JPS60207465A - Power source for nuclear fusion reactor - Google Patents

Power source for nuclear fusion reactor

Info

Publication number
JPS60207465A
JPS60207465A JP59060688A JP6068884A JPS60207465A JP S60207465 A JPS60207465 A JP S60207465A JP 59060688 A JP59060688 A JP 59060688A JP 6068884 A JP6068884 A JP 6068884A JP S60207465 A JPS60207465 A JP S60207465A
Authority
JP
Japan
Prior art keywords
power source
inductance
ignitron
reactors
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59060688A
Other languages
Japanese (ja)
Inventor
Yukio Ishigaki
石垣 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59060688A priority Critical patent/JPS60207465A/en
Publication of JPS60207465A publication Critical patent/JPS60207465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/55Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a gas-filled tube having a control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To reduce the size of a reactor without decreasing characteristics by providing a mutual inductance between two reactors of a ladder type pulse forming circuit. CONSTITUTION:Capacitors 2, 3a-3c of a power source are charged in advance in the polarity as shown, and a load coil 1 is excited to the set current by firing an ignitron 5. Then, an ignitron 6 is fired, a reverse voltage is applied to the ignitron 5 to be automatically closed to form a current path 7 to the coil 1, thereby maintaining the period of the time width T constant. In this case, mutual inductance values M are incorporated in reactors 41a, 41b. Thus, the first and second reactors are connected in series with the path 7 to perform the inductance effect, but the parasitic inductance of the capacitors 3b can be compensated due to the negative inductance effect corresponding to the value M for the path 8.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は核融合装置に係り、特に、高温、高密度のプラ
ズマを得るための磁場コイルシステムに電力を供給する
電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nuclear fusion device, and particularly to a power supply device that supplies power to a magnetic field coil system for obtaining high temperature, high density plasma.

〔発明の背景〕[Background of the invention]

従来より知られているこの種の電源装置について、第1
図、第2図に基づいて説明する。第1図は、逆転磁場ピ
ンチプラズマ装置の中の垂直磁場コイル(以下、負荷コ
イルと略称する。)が発生する磁場、もしくは、負荷コ
イル1に流れる電流波形を示す。この波形を得るための
電源装置を第2図に示す。基本的にリアクトルとコンデ
ンサを接続した梯子形パルス成形回路(以下PFN回路
と略称する。)で構成される。第2図中■の部分は第1
図は時刻の0−t、の期間使用し、この負荷コイルを初
期励磁するためのものであり、■の部分は、第1図の時
刻t。に投入して、時間幅Tの期間運転して正のフラッ
トトップを作り出すものである。この■、■の部分とも
、各コンデンサ2,38〜3cは、第2図に示すような
極性に、予め充電しておき、時刻t=0で開閉手段であ
るイグナイトロン5を点弧することにより、この負荷コ
イルを設定電流まで励磁する。続いて、イグナイトロン
6を点弧すると、イグナイトロン5には逆電圧が印加さ
れ、自動的に閉路し、負荷コイル電流が第2図に示す電
流路7のように流れることによって、時間幅Tの期間一
定に維持される。ここでPFN回路のりアクドル、第2
図中の4a、4bは相互誘塩作用を持たないため、磁束
の結合を避けるように配置する必要があり、このために
装置が大きくなる問題があった。
Regarding this kind of conventionally known power supply device, the first
This will be explained based on FIG. FIG. 1 shows a magnetic field generated by a vertical magnetic field coil (hereinafter referred to as a load coil) in a reverse magnetic field pinch plasma apparatus, or a waveform of a current flowing through a load coil 1. In FIG. A power supply device for obtaining this waveform is shown in FIG. It basically consists of a ladder-shaped pulse shaping circuit (hereinafter abbreviated as PFN circuit) in which a reactor and a capacitor are connected. The part marked ■ in Figure 2 is the first
The figure is used for the period from time 0 to time t to initially excite this load coil, and the part marked ■ corresponds to time t in FIG. , and operates for a period of time T to create a positive flat top. In both of the parts (■) and (■), each capacitor 2, 38 to 3c is charged in advance to the polarity shown in FIG. 2, and the ignitron 5, which is the opening and closing means, is ignited at time t=0. This energizes this load coil to the set current. Subsequently, when the ignitron 6 is ignited, a reverse voltage is applied to the ignitron 5, the circuit is automatically closed, and the load coil current flows like the current path 7 shown in FIG. is maintained constant for a period of . Here, the PFN circuit glue, the second
Since 4a and 4b in the figure do not have a mutual salt-inducing effect, they must be arranged to avoid coupling of magnetic fluxes, which causes the problem that the device becomes large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、設置容積を小型化することのできる核
融合装置用電源を提供するにある。
An object of the present invention is to provide a power source for a nuclear fusion device whose installation volume can be reduced in size.

