JPS60209399A - Radiational cooler - Google Patents

Radiational cooler

Info

Publication number
JPS60209399A
JPS60209399A JP6699084A JP6699084A JPS60209399A JP S60209399 A JPS60209399 A JP S60209399A JP 6699084 A JP6699084 A JP 6699084A JP 6699084 A JP6699084 A JP 6699084A JP S60209399 A JPS60209399 A JP S60209399A
Authority
JP
Japan
Prior art keywords
cooling plate
detector
infrared
support
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6699084A
Other languages
Japanese (ja)
Other versions
JPH0228520B2 (en
Inventor
中谷 光雄
昌幸 安藤
植田 隆一
哲夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6699084A priority Critical patent/JPS60209399A/en
Publication of JPS60209399A publication Critical patent/JPS60209399A/en
Publication of JPH0228520B2 publication Critical patent/JPH0228520B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は人工衛星に搭載された赤外線検知器を動作温度
に冷却するための放射冷却器の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an improvement in a radiation cooler for cooling an infrared detector onboard an artificial satellite to an operating temperature.

(至)技術の背景 最近の資源探査衛星に搭載される赤外線カメラ用の赤外
線検知器にはHgCdTθ等の多元半導体から成る光電
子型検知素子が用いられている。これらは高感度であり
応答速度も早いけれども信頼性の高い観測データを得る
ためには地球が放射する赤外線を正確に該検知器へ導入
する必要がある。
(To) Background of the Technology Photoelectronic detection elements made of multi-component semiconductors such as HgCdTθ are used in infrared detectors for infrared cameras mounted on recent resource exploration satellites. Although these have high sensitivity and fast response speed, in order to obtain reliable observation data, it is necessary to accurately introduce infrared rays emitted by the earth into the detector.

このため真空かつ超低温(4’K )環境下の宇宙空間
においても安定性の高い赤外線検知器の位置制御機構を
有する放射冷却器の開発が強く要望されている。
Therefore, there is a strong demand for the development of a radiation cooler having a position control mechanism for an infrared detector that is highly stable even in outer space in a vacuum and ultra-low temperature (4'K) environment.

(Q) 従来技術と問題点 第1図は放射冷却器の位置づけと構成の概要を説明する
ための図、第2図は従来の赤外線検知器が付設された冷
却板の位置制御機構を説明するための図であって(a)
は側断面図、(至)はY−Y’矢視図である。第1図に
おいてlは地球、2は人工衛星、8はミラー、4は赤外
線検知器、5は冷却板、5′は冷却板の放熱面、6は反
射板、7はシールド板、8は地球放射熱、8′は地球ア
ルベド、9は赤外線を示す。また第2図において10は
ケース、11はサポータ、12は冷却板支持線、15は
ピン。
(Q) Prior art and problems Figure 1 is a diagram for explaining the positioning and outline of the configuration of a radiation cooler, and Figure 2 is for explaining the position control mechanism of a conventional cooling plate equipped with an infrared detector. This is a diagram for (a)
is a side sectional view, and (to) is a Y-Y' arrow view. In Figure 1, l is the earth, 2 is the artificial satellite, 8 is the mirror, 4 is the infrared detector, 5 is the cooling plate, 5' is the heat radiation surface of the cooling plate, 6 is the reflector, 7 is the shield plate, and 8 is the earth. radiant heat, 8' indicates earth albedo, and 9 indicates infrared radiation. In FIG. 2, 10 is a case, 11 is a supporter, 12 is a cooling plate support line, and 15 is a pin.

40は赤外線検知器4.冷却板59反射板6.シー7レ
ド板7を具備した放射冷却器、60は宇宙空間をそれぞ
れ示している。
40 is an infrared detector 4. Cooling plate 59 Reflector plate 6. A radiation cooler equipped with a sea 7 lead plate 7, and 60 each indicate outer space.

