JPS60208525A - Control on operation of pump dredger - Google Patents

Control on operation of pump dredger

Info

Publication number
JPS60208525A
JPS60208525A JP6474384A JP6474384A JPS60208525A JP S60208525 A JPS60208525 A JP S60208525A JP 6474384 A JP6474384 A JP 6474384A JP 6474384 A JP6474384 A JP 6474384A JP S60208525 A JPS60208525 A JP S60208525A
Authority
JP
Japan
Prior art keywords
pump
target
suction
discharge
dredging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6474384A
Other languages
Japanese (ja)
Inventor
Seiichi Goto
後藤 聖一
Toyoaki Shiba
芝 豊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Toray Engineering Co Ltd
Original Assignee
Toa Corp
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp, Toyo Construction Co Ltd filed Critical Toa Corp
Priority to JP6474384A priority Critical patent/JPS60208525A/en
Publication of JPS60208525A publication Critical patent/JPS60208525A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/907Measuring or control devices, e.g. control units, detection means or sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To easily perform optimum dredging operations by a method in which various data on pump-dredging operations are detected, and optimum operational conditions for dredging with an optimum mud water rate on the basis of various data are displayed with detected data. CONSTITUTION:A pump dredger is provided with detectors to detect water depth positions of a cutter 4, suction negative pressures in a suction tube 3, output and revolving number of a pump 2, discharge pressures of a sand discharge tube 5, and flow rate and mud content of mud water discharged. Optimum mud water rate is calculated on the basis of the output of the detectors, and optimum operational conditions based on the optimum mud water rate are displayed with detected data to give operators the operational information. The occurrence of cavitation can thus be prevented, and dredging operations can be performed with good efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポンプ浚渫船における浚渫運転を行っている
各時点における最適運転条件を運転者に指示してその運
転を管理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for managing the operation of a pump dredger by instructing the operator of the optimum operating conditions at each point in time during dredging operation.

(従来技術) ポンプ浚渫船は、一般に第1図に示すように船体1内に
吸上用の大形ポンプ2を具え、ポンプ2から船体1前方
罠延設した吸入管3(図中一点鎖線で示す。)の先端に
水底の土砂を削るカッター4を具え、一方ボンプ2から
後方の遠方鷹で延設した排砂管5を具えている。第1図
中、6は吸入管3を収めているラダー、7はスパッドで
ある。
(Prior art) A pump dredger is generally equipped with a large pump 2 for suction inside the hull 1 as shown in Fig. 1, and a suction pipe 3 (indicated by a dashed line in the figure) extending from the pump 2 to the front of the hull 1. ) is equipped with a cutter 4 at its tip for scraping earth and sand on the bottom of the water, and a sand discharge pipe 5 extending from the pump 2 at a far rear end is provided. In FIG. 1, 6 is a ladder housing the suction pipe 3, and 7 is a spud.

かかるポンプ浚渫船の浚渫運転により、港湾や河川の水
底の土砂はカッター4によりかき起こされ、その土砂は
水と一緒に金泥水となってカッター4から吸入管3を通
じてポンプ2に吸上けられ、そしてポンプ2から排砂管
5を通じて遠方に排送される。
During the dredging operation of such a pump dredger, the cutter 4 stirs up the earth and sand at the bottom of the water of a port or river, and the earth and sand together with water turns into gold slurry and is sucked up from the cutter 4 through the suction pipe 3 to the pump 2. The sand is then discharged from the pump 2 to a distant place through the sand discharge pipe 5.

この浚渫運転にあっては、従来、各計測機器から得られ
た非統計的な情報をベースとした運転者個人の経験、技
能に頼っているのが現状である。従って経験年数の少な
い運転者にはその運転をまかせられないという問題があ
っ九。
Currently, dredging operations have traditionally relied on the experience and skills of individual drivers based on non-statistical information obtained from various measuring instruments. Therefore, there is a problem that drivers with less experience cannot be entrusted with the driving duties.

ところで排送される含泥水中の土砂の濃度を示す金泥率
は浚渫運転のコストに大きなウエートを占めることから
重要であシ、この金泥率を浚渫作業の経過に応じて最適
に持っていきながら最良の作業を行わせるのは望ましい
。しかし、上記熟練の運転者にあっても、このことは判
断基準がないことから困難であった。
By the way, the gold mud ratio, which indicates the concentration of earth and sand in the muddy water that is discharged, is important because it accounts for a large portion of the cost of dredging operations, and it is important to keep this gold mud ratio optimal as the dredging work progresses. It is desirable to have the best work done. However, even for the above-mentioned skilled driver, this was difficult because there was no criterion for judgment.

(発明の目的) 本発明は上記問題を解決するためのものであ( シ、その目的とするところは、浚渫作業を嗜ゴっている
最中に検出した各種データから演算して最適の金泥率に
基づいた浚渫運転操作判断に必要な情報を示唆して、熟
練でない運転者でも最適な浚渫運転を行わせしめうるポ
ンプ船における浚渫運転管理方法を提供することにある
(Purpose of the Invention) The present invention is intended to solve the above-mentioned problems. To provide a method for managing dredging operation in a pump ship, which allows even an unskilled operator to carry out optimal dredging operation by suggesting information necessary for dredging operation judgment based on the rate.