〔発明の概要〕[Summary of the invention]

本発明は、PFN回路の二つのりアクドルの間に相互イ
ンダクタンスを設けることによって、性能を落すことな
く、リアクトルを小型化したことを特徴とする。
The present invention is characterized in that the reactor is miniaturized without degrading performance by providing mutual inductance between two actuators of the PFN circuit.

〔発明の実施例〕[Embodiments of the invention]

本発明の具体的な実施例を第3図に基づいて説明する。 A specific embodiment of the present invention will be described based on FIG.

第3図は、第2図におけるリアクトル4a、4bに相互
インダクタンスを持たせたものである。本発明の中心と
なるリアクトル41a。
In FIG. 3, the reactors 4a and 4b in FIG. 2 are provided with mutual inductance. A reactor 41a is the core of the present invention.

41bの効果を主体に説明を行なう。すなわち。41b will be mainly explained. Namely.

−例として、第−及び第二のりアクドルのもつインダク
タンス値を1 / 2 L a程度とし、互いに密を磁
気結合されているとする。従って、相互インダクタンス
値Mも同様に1 / 2 L a程度となる。
- As an example, it is assumed that the inductance value of the first and second glue axles is approximately 1/2 La, and that they are closely magnetically coupled to each other. Therefore, the mutual inductance value M is also approximately 1/2 La.

但し、Ldは第2図におけるリアクトル4a。However, Ld is the reactor 4a in FIG.

4bのもつインダクタンス値である。このように、第−
及び第二のりアクドルの間で相互インダクタンスを持た
せる事により、第2図の電流路7に対しては第−及び第
二のりアクドルが直列に入っているので、従来装置同様
のインダクタンス効果(2Laに相当する)を発揮する
が、一方、電流路8に対しては、第4図の等価回路に示
すように。
This is the inductance value of 4b. In this way, the -
By providing a mutual inductance between the 1st and 2nd latitude axles, the 2nd and 2nd latitude axles are connected in series with the current path 7 in Fig. 2. However, for the current path 8, as shown in the equivalent circuit of FIG.

相磁インダクタンスMに相当する負のインダクタンス効
果のために、コンデンサ3bの寄生インダクタンスを補
償することができる。このため、特に、寄生インダクタ
ンスの小さな電解コンデンサを使用する必要もなくなる
Due to the negative inductance effect corresponding to the phase magnetic inductance M, the parasitic inductance of the capacitor 3b can be compensated. Therefore, there is no need to particularly use an electrolytic capacitor with small parasitic inductance.

なお、図中1はりアクドルである。Note that the beam 1 in the figure is an acdle.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、リアクトルのインダクタンスを半減す
ることができ、従って、リアクトルそのものを小型化で
きる。
According to the present invention, the inductance of the reactor can be halved, and therefore the reactor itself can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は負荷コイルが発生する磁場、もしくは負荷コイ
ルに流れる電流の時間変化を示す図、第2図は従来装置
の回路図、第3図は本発明の一実施例の回路図、第4図
は第3図の等価回路である。 41a、41b・・・リアクトル。 代理人 弁理士 高橋明夫 ♀ 1 (2) 第2 口 乙 J4S(2) ム
Fig. 1 is a diagram showing the time change of the magnetic field generated by the load coil or the current flowing through the load coil, Fig. 2 is a circuit diagram of a conventional device, Fig. 3 is a circuit diagram of an embodiment of the present invention, and Fig. 4 The figure is an equivalent circuit of FIG. 41a, 41b...Reactor. Agent Patent Attorney Akio Takahashi♀ 1 (2) 2nd Kuchiotsu J4S (2) Mu