第1図に示す如く放射冷却器40は、人工衛星2の一側
面に搭載されていて地球1から放射された赤外線9を衛
星2に付設されているミラー3を介して矢印入方向から
入射する赤外線検知器4と、該検知器4が取付けられた
面を前記衛星2側に向け、その反対面を放熱面5′とし
て宇宙空間50側へ向けた冷却板5と、該冷却板5の外
周端から前記宇宙空間50側へ拡開形成された反射板6
と、該反射板6の拡開形成された外周端から一方がさら
に前記宇宙空間50側へ拡開形成され他方が前記冷却板
5と反射板6を蔽うように形成されたシー7レド板7と
を具備して成る。そして前記検知器4は前記放熱面5′
を環境温度4°にの宇宙空間50側へ向けて放熱する前
記冷却板5によっ上作動温度100’にの超低温に冷却
される。また該検知器4の冷却を阻害するたとえば矢印
E方向からの地球放射熱8は前記反射板6によって反射
して前記宇宙空間50側へ矢印E′のように放射され、
矢印F方向からの地球アルベド8′は前記シールド板7
によって前記冷却板5方向への侵入をストップさせられ
るようになっている。このように前記放射冷却器40に
よって100’に程度の作動温度を維持する検知器4に
よって赤外線9が観測され、これが図示しない地球上の
基地に設置された赤外線画像解析装置に送られて解析さ
れ地球上の資源の状態が探査されることになる。
As shown in FIG. 1, the radiation cooler 40 is mounted on one side of the artificial satellite 2 and receives infrared rays 9 emitted from the earth 1 from the direction indicated by the arrow through a mirror 3 attached to the satellite 2. An infrared detector 4, a cooling plate 5 with the surface on which the detector 4 is attached facing the satellite 2 side and the opposite surface facing the outer space 50 side as a heat radiation surface 5', and the outer periphery of the cooling plate 5. A reflector plate 6 formed to expand from the end toward the outer space 50 side.
And, from the expanded outer peripheral end of the reflector plate 6, one side is further expanded toward the outer space 50 side, and the other side is formed so as to cover the cooling plate 5 and the reflector plate 6. It is equipped with the following. The detector 4 is connected to the heat radiation surface 5'.
The cooling plate 5 radiates heat toward outer space 50, which has an environmental temperature of 4°, and is cooled to an ultra-low temperature of 100', an upper operating temperature. Further, the earth's radiant heat 8 from the direction of the arrow E, which obstructs the cooling of the detector 4, is reflected by the reflector plate 6 and radiated toward the outer space 50 as shown by the arrow E'.
The earth albedo 8' from the direction of arrow F is the shield plate 7.
This makes it possible to stop the intrusion toward the direction of the cooling plate 5. Infrared rays 9 are observed by the detector 4, which is maintained at an operating temperature of about 100' by the radiation cooler 40, and are sent to an infrared image analysis device installed at a base on earth (not shown) and analyzed. The state of the earth's resources will be explored.

第2図は赤外線検知器4の冷却効率を上げるため該検知
器4が付設されているヒートシンクを含んだ冷却板5を
断熱的に支持する従来の構造を示す図である。第2図に
示す如く、該構造は前記冷却板5の両側面各4隅付近に
設けたピン15と、反射板6の衛星2側に前記冷却板5
を蔽うように形成されたケース10の両側面各4隅に設
けたサポータ11との間に伸張した8本の冷却板支持線
12とで構成されていて、該支持線12のそれぞれの長
さlを調節することによって前記冷却板5に付設された
前記検知器4の矢印x−x’、y−y7゜z −z’力
方向らびに矢印R−R’力方向位置が制御され赤外線9
が的確に前記検知器4へ入射するように調整されるよう
になっている。しかしながらこの構造では衛星2が宇宙
へ打ち上げられたとき、地上とは全く異なる環境(真空
、4’K)に対応しきれず、たとえば各部材の膨張係数
差の影響で前記支持線12の伸張度のバランヌが崩れ前
記冷却板5の、したがって前記赤外線検知器4の位置が
不安定なものとなり前記検知器4による赤外線9の観測
信頼性の劣化が憂慮されていた。
FIG. 2 is a diagram showing a conventional structure that adiabatically supports a cooling plate 5 including a heat sink to which the infrared detector 4 is attached in order to increase the cooling efficiency of the infrared detector 4. As shown in FIG.
It consists of eight cooling plate support lines 12 extending between supports 11 provided at each of the four corners on both sides of a case 10 formed to cover the case 10, and the length of each support line 12 is By adjusting 1, the force directions of the detector 4 attached to the cooling plate 5 are controlled in the direction of the arrows x-x', y-y7゜z-z' and the position of the force in the direction of the arrows R-R'.
is adjusted so that it is accurately incident on the detector 4. However, with this structure, when the satellite 2 is launched into space, it cannot cope with the environment (vacuum, 4'K) that is completely different from that on the ground. The Balanne collapses, making the position of the cooling plate 5 and, therefore, the infrared detector 4 unstable, and there is concern that the reliability of observation of the infrared rays 9 by the detector 4 will deteriorate.