(発明の構成) かかる目的を達成するため、本発明方法は、船体に設け
た吸上げポンプの前後に土砂の吸入 □管と排砂管とを
具えてなるポンプ船に、前記吸入管の先端に位置するカ
ッタの浚渫作業時での水中位置、前記吸入管内の吸入負
圧、前記ポンプの出力および回転数、前記排砂管内の吐
出圧力、前記排砂管中での水とこれとともに流れる土砂
とからなる金泥水の吐出流速、ならびに前記含泥水中の
土砂の濃度を示す金泥率をそれぞれ検出する各種計測器
を設けて、該各種計測器から浚渫作業中に各種データを
検出し、ポンプ浚渫船に設けた目標値演算・表示装置に
よシ前記検出データに基づいて少なくとも目標吸入負圧
、目標吐出圧力および目標ポンプ出力を金泥率を基本変
数として算出し、ついでその金泥率での吸入負圧限界お
よび吐出圧力限界を算出して、前記目標吸入負圧、目標
吐出圧力および目標ポンプ出力が前記算出した吸入負圧
限界および吐出圧力限界ならびに予め設定されたポンプ
出力限界値のいずれかの値に到達するときの前記三種の
目標値を最適値と、して対応する検出データと一緒に表
示することにニジ浚渫運転を管理することを特徴とする
(Structure of the Invention) In order to achieve the above object, the method of the present invention provides a pump ship equipped with a suction pipe and a sand discharge pipe before and after a suction pump installed in the hull. the submerged position of the cutter during dredging work, the suction negative pressure in the suction pipe, the output and rotational speed of the pump, the discharge pressure in the sand discharge pipe, the water in the sand discharge pipe and the earth and sand flowing with it. Various measuring instruments are installed to detect the discharge flow rate of gold mud water consisting of Based on the detected data, at least the target suction negative pressure, target discharge pressure, and target pump output are calculated using the target value calculation/display device provided in The limits and discharge pressure limits are calculated, and the target suction negative pressure, target discharge pressure, and target pump output are set to any one of the calculated suction negative pressure limits and discharge pressure limits, and a preset pump output limit value. The present invention is characterized in that the rainbow dredging operation is managed by displaying the three types of target values to be reached as the optimum values together with the corresponding detection data.

本発明方法において、吸入負圧、吐出圧力およびポンプ
出力を演舞・表示対象としているのは、 ■吸入負圧が限界を越せば、キャビテーシ■ンが発生、 ■吐出圧力が限界を越せば、排送管のジヨイント部から
の金泥水の漏れや排送管系の破裂、■ポンプ出力が限界
を越せば、原動機過負荷、により・運転不能になるから
である。なお、これ以外でも演算・表示して、運転者の
監視対象としてもよいこと、は勿論である。
In the method of the present invention, the suction negative pressure, discharge pressure, and pump output are displayed and displayed because: ■ If the suction negative pressure exceeds the limit, cavitation will occur; ■ If the discharge pressure exceeds the limit, the discharge will occur. If the pump output exceeds its limit, it may become inoperable due to leakage of gold mud from the joint of the pipe, rupture of the discharge pipe system, or overload of the prime mover. It goes without saying that other calculations and displays may also be performed and monitored by the driver.

(実施例) 以下、本発明の一実施例を図に従って説明す ′る。(Example) An embodiment of the present invention will be described below with reference to the drawings.

本発明の実施に当り、第1図に示す工うにポンプ浚渫船
において、各種データを検出するため対応する計測器を
取付ける。すなわちカッタ4の水深データを得、るため
、2個の水圧計8゜8′ヲカツタ4先端を通る同一直線
上でラダー6に取付け、吸入管3のポ・ンプ2直前部位
に金泥水を吸上げるのに要する吸入負圧を測定するため
の吸入負圧針9を取付け、排砂管5のポンプ2直後の部
位に金泥水を排送するのに要するポンプ2の吐出圧力を
測定するための圧力計10を取付け、ポンプ2の駆動系
にポンプ20回転数を測定するための回転計11および
ポンプ2の出力を測定するための出力計12を取付け、
さらに排砂管5中での金泥水の流速(吐出流速)を測定
するための電磁流量計15および排砂管5中を流れる金
泥水中に含まれる土砂の濃度を示す金泥率を得るための
含泥率計14を取付ける。
In implementing the present invention, corresponding measuring instruments will be installed in the sea urchin pump dredger shown in FIG. 1 to detect various data. That is, in order to obtain water depth data for the cutter 4, two water pressure gauges 8° 8' were attached to the rudder 6 on the same straight line passing through the tip of the cutter 4, and gold mud water was sucked into the suction pipe 3 just before the pump 2. A suction negative pressure needle 9 is attached to measure the suction negative pressure required to increase the suction negative pressure, and the pressure is used to measure the discharge pressure of the pump 2 required to discharge the gold slurry to the part of the sand discharge pipe 5 immediately after the pump 2. a tachometer 11 for measuring the rotation speed of the pump 20 and an output meter 12 for measuring the output of the pump 2 are attached to the drive system of the pump 2;
Further, an electromagnetic flowmeter 15 is used to measure the flow rate of the gold mud water in the sand discharge pipe 5 (discharge flow velocity), and a gold mud ratio is used to obtain the gold mud ratio that indicates the concentration of earth and sand contained in the gold mud water flowing through the sand discharge pipe 5. Install the mud content meter 14.