Claims (1)

【特許請求の範囲】 1、負荷コイル電流を設定値まで励磁するための第一の
電源、この電流極性のまま、設定時間の間。 設定精度で前記負荷コイル電流を一定に維持するための
第二の電源、前記第1の電源、前記第2の電源を前記設
定時間に動作させるための複数の開閉手段からなり、前
記第2の電源をリアクトルとコンデンサの接続による梯
子形パルス成形回路で構成した電源において、 前記n役目のりアクドルと傾起(n+1)段目のりアク
ドルとの間に相互誘−作用を生じさせる手段を設けたこ
とを特徴とする核融合装置用電源。
[Claims] 1. A first power supply for exciting a load coil current to a set value, and maintaining this current polarity for a set time. a second power source for maintaining the load coil current constant with set accuracy; a plurality of opening/closing means for operating the first power source and the second power source at the set time; In a power source constituted by a ladder-shaped pulse forming circuit formed by connecting a reactor and a capacitor, a means is provided for causing mutual induction between the n-role axle axle and the tilt axle axle at the (n+1) stage. A power source for nuclear fusion devices featuring:
JP59060688A 1984-03-30 1984-03-30 Power source for nuclear fusion reactor Pending JPS60207465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060688A JPS60207465A (en) 1984-03-30 1984-03-30 Power source for nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060688A JPS60207465A (en) 1984-03-30 1984-03-30 Power source for nuclear fusion reactor

Publications (1)

Publication Number Publication Date
JPS60207465A true JPS60207465A (en) 1985-10-19

Family

ID=13149488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060688A Pending JPS60207465A (en) 1984-03-30 1984-03-30 Power source for nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JPS60207465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754324A (en) * 2009-10-20 2012-10-24 德克萨斯仪器股份有限公司 Systems and methods of synchronous rectifier control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754324A (en) * 2009-10-20 2012-10-24 德克萨斯仪器股份有限公司 Systems and methods of synchronous rectifier control

Similar Documents

Publication Publication Date Title
US20130099788A1 (en) System and method for gradient amplifier control
US20130099787A1 (en) System and method for series resonant converter protection
Saadatizadeh et al. A new non‐isolated free ripple input current bidirectional DC‐DC converter with capability of zero voltage switching
US6952353B2 (en) Integrated magnetic isolated two-inductor boost converter
CN104052270A (en) Methods and systems for control of dc-dc converters
JPS6011545B2 (en) Oscillation transformer for self-excited DC-DC converter
JPH0246166A (en) Dc/dc converter using quasi-resonance
JPS60207465A (en) Power source for nuclear fusion reactor
US20230015609A1 (en) Active electromagnetic interference cancellation circuits
Vorperian The effect of the magnetizing inductance on the small-signal dynamics of the isolated Cuk converter
Atmaca et al. Design of an H-Bridge Bidirectional DC-DC Converter with LCL Filter for High Power Battery Applications
Ichinokura et al. Graphical circuit analysis of two C-core type parametric power converter
JP3091973U (en) Active backup power supply having power factor compensation function and power output adjustment function
JP2011188708A (en) Switching power supply
JP3201809B2 (en) Pulse laser equipment
US20220181977A1 (en) Inductive current simulation circuit of switching circuit, inductive current simulation method of switching circuit, and switched-mode power supply
JP3011435B2 (en) Magnetic pulse compression circuit and magnetic reset method of saturable reactor for magnetic pulse compression
CN112532067B (en) Double-channel high-gain series-parallel LLC resonant converter
JPH0374094A (en) Inverter x-ray device
Wei et al. Resonant Converter based DC Transformer Operation with Magnetic Control
Tummala et al. Switched Mode Power Supply: A High Efficient Low Noise Forward Converter Design Topology
JP2019169690A (en) Transformer and LLC resonant circuit using the same
NGUYEN A flux balancing technique for DC/DC converters in quick charging station applications
JPH07192918A (en) Pulse magnetic field generator
JPH11205098A (en) Pulse generator