(1)発明の目的 本発明は前記従来の欠点を是正するためになされたもの
で宇宙空間においても常に安定的に動作する放射冷却器
用の検知器支持機構全提供することを目的とするもので
ある。
(1) Purpose of the Invention The present invention was made in order to correct the above-mentioned conventional drawbacks, and its purpose is to provide a complete detector support mechanism for a radiation cooler that always operates stably even in outer space. be.

(θ) 発明の構成 そしてこの目的は本発明によれば人工衛星に搭載されて
対象からの赤外線を受光する赤外線検知器と、該検知器
を支持するとともに、宇宙空間側へ向けた放熱面を有す
る冷却板と、該冷却板をケース内に断熱的に支持するた
めの複数の冷却板支持線とを具備した放射冷却器におい
て、前記冷却板支持線に、支持線調整機構を付設したこ
とを特徴とする放射冷却器を提供することによって達成
される。
(θ) Structure and purpose of the invention According to the present invention, there is provided an infrared detector mounted on an artificial satellite to receive infrared rays from an object, and a heat dissipating surface that supports the detector and faces toward outer space. In a radiation cooler equipped with a cooling plate and a plurality of cooling plate support lines for adiabatically supporting the cooling plate in a case, a support line adjustment mechanism is attached to the cooling plate support line. This is achieved by providing a radiant cooler with special features.

(f) 発明の実施例 以下本発明の実施例を図面によって詳述する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

ただし本発明は赤外線検知器が付設された冷却板の支持
機構の改良に関するものであるから本発明とは無関係な
全体構成の説明および前回と重複する説明は適宜省略す
る。
However, since the present invention relates to an improvement of a support mechanism for a cooling plate to which an infrared detector is attached, explanations of the overall configuration unrelated to the present invention and explanations that overlap with the previous explanations will be omitted as appropriate.

第8図は本発明による赤外線検知器が付設された冷却板
の支持機構を説明するための図である。
FIG. 8 is a diagram for explaining a support mechanism for a cooling plate provided with an infrared detector according to the present invention.

同図において第1図、第2図と同専の部分については同
一符号を付しており、21はケース10に設けたボス、
22は座金状軸受、28はコイμばね、24は支持線調
整ねじ、25は座付ナツト、30は座金状軸受22.コ
イルばね28.支持線調整ねじ24.座付ナツト25を
具備した支持線調整機構をそれぞれ示す。
In this figure, the same parts as in FIGS. 1 and 2 are given the same reference numerals, and 21 is a boss provided on the case 10;
22 is a washer-shaped bearing, 28 is a coil μ spring, 24 is a support line adjustment screw, 25 is a seat nut, 30 is a washer-shaped bearing 22. Coil spring 28. Support line adjustment screw 24. Each of the support line adjustment mechanisms equipped with a seat nut 25 is shown.

第3図に示す如く本発明による冷却板の支持機構は、前
述したように前第2図で示した冷却板5會支持している
8本の冷却板支持線12のそれぞれに座金状軸受22.
コイルばね23.支持線調整ねじ24.座付ナツト25
を具備して成る支持線調整機構80を付設した点に特徴
がある。そして該調整機構30は、ケース10に設けら
れたボス21に一方の面を当接させた座金状軸受22と
、該軸受22の中心部を貫通し前記冷却板5に接近した
一方の端部に冷却板支持線12が固定され他方に座付ナ
ツト25が螺入された支持線調整ねじ24および該調整
ねじ24を取巻きかつ前記軸受22と前記座付ナツト2
5に挾持されるように配向へ回転させることによって前
記冷却板支持線12は前記冷却板5を矢印H−H’力方
向移動させる。
As shown in FIG. 3, the cooling plate support mechanism according to the present invention has a washer-like bearing 22 mounted on each of the eight cooling plate support lines 12 supporting the five cooling plates shown in FIG. ..
Coil spring 23. Support line adjustment screw 24. Nut with seat 25
It is characterized by the addition of a support line adjustment mechanism 80 comprising the following. The adjustment mechanism 30 includes a washer-shaped bearing 22 whose one side is in contact with a boss 21 provided in the case 10, and one end which passes through the center of the bearing 22 and approaches the cooling plate 5. A support wire adjustment screw 24 having a cooling plate support wire 12 fixed thereto and a seat nut 25 screwed into the other end, and a support wire adjustment screw 24 that surrounds the adjustment screw 24 and is connected to the bearing 22 and the seat nut 2.
5, the cooling plate support wire 12 moves the cooling plate 5 in the direction of the arrow H-H' force.