第2図に、上記各種計測器8.7’、9. 10. 1
1゜12.13.14から得た検出データに基づいて、
浚渫運転に最低必要な運転東件の目標1ii1i−演算
して表示する装置(8檄値演算・表示装置)15を示す
。図において、16はスキャナー、17はインターフェ
イス、18は演算部、19はディスプレ一部である。ま
た20はプリンタ、21は音響カプラー、22はフロッ
ピー全表わす。なお、目標値演胸・表示装置15は、ポ
ンプ浚渫船の運転室に設置しであるものと理解されたい
FIG. 2 shows the various measuring instruments 8.7', 9. 10. 1
Based on the detection data obtained from 1゜12.13.14,
A device (8 dredging value calculation/display device) 15 that calculates and displays the minimum operating requirements 1ii1i required for dredging operation is shown. In the figure, 16 is a scanner, 17 is an interface, 18 is a calculation section, and 19 is a part of a display. Further, 20 represents a printer, 21 an acoustic coupler, and 22 a floppy disk. It should be understood that the target value display/display device 15 is installed in the operator's cabin of the pump dredger.

上述の計測器および目標値演算・表示装置15により、
本発明方法の実施を第3図の70−チャートを用いて説
明する。いまカッタ4の水深をhs、吸入管3の吸入負
圧k H8%排砂管5での吐出圧力をHd、ポンプ2の
回転数をN1ポンプ2の出力をP1含泥水の吐出流速を
Vd。
With the above-mentioned measuring instrument and target value calculation/display device 15,
The implementation of the method of the present invention will be explained using chart 70 in FIG. Now, the water depth of the cutter 4 is hs, the suction negative pressure of the suction pipe 3 is k, the discharge pressure of the sand discharge pipe 5 is Hd, the rotation speed of the pump 2 is N1, the output of the pump 2 is P1, the discharge flow rate of muddy water is Vd.

X (4,5−’/rlシロ ・・・・・・・・・・・
・(1)の関係が成立する。ここに、(1)式は「ポン
プ浚渫船、汚泥浚渫船施工能力調査報告書」、昭54年
6月(社)日本埋立浚渫協会、第49頁から導かれ、(
2+、 +31式は「浚渫ポンプの性格とその使用法」
昭33年運輸省港湾技術研究所、第7頁から導かれる。
X (4,5-'/rl white ・・・・・・・・・・・・
- The relationship (1) holds true. Here, formula (1) is derived from "Report on Survey of Construction Capacity of Pump Dredgers and Sludge Dredgers", June 1973, Japan Reclamation Dredging Association, page 49, (
Types 2+ and +31 are “Characteristics of dredging pumps and how to use them”
Derived from Ministry of Transport, Port Technology Research Institute, 1952, page 7.

また(4)式は、通常のポンプの出力をめる式を表わす
Further, equation (4) represents an equation for calculating the output of a normal pump.

なおil+、 (21,131および(4)式中、Ga
は水底の掘削地山の見カケ比重(地山のポーリングサン
プルからめた値をあらかじめ入力) Gsは水底の掘削土粒子の真の比重、 Ddは排砂管5の管径、 dsは掘削土粒子の粒径、 β1は吸入側土質定数、 Cは吸入管3の吸入口損失係数、 Gmはスラリー(含泥水)比重であって(xGa+(1
−xiで表わされ、 Dsは吸入管6の管径、 gは重力加速度、 λはマサツ損失係数、 烏は吐出側土質定数、 Llは排砂管5の船上管長、 L、は排砂管5の水上管長、 L3は排砂管5の沈設管長および陸上管長、hdは排砂
管5の吐出口の水面からの高さ、nは排砂管5を構成す
る曲管の数、 cbはその曲管損失係数、 Hは(Hs+Hd)の値、 Qは流量(= ”/4Dd2 X Vd )、ηpはポ
ンプ効率、 を示す。
Note that il+, (21,131 and (4) in the formula, Ga
is the estimated specific gravity of the excavated ground at the bottom of the water (input the value obtained from the polling sample of the ground in advance), Gs is the true specific gravity of the excavated soil particles at the bottom of the water, Dd is the diameter of the sand discharge pipe 5, and ds is the excavated soil particles. β1 is the soil constant on the suction side, C is the inlet loss coefficient of the suction pipe 3, Gm is the specific gravity of the slurry (muddy water), and (xGa+(1)
-xi, Ds is the diameter of the suction pipe 6, g is the gravitational acceleration, λ is the Masatsu loss coefficient, Karasu is the soil constant on the discharge side, Ll is the onboard length of the sand discharge pipe 5, L is the sand discharge pipe L3 is the submerged pipe length and land pipe length of the sand removal pipe 5, hd is the height of the discharge port of the sand removal pipe 5 from the water surface, n is the number of curved pipes that make up the sand removal pipe 5, and cb is the The curved pipe loss coefficient, H is the value of (Hs+Hd), Q is the flow rate (=''/4Dd2XVd), and ηp is the pump efficiency.

