique tip hole turbine blade
JP4948797B2 (en) Method and apparatus for cooling a gas turbine engine rotor blade
US8162617B1 (en) Turbine blade with spar and shell
JP4731238B2 (en) Apparatus for cooling a gas turbine engine rotor blade
EP1502009B1 (en) Attachment of a ceramic shroud in a metal housing
US8052389B2 (en) Internally cooled airfoils with load carrying members
US5358379A (en) Gas turbine vane
EP0916811B1 (en) Ribbed turbine blade tip
US3899267A (en) Turbomachinery blade tip cap configuration
US6602048B2 (en) Gas turbine split ring
CA2613790C (en) Crowned rails for supporting arcuate components
US20030002979A1 (en) Hybrid turbine nozzle
JPS60209604A (en) Gas turbine stationary blade
EP1101898B1 (en) Gas turbine blade
JPH0151883B2 (en)
US4180371A (en) Composite metal-ceramic turbine nozzle
EP1106280A1 (en) Core to control turbine bucket wall thickness and method
CA2264076C (en) Gas turbine moving blade tip shroud
US5706647A (en) Airfoil structure
EP0502660A1 (en) Platform assembly for attaching rotor blades to a rotor disk
EP3976930B1 (en) Turbine blade with serpentine channels