そして該操作を8本すべての前記支持線12に対して順
次実施することによって前記冷却板5は(前第2図参照
)X−X’、 Y−Y’、 z−zj、 R−R’の各
方向へ移動し該冷却板5に取付けられている前記赤外線
検知器4は、前記衛星2側から矢印六方向に入射する前
記赤外線9を的確に受光する位置に設定される。また地
上と宇宙空間50との環境差に起因する該宇宙空間50
における前記支持線12の馳緩または緊張過度現象によ
って生じる前記検知器4の位置ズレは前記支持線調整機
構80に具備されている前記コイルばね28によって吸
収緩和されるため前記検知器4の環境変化による位置ズ
レ現象はほぼ完全に回避され該赤外線検知器4は長期間
にわたって安定した機能を発揮することができる。
By sequentially performing this operation on all eight support wires 12, the cooling plate 5 (see the previous figure 2) has the following characteristics: X-X', Y-Y', z-zzj, R-R' The infrared detector 4, which moves in each direction and is attached to the cooling plate 5, is set at a position where it can accurately receive the infrared rays 9 incident from the satellite 2 in the six directions of arrows. In addition, the outer space 50 due to the environmental difference between the ground and the outer space 50
The positional deviation of the detector 4 caused by loosening or overtensioning of the support wire 12 is absorbed and alleviated by the coil spring 28 provided in the support wire adjustment mechanism 80. The phenomenon of positional deviation caused by this is almost completely avoided, and the infrared detector 4 can exhibit stable functions over a long period of time.

(2)発明の効果 以上詳細に説明したように本発明の放射冷却器は人工衛
星に搭載された赤外線検知器の位置と姿勢を宇宙空間に
おいても地上と同様に的確に維持し得るといった効果大
なるものである。
(2) Effects of the Invention As explained in detail above, the radiation cooler of the present invention has a great effect in that the position and attitude of an infrared detector mounted on an artificial satellite can be accurately maintained in space as well as on the ground. It is what it is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は放射冷却器の構成を説明するための図、第2図
は従来の赤外線検知器が付設された冷却板の位置制御機
構を説明するための図、第8図は本発明による赤外線検
知器が付設された冷却板の位置制御機構を説明するため
の図である。 図面において1は地球、2は人工衛星、8はミラー、4
は赤外線検知器、5は冷却板、6は反射板、7はシール
ド板%8は地球放射熱、9は赤外線、10はケース、1
1はサポータ、12は冷却板支持線、15はピン、21
はケース10に設けたボス、22は座金状軸受、28は
コイルばね、24は支持線調整ねじ、25は座付ナツト
、8゜は支持線調整機構、40は放射冷却器、50は宇
宙空間をそれぞれ示す。 第11ff1 0 第2図 (CI) (b) iテ=ニ≠=― 特開昭GO−209399(4) 第3図 1) 11\−拍fl+ ′: 箇−m−−で 1、
Fig. 1 is a diagram for explaining the configuration of a radiation cooler, Fig. 2 is a diagram for explaining a position control mechanism of a cooling plate equipped with a conventional infrared detector, and Fig. 8 is an infrared radiation cooler according to the present invention. It is a figure for explaining the position control mechanism of the cooling plate to which the detector was attached. In the drawing, 1 is the earth, 2 is the satellite, 8 is the mirror, and 4
is an infrared detector, 5 is a cooling plate, 6 is a reflector, 7 is a shield plate%8 is earth radiant heat, 9 is infrared rays, 10 is a case, 1
1 is a supporter, 12 is a cooling plate support line, 15 is a pin, 21
is a boss provided on the case 10, 22 is a washer-shaped bearing, 28 is a coil spring, 24 is a support wire adjustment screw, 25 is a seat nut, 8° is a support wire adjustment mechanism, 40 is a radiation cooler, 50 is outer space are shown respectively. 11ff1 0 Figure 2 (CI) (b) ite=ni≠=- JP-A-Sho GO-209399 (4) Figure 3 1) 11\-beat fl+': 1 at -m--