上記+11式において金泥率x1吐出流速Vd以外は測
定できないので、他の部分を速度定数に+とすると、(
1)式は01式へと変形することができる。
In the +11 formula above, it is not possible to measure anything other than the gold mud ratio x1 discharge flow rate Vd, so if the other parts are set as + for the rate constant, (
Equation 1) can be transformed into Equation 01.

Vd = Kl x x ” −(Itよって に+ = ”/xl/3+++++ (5)また(2+
、 (31式を変形して、定数β1.β2は、次の(6
1,(7)式で表わすことができる。
Vd = Kl
, (By transforming Equation 31, the constants β1 and β2 can be expressed as the following (6
1, it can be expressed by equation (7).

・・・・・・・・・・・・(6) ・・・・・・・・、j +71 さらに上記(4)式においても、測定データから得られ
るH (=Hs + Hd )、Q(=π/a Dd”
 x Vd )、Gm (=x (Ga十(1−x )
 )以外は定数なのでいまそれをポンプ出力定数4とし
て、(4)式を書き直すと(41式の関係が成立する。
・・・・・・・・・・・・(6) ・・・・・・・・・, j +71 Furthermore, in the above equation (4), H (=Hs + Hd) and Q( =π/a Dd”
x Vd ), Gm (=x (Ga+(1-x)
) are constants, so if we now set it as the pump output constant 4 and rewrite equation (4), the relationship of equation (41) holds true.

P=KzX(Hd+Hs)XQXGm ・+・−++・
 (4i1って &=P/(HxQxGm) −・・−
・<81そこで上記関係式を目標値演舞・表示装置15
に予め記憶させておき、第3図に示すようにポンプ浚渫
船の浚渫作業中連続的に上記計測器a、 a′、q、 
1o、 IL 12.1sおよび14から検出した各種
データを、上記装置15の演算部18にて演算して経時
的なに+、 Ks、β1.β2の各定数を算出する。
P=KzX(Hd+Hs)XQXGm ・+・−++・
(4i1 is &=P/(HxQxGm) −・・−
・<81 Therefore, the above relational expression is displayed on the target value display device 15.
As shown in Fig. 3, the measuring instruments a, a', q,
The various data detected from 1o, IL 12.1s and 14 are calculated by the calculation unit 18 of the device 15 to calculate +, Ks, β1. Calculate each constant of β2.

すなわち(51式に検出金泥率XOおよび吐出流速Vd
oQ代入して検出時の速度定数に+ k II出し\同
様にして検出金泥率XOs吸入負圧Hs6および水深h
s6ならびに金泥率XQから算出したGmo t(6)
弐に代入して検出時の吸入側土質定数βIk算出すると
ともに、検出金泥率XO%吐出流速VdOおよび吐出圧
力Hdo e(7)式に代入して検出時の吐出側土質定
数九ヲ舞出する。さらに検出ポンプ出力Pa、吸入負圧
Hs6 、吐出圧力Hdoおよび吐出流速V dOを(
8)式に代入して検出時のポンプ出力定数4を算出する
In other words, (the detected gold mud ratio XO and the discharge flow rate Vd are expressed in equation 51.
Substitute oQ to the rate constant at the time of detection + k II out\Similarly, the detected gold mud ratio XOs Suction negative pressure Hs6 and water depth h
Gmo t(6) calculated from s6 and gold mud rate XQ
2 to calculate the suction side soil constant βIk at the time of detection, and substitute the detected gold mud ratio do. Furthermore, the detected pump output Pa, suction negative pressure Hs6, discharge pressure Hdo, and discharge flow rate VdO are (
8) Substitute into the equation to calculate the pump output constant 4 at the time of detection.

次に第5図に示すように1検出含泥率XQにΔ!?加え
た金泥率x(=x6+Δx> t−変数として、この金
泥率Xo+ΔXにおける目標吐出流速Vd。
Next, as shown in Figure 5, Δ! ? Added gold mud ratio x (=x6+Δx>t-variable, target discharge flow rate Vd at this gold mud ratio Xo+ΔX.

目標吸入負圧Hs、目標吐出圧力Htl演算する。The target suction negative pressure Hs and target discharge pressure Htl are calculated.

すなわち、 (11式に算出した速度定数に1お工び変数x6+ΔX
を代入して目榛吐出流速vdヲ算出し、(2)弐に算出
した吸入側土質定数β鵞、変数XO+ΔNSそしてこの
変数により算出したGmおよび吐出流速VdからめたV
s f代入して、目標吸入負圧Isをめる。
In other words, (the rate constant calculated by equation 11 plus 1 variable x6 + ΔX
(2) The suction side soil constant β calculated in 2, the variable XO + ΔNS, Gm calculated from this variable, and V calculated from the discharge flow rate Vd.
Substitute s f to find the target suction negative pressure Is.

さらに(3)式に算出した吐出側土質定数β3、変数x
0+ΔXお工び吐出流速Vd Q代入し目標吐出圧・力
Hdを算出する。
Furthermore, the discharge side soil constant β3 calculated using equation (3) and the variable x
Substitute 0+ΔX and discharge flow rate Vd Q to calculate target discharge pressure/force Hd.

さらにまた(41式に算出したポンプ出力定数に2、上
記の目標吸入負圧Hsおよび目標吐出圧力Hd。
Furthermore, (2 to the pump output constant calculated by formula 41, the above target suction negative pressure Hs and target discharge pressure Hd.

そして上記目標吐出流速Vdから算出したQおよび変数
XO+ΔXから算出したGmを代入して運転ポンプ出力
Pを力量した。
Then, the operating pump output P was determined by substituting Q calculated from the target discharge flow rate Vd and Gm calculated from the variable XO+ΔX.

次に、第3図の)自−チャードに示す通り、対応する変
数N6+ΔXにおける吸入負圧限界、吐出圧力限界kl
出する。
Next, as shown in the chart in FIG. 3, the suction negative pressure limit and the discharge pressure limit kl at the corresponding variable N6+ΔX
put out

いま吸入負圧限界をHslとすると、[渦巻ポンプの設
計と製図」第96〜96頁、寺田進著、理工図書昭和5
0年3月10日、「浚渫ポンプの計画法」(エハラ時報
第20巻第77号抜刷、第6頁)から次の四穴が導かれ
る。
If we now assume that the suction negative pressure limit is Hsl, then [Design and Drawing of Centrifugal Pumps] pp. 96-96, written by Susumu Terada, Science and Engineering Tosho 1932
On March 10, 2009, the following four holes were derived from the "Planning Method for Dredging Pumps" (Ehara Jiho Vol. 20, No. 77, reprint, p. 6).

Hsl = 9.0− (NxV71ハ350)”・・
・・・・O〔この式を予め目標値演算・表示装置15に
記憶させておき、これに上記の検出したポンプ回転数N
1そして目標吐出流速Vdよりめた流量Qを代入して吸
入負圧限界Hslを算出する。
Hsl = 9.0- (NxV71ha350)"...
...O [This formula is stored in the target value calculation/display device 15 in advance, and the detected pump rotation speed N
1. Then, the suction negative pressure limit Hsl is calculated by substituting the flow rate Q determined from the target discharge flow rate Vd.

また吐出圧力限界をHdlとすると、これは、ポンプ2
自体の特性式であるaυ式 Hdl = Hshut −aOx 10”−’Q” 
−・−・・−・−・@υの関係式があり、この式を予め
目標値演舞・表示装置型15に記憶させておき(本実施
例では特K Hshutを110として)、aυ式に上
記でめた目標吐出流速Vdから算出したQ値を代入して
、Hdlを算出する。
Also, if the discharge pressure limit is Hdl, this is the pump 2
Its characteristic formula is aυ formula Hdl = Hshut −aOx 10”−’Q”
-・-・・−・−・@υ There is a relational expression, and this expression is stored in advance in the target value performance/display device type 15 (in this embodiment, the special K Hshut is set to 110), and the aυ expression is Hdl is calculated by substituting the Q value calculated from the target discharge flow velocity Vd determined above.

なお、ポンプ出力限界は、予めわかっている ゛のでそ
の値特に本例では6000を目標値演算・表示装置15
に予め記憶させておく。
Note that the pump output limit is known in advance, so its value, especially in this example, 6000, is set to the target value calculation/display device 15.
be memorized in advance.

次に第6図のフローに示すように、変数x6+ΔXにお
いて、目標吸入負圧Hsが吸入負圧限界Hslに到達す
るか否かすなわち「イエス」か 。
Next, as shown in the flowchart of FIG. 6, it is determined whether or not the target suction negative pressure Hs reaches the suction negative pressure limit Hsl in the variable x6+ΔX, that is, "YES".