Claims (1)

【特許請求の範囲】[Claims] 人工衛星に搭載されて対象からの赤外線を受光する赤外
線検知器と、該検知器を支持するとともに、宇宙空間側
へ向けた放熱面を有する冷却板と、該冷却板をケース内
に断熱的に支持するための複数の冷却仮支持線とを具備
した放射冷却器において、前記冷却板支持線に支持線調
整機構を付設したことを特徴とする放射冷却器。
An infrared detector mounted on an artificial satellite to receive infrared rays from a target, a cooling plate that supports the detector and has a heat radiation surface facing toward outer space, and the cooling plate is heat-insulated within a case. What is claimed is: 1. A radiation cooler comprising a plurality of temporary cooling support lines for supporting the cooling plate, characterized in that a support line adjustment mechanism is attached to the cooling plate support line.
JP6699084A 1984-04-03 1984-04-03 Radiational cooler Granted JPS60209399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6699084A JPS60209399A (en) 1984-04-03 1984-04-03 Radiational cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6699084A JPS60209399A (en) 1984-04-03 1984-04-03 Radiational cooler

Publications (2)

Publication Number Publication Date
JPS60209399A true JPS60209399A (en) 1985-10-21
JPH0228520B2 JPH0228520B2 (en) 1990-06-25

Family

ID=13331956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6699084A Granted JPS60209399A (en) 1984-04-03 1984-04-03 Radiational cooler

Country Status (1)

Country Link
JP (1) JPS60209399A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048978A (en) * 1973-05-04 1975-05-01
JPS51105774U (en) * 1975-02-21 1976-08-24
JPS5544406A (en) * 1978-09-20 1980-03-28 Hitachi Ltd Elevator compensation cable retaining device
JPS5749872U (en) * 1980-09-03 1982-03-20
JPS57182600U (en) * 1981-05-09 1982-11-19

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH550409A (en) * 1972-10-12 1974-06-14 Contraves Ag ACCUMULATING RADAR ECHO DETECTOR.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048978A (en) * 1973-05-04 1975-05-01
JPS51105774U (en) * 1975-02-21 1976-08-24
JPS5544406A (en) * 1978-09-20 1980-03-28 Hitachi Ltd Elevator compensation cable retaining device
JPS5749872U (en) * 1980-09-03 1982-03-20
JPS57182600U (en) * 1981-05-09 1982-11-19

Also Published As

Publication number Publication date
JPH0228520B2 (en) 1990-06-25

Similar Documents

Publication Publication Date Title
CA1065439A (en) Optical sensors
FI48880C (en) A device for concentrating and transmitting the radiation flux received by a converging optical system.
US3448273A (en) Plurality of photosensitive cells on a pyramidical base for planetary trackers
US2458654A (en) System for and method of utilizing microwave radiation from the sun
US3175089A (en) Photosensitive tracking apparatus using a grid position indicator
US3751664A (en) Infrared detector system
JPS60209399A (en) Radiational cooler
US3493294A (en) Retrodirective modulator
US6204502B1 (en) Heat radiation detection device and presence detection apparatus using same
US3243805A (en) Zenith tracking radar
JPS6033120Y2 (en) radiant cooler
US3443110A (en) Scanner having rotating double-sided reflector
US4775792A (en) Strip of infra-red detectors comprising a cold screen with a constant viewing angle
RU162322U1 (en) HEAT DETECTOR
JPS5952385B2 (en) transmitting device
JP2597665B2 (en) Sun sensor
US2818564A (en) Refractive antenna system
US3878393A (en) Selective emitter offset radiation source for compensating radiation detectors for selective radiation emitted therefrom
JPH0119448Y2 (en)
JPH033154B2 (en)
JPH0119449Y2 (en)
US2864083A (en) Directional antenna with conical scanning
JPS6333760Y2 (en)
JPH0239227Y2 (en)
JPH022759B2 (en)