「ノー」かを目標値演算・表示装置15にて論理判断し
、1−ノー」なら移行して目標吐出圧力Hdが吐出圧力
限界Hdlに到達する(イエス)か否(ノー)かを論理
判断する。そして「ノー」橙らはさらに移行して目標ポ
ンプ出力Pがポンプ出力限界値6000に到達する(イ
エス)か否(ノー)かを論理判断する。
The target value calculation/display device 15 makes a logical judgment as to whether it is "No", and if it is 1-No, the transition is made and a logical judgment is made as to whether the target discharge pressure Hd reaches the discharge pressure limit Hdl (Yes) or not (No). do. Then, "No", Orange and the others proceed further and logically determine whether the target pump output P reaches the pump output limit value 6000 (Yes) or not (No).

上記判断においていずれかの段階にて1イエス」なら、
第3図のフローに従って排砂管の沈殿限界流速Veを、 の関係式を用いて算出する。(9)式中、Ga、 Gs
If the above judgment is 1 “yes” at any stage,
According to the flow shown in Figure 3, the sedimentation limit flow velocity Ve of the sand discharge pipe is calculated using the following relational expression. (9) In the formula, Ga, Gs
.

Dd、 Dsは上記(11式で定義し、狗は(15式で
定義したのと同じ意味を有する請求め方は(1)式と同
様である。得た沈殿限界流速Veは、これよ妙排砂管内
の流れが遅くなって土砂が詰まる恐れがあるか否かを示
す基準となる。なお、この限界値Veは、ディスプレ一
部19で表示する。次にその時点での目標吸入負圧Hs
、目標吐出圧力Hdおよび限界ポンプ出力Pを、検出直
後の瞬間的な最適値を示すものとして目標値演誘・表示
装置15のディスプレ一部19にて対応する検出データ
と一緒に表示する。そして再び上述の開始点に戻り各種
データを検出してこれに基づき最適目標値を算出して表
示する。
Dd and Ds are defined in Equation 11 above, and dog has the same meaning as defined in Equation 15. The claim method is the same as in Equation (1). This is a standard that indicates whether the flow in the sand discharge pipe is slow and there is a risk of clogging with sand or not.This limit value Ve is displayed on the display part 19.Next, the target suction negative pressure at that point is Hs
, the target discharge pressure Hd and the limit pump output P are displayed together with the corresponding detection data on the display part 19 of the target value inducement/display device 15 as indicating the instantaneous optimum values immediately after detection. Then, the process returns to the above-mentioned starting point again, detects various data, and calculates and displays the optimum target value based on this data.

一方、上記論理判断において、いずれかの段階にて1ノ
ー」なら変数Xo+Δχ中のΔχ値を増加させて、目標
吸入負圧Hsと吸入負圧限界Hs 1゜目標吐出圧力H
dと吐出圧力限界Hdl、および目標ポンプ出力Pとポ
ンプ出力限界値6000のいずれかの関係につき、「イ
エス」が判断されるまで上記論理判断を繰返す。そして
「イエス」が判断されたら、沈澱限界流速値及び検出直
後の瞬間的な最適値を示すものとして上記と同様に最適
目標値を対応する検出データと一緒にディスプレ一部1
9にて表示する。
On the other hand, in the above logical judgment, if the result is 1 NO at any stage, increase the Δχ value in the variable
The above logical judgment is repeated until "yes" is determined for any one of the relationships between d and the discharge pressure limit Hdl, and between the target pump output P and the pump output limit value 6000. If "Yes" is determined, the optimal target value will be displayed in part 1 along with the corresponding detection data in the same way as above as indicating the sedimentation limit flow velocity value and the instantaneous optimal value immediately after detection.
Displayed at 9.

このようにして浚渫作業中に連続的に検出した各種デー
タに基づいて算出した各検出直後の最適目標値と検出デ
ータを、金泥率、吸入負圧、吐出圧力、ポンプ出力およ
び吐出流速に関して、第4図ないし第8図に示す。各図
において横軸は時間(分)を示し、縦軸は、第4図では
金泥率(%)會、第5図では吸入負圧(wnHg )k
 、第6図では吐出圧力(K9f /lri ) k 
、第7図ではポンプ出力(P、S)’r、第8図では吐
出流速(m/see lを示す。
In this way, the optimal target values immediately after each detection and the detected data calculated based on the various data continuously detected during dredging work are calculated as follows: This is shown in Figures 4 to 8. In each figure, the horizontal axis shows time (minutes), and the vertical axis shows the gold ratio (%) in Fig. 4 and the suction negative pressure (wnHg) k in Fig. 5.
, in Fig. 6, the discharge pressure (K9f/lri) k
, FIG. 7 shows the pump output (P, S)'r, and FIG. 8 shows the discharge flow rate (m/see l).

そして運転者は、経時毎に表示される最適な目標吸入負
圧、目標吐出圧力、目標ポンプ出力の情報を見て、これ
らの最適運転条件に合うように運転操作をする。これに
より、さほど熟練を積ますとも容易に最適運転すること
ができる。 ・しかも各運転条件は、限界値以下にある
ため限界値を大きく超えた場合に生じるポンプキャビテ
ーションや、吸入管および排砂管内の土砂沈澱を未然に
防止できる。
The driver then looks at information on the optimal target suction negative pressure, target discharge pressure, and target pump output that is displayed over time, and performs driving operations to meet these optimal operating conditions. This makes it easy to operate optimally even if you are not very experienced. - Moreover, since each operating condition is below the limit value, it is possible to prevent pump cavitation that would occur if the limit value were greatly exceeded, and sedimentation of sediment in the suction pipe and sand discharge pipe.

(発明の効果) 以上説明したように本発明によれば、浚渫作業中に各種
データを連続的に検出し、この検出データに基づきかつ
検出直後の最適金泥率に基づき算出した各検出直後の瞬
間的な最適運転条件を最低限、対応する検出データとと
もに表示して、運転者の操作判断の示唆となる情報ヲ捉
供するので、ポンプキャビテーションの発生全防ぎ、吸
入管あるいは排砂管において土砂が漏洩したりポンプ出
力不足によシ運転不能になったすせずに、熟練者でなく
とも容易に最適な浚渫運転をすることができる。
(Effects of the Invention) As explained above, according to the present invention, various data are continuously detected during dredging work, and the moment immediately after each detection is calculated based on the detected data and the optimum gold mud ratio immediately after the detection. The system displays the optimum operating conditions at the minimum along with the corresponding detection data and provides information that will suggest the operator's operational decisions, thereby completely preventing pump cavitation and preventing sediment from leaking from the suction pipe or sand discharge pipe. Even non-experts can easily perform optimal dredging operations without the need for dredging to become inoperable due to insufficient pump output.

しかも金泥率は常に最適条件にしておくことができ、浚
渫運転の能率音大きく向上させることができる。
Moreover, the gold mud ratio can always be kept at the optimum condition, and the efficiency of dredging operation can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に使用するポンプ船の概略を
示す図、 第2図は第1図のものに配置した各種計測器と目標値演
算・表示装置との関係を示す概略ブロック線図、 第3図は第2図の目標値演算・表示装置でのフローチャ
ートを示す図、 第4図ないし第8図はそれぞれ目標値演算・表示装置に
て表示された金泥率、吸入負圧、吐出圧力、ポンプ出力
および吐出流速と時間との関係を示すグラフである。 1・・・ポンプ浚渫船の船体 2・・・ポンプ3・・・
吸入管 4・・・カッタ 5・・・排砂管 6・・・ラダー 8.8′・・・間隙水圧計 9・・・吸入負圧針10・
・・圧力計 11・・・回転計 12・・・出力計 13・・・電磁流量計14・・・金
泥率計 15・・・目標値演算・表示装置18・・・演
算部 19・・・表示部 (#丘か1名)
Fig. 1 is a diagram showing an outline of a pump ship used to implement the method of the present invention, and Fig. 2 is a schematic block diagram showing the relationship between various measuring instruments arranged in the one shown in Fig. 1 and a target value calculation/display device. 3 is a diagram showing a flowchart of the target value calculation/display device in FIG. It is a graph showing the relationship between discharge pressure, pump output, discharge flow rate, and time. 1... Hull of pump dredger 2... Pump 3...
Suction pipe 4... Cutter 5... Sand discharge pipe 6... Ladder 8.8'... Pore water pressure gauge 9... Suction negative pressure needle 10.
...Pressure gauge 11...Tachometer 12...Output meter 13...Electromagnetic flow meter 14...Gold rate meter 15...Target value calculation/display device 18...Calculation section 19... Display section (#Oka or 1 person)

Claims (1)

【特許請求の範囲】[Claims] (I)船体に設けた吸上げポンプの前後に土砂の吸入管
と排砂管とを具えてなるポンプ浚渫船に、前記吸入管の
先端に位置するカッタの浚渫作業時での水中位置、前記
吸入管内の吸入負圧、前記ポンプの出力お゛よび回転数
、前記排砂管内の吐出圧力、前記排砂管中での水とこれ
とともに流れる土砂とからなる含泥水の吐出流速、なら
びに前記金泥水中の土砂の濃度を示す金泥率をそれぞれ
検出する各種計測器を設けて、該各種計測器から浚渫作
業中に各種データを検出し、ポンプ浚渫船に設けた目標
値演薯・表示装置によシ前記検出データに基づいて少な
くとも目標吸入負圧、目標吐出圧力および目標ポンプ出
力を金泥率を変数として算出し、ついでその金泥率での
吸入負圧限界および吐出圧力限界tS出して、前記目標
吸入負圧、目標吐出圧力および目標ポンプ出力が前記算
出した吸入負圧限界および吐出圧力限界ならびに予め設
定されたポンプ出力限界値のいずれかの値に到達すると
きの前記三極の目標値を最適値として対応する検出デー
タと一緒に表示することにより浚渫運転を管理すること
を特徴とするポンプ浚渫船における浚渫運転管理方法。
(I) A pump dredger that is equipped with a suction pipe and a sand discharge pipe before and after a suction pump installed on the hull, and the underwater position of a cutter located at the tip of the suction pipe during dredging work, and the suction The suction negative pressure in the pipe, the output and rotation speed of the pump, the discharge pressure in the sand discharge pipe, the discharge flow rate of muddy water consisting of water in the sand discharge pipe and earth and sand flowing together with it, and the gold slurry water. Various measuring instruments are installed to detect the gold mud ratio, which indicates the concentration of soil in the dredging, and various data are detected during dredging work from the various measuring instruments. Based on the detection data, at least a target suction negative pressure, a target discharge pressure, and a target pump output are calculated using the gold mud ratio as a variable, and then the suction negative pressure limit and the discharge pressure limit tS at the gold mud ratio are calculated, and the target suction negative pressure is calculated. When the pressure, target discharge pressure, and target pump output reach any one of the calculated suction negative pressure limit, discharge pressure limit, and preset pump output limit value, the target value of the three poles is set as the optimal value. A dredging operation management method in a pump dredger, characterized in that dredging operation is managed by displaying the dredging operation together with corresponding detection data.
JP6474384A 1984-03-31 1984-03-31 Control on operation of pump dredger Pending JPS60208525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6474384A JPS60208525A (en) 1984-03-31 1984-03-31 Control on operation of pump dredger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6474384A JPS60208525A (en) 1984-03-31 1984-03-31 Control on operation of pump dredger

Publications (1)

Publication Number Publication Date
JPS60208525A true JPS60208525A (en) 1985-10-21

Family

ID=13266939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6474384A Pending JPS60208525A (en) 1984-03-31 1984-03-31 Control on operation of pump dredger

Country Status (1)

Country Link
JP (1) JPS60208525A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207535A (en) * 1988-02-15 1989-08-21 Penta Ocean Constr Co Ltd Vacuum air lift mud pumping device
JP2014169602A (en) * 2013-03-05 2014-09-18 Ohbayashi Corp Sand discharging method and sand discharging apparatus
JP2014227671A (en) * 2013-05-20 2014-12-08 株式会社安藤・間 Method for suction of sediment such as earth and sand and device using therefor
CN114386876A (en) * 2022-02-15 2022-04-22 中港疏浚有限公司 Bow blowing intelligent analysis system of large-scale trailing suction dredger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641755B2 (en) * 1973-08-10 1981-09-30
JPS5869940A (en) * 1981-10-22 1983-04-26 Ishikawajima Harima Heavy Ind Co Ltd Automatic dredge device for pump type dredger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641755B2 (en) * 1973-08-10 1981-09-30
JPS5869940A (en) * 1981-10-22 1983-04-26 Ishikawajima Harima Heavy Ind Co Ltd Automatic dredge device for pump type dredger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207535A (en) * 1988-02-15 1989-08-21 Penta Ocean Constr Co Ltd Vacuum air lift mud pumping device
JP2014169602A (en) * 2013-03-05 2014-09-18 Ohbayashi Corp Sand discharging method and sand discharging apparatus
JP2014227671A (en) * 2013-05-20 2014-12-08 株式会社安藤・間 Method for suction of sediment such as earth and sand and device using therefor
CN114386876A (en) * 2022-02-15 2022-04-22 中港疏浚有限公司 Bow blowing intelligent analysis system of large-scale trailing suction dredger

Similar Documents

Publication Publication Date Title
CN100495410C (en) Automatic computerized optimization-seeking dredging method for cutter suction dredger
US5311682A (en) Hybrid dredge
CN106013311B (en) Excavator
CN101070706A (en) Hydraulic-digger obstruction-avoiding control system and method
Barnard Prediction and control of dredged material dispersion around dredging and open-water pipeline disposal operations
CN106988358A (en) Excavator
US20180266072A1 (en) Methods and Systems for Dredging
JPS60208525A (en) Control on operation of pump dredger
JP2008255765A (en) N-value detection method, n-value detector, and pile hole drilling unit
CN104452852A (en) Operating mechanism of bucket-wheel dredger
Miedema Considerations on limits of dredging processes
JP7319946B2 (en) Dredging equipment, dredging system, and dredging method
CN110155245B (en) Anchor pulling experiment platform
Jin et al. The Estimation of Production and Location of Pumps for a Cutter Suction Dredge using a Long Distance Pipeline
CN201598665U (en) Layout of front instrument cabinet panel of bridge of cutter suction dredger
Lewis et al. Prediction of minor loss coefficient at suction inlet of cutter suction dredge
KR102180234B1 (en) Underwater Construction System
RU2237782C2 (en) Information system for control of suction-tube dredger
CN107869489A (en) Hydraulic oil container for grab bucket dredger
JPS58131238A (en) Dredger for bottom under water
SU1437486A2 (en) Suction dredger control apparatus
Verhagen Water injection dredging
Ramsdell Technical inputs to dredging cost estimates
de Oliveira Junior Experimental Measurements of the Minor Loss due to Fixed Screens at Suction Entrance for a Cutterhead Model Dredge
Welp Dredging and dredged material disposal overview