JPS60207081A - Proximity sensing apparatus - Google Patents

Proximity sensing apparatus

Info

Publication number
JPS60207081A
JPS60207081A JP59063593A JP6359384A JPS60207081A JP S60207081 A JPS60207081 A JP S60207081A JP 59063593 A JP59063593 A JP 59063593A JP 6359384 A JP6359384 A JP 6359384A JP S60207081 A JPS60207081 A JP S60207081A
Authority
JP
Japan
Prior art keywords
light
frequency
light emitting
robot
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59063593A
Other languages
Japanese (ja)
Inventor
Toshi Asano
浅野 都司
Atsufumi Takenaka
竹中 厚文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59063593A priority Critical patent/JPS60207081A/en
Publication of JPS60207081A publication Critical patent/JPS60207081A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To detect a proximity distance without being affected by circumferential light, by allowing a light emitting element to emit light by an AC current with frequency (f) and taking out only a component with frequency (f) in luminous flux incident to a light receiving element. CONSTITUTION:A reflective type photosensor 1 is constituted by integrating a light emitting diode 2 and a phototransistor 3 on a single surface, and can emit and receive light in the same direction and can transmit and receive a signal through a lead wire 4. The reflective type photosensor 1 is used in a state arranged to the leading end of the finger 6 of a robot hand 5. An AC power source circuit 9 allows the light emitting diode 2 to emit light with frequency (f). Emitted luminous flux is reflected by a front object and converted to an electric signal upon the incidence to the phototransistor 3. The component with frequency (f) of the electric signal is amplified by a selection and amplification circuit 10 and noise is removed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、ロボットハンド用として適した近接センサ
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a proximity sensor device suitable for use in a robot hand.

〔発明の背景技術とその問題点〕[Background technology of the invention and its problems]

ロボットハンドは、物を掴むとき、フィンガーの間に把
持すべき物体が存在することと、フィンガーと把持物体
との距離音検出して、相対するフィンガーの中心に把持
物体があること全確認する必要がある。
When a robot hand grasps an object, it needs to confirm that the object to be grasped exists between the fingers, and that the object to be grasped is at the center of the opposing fingers by detecting the distance sound between the fingers and the object being grasped. There is.

もしフィンガーの中心に把持物体が無い状態で掴むと、
把持物体を倒したシ、曲げたシ、逆にフィンガー全破損
することがある。したがって、相対するフィンガーの中
に把持物体が有ること全知ると同時に、相対するフィン
ガーの中心に把持物体がくるようにロボットのアームの
位置全制御するために、フィンガーと把持物の間の距離
全測定する近接センサ装置が必要と々る。
If you grip without an object in the center of the fingers,
If the object being held is knocked over or bent, the fingers may be completely damaged. Therefore, in order to fully know that there is an object to be grasped between the opposing fingers, and at the same time fully control the position of the robot's arm so that the object to be grasped is in the center of the opposing fingers, the distance between the fingers and the object to be grasped must be completely controlled. A proximity sensor device is required for measurement.

従来、このような用途のセンサ装置としては、把持物の
存在全検出する場合には、発光ダイオードとフォトトラ
ンジスタ全白い合せて左右のフィンガーに埋込み、フィ
ンが一間?通過する光の有無によって把持物の存在を検
出している。
Conventionally, as a sensor device for this kind of use, when detecting the presence of a grasped object, a light emitting diode and a phototransistor are all embedded in the left and right fingers, and the fins are one inch apart. The presence of the object being held is detected by the presence or absence of light passing through it.

また把持物とフィンガーの間の距離の検出は、三角測量
の原理で距離全求めていた。911えは、直線的に並べ
た数個の発光ダイオードを順次発光させ、把持物から反
射する光の強度全フォトトランジスタで検出し、その出
力の大きさから光路上推定して把持物迄の距研〔ヲ求め
るものや、その光の径路の長さの差による光の位相のず
れを利用したセンサがそれである。しかし、このような
センサは、ロボットハンドの周囲の他の照明による光に
よって、その測定精度が左右される欠点があった。
Furthermore, the distance between the grasped object and the finger was determined by calculating the entire distance using the principle of triangulation. In the 911-e, several light emitting diodes arranged in a straight line sequentially emit light, the total intensity of the light reflected from the held object is detected by a phototransistor, and the distance to the held object is estimated by estimating the optical path from the magnitude of the output. This is a sensor that utilizes the phase shift of light due to the difference in what is being sought and the length of the light path. However, such a sensor has the drawback that its measurement accuracy is affected by light from other illumination surrounding the robot hand.

〔発明の目的〕[Purpose of the invention]

この発明は、以上の如き事情に鑑みなされたもので、そ
の目的とする所は、周囲の光に左右されることなく近接
距離を検知できる近接センサ装置を提供することにあシ
、さらには、小形、軽量でロボットの任意の場所にと9
つけ可能で、ロボットの環境との衝突を回避するに十分
な性能を有するロボット用として好適な近接センサ装置
全実現するにある。
The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a proximity sensor device capable of detecting a close distance without being influenced by surrounding light; Compact and lightweight, can be placed anywhere on the robot
The object of the present invention is to realize a proximity sensor device suitable for a robot, which can be attached to the robot and has sufficient performance to avoid collision of the robot with the environment.

〔発明の概要〕[Summary of the invention]

発光素子と受光素子?組合せた反射形フォトセンサを例
えばロボットの所望場所に装着し、発光素子全周波数f
の交流電流で発光し、反射形フォトセンサリ前方の物体
からの反射光全受光素子で電気信号に変換し、信号中の
周波数fの成分のみを選択し、その大きさから前方物体
迄の距離を検知するように構成した近接センサ装置であ
る。
Light emitting element and light receiving element? For example, the combined reflective photosensor is attached to a desired location on the robot, and the total frequency f of the light emitting element is
It emits light with an alternating current of This is a proximity sensor device configured to detect.

〔発明の効果〕〔Effect of the invention〕

本発明によシ周囲の光に影響されることなく近接距離を
検出でき、さらには従来の大がかりなセンサでは実現し
得なかった、ロボットの任意の場所へのとりつけが容易
となシ、ロボットの環境との衝突全自動的に回避する制
御が可能になる。したがって自律性にすぐれた知能ロボ
ットの実現が衝突回避の面では容易になシ、その効果は
多大である。
The present invention makes it possible to detect close distances without being affected by surrounding light, and also allows the robot to be easily attached to any location, which was not possible with conventional large-scale sensors. It becomes possible to fully automatically avoid collisions with the environment. Therefore, it will be easy to realize intelligent robots with excellent autonomy in terms of collision avoidance, and the effects will be significant.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施し11について詳細に説明する。第
1図は本発明の近接センサ装置に用いられる反射形フォ
トセンサ1を示す図で、発光ダイオード2とフォトトラ
ンジスタ3とが単一面に一体的に構成され、同一方向に
発光受光でき、リード線4で信号が送受できるものであ
る。
Embodiment 11 of the present invention will be described in detail below. FIG. 1 is a diagram showing a reflective photosensor 1 used in the proximity sensor device of the present invention, in which a light emitting diode 2 and a phototransistor 3 are integrally formed on a single surface, can emit and receive light in the same direction, and have a lead wire. 4 can send and receive signals.

この反射形フォトセンサ1は、第2図に示すように、ロ
ボットハンド5のフィンガー6の先端に配置して用いら
れる。このロボットハンド5は把持物7を掴むためにフ
ィンガー6を下におろすとき、台8の位置データが正確
にロボットに与えられていないと、例え誤差が】00ミ
クロンとしても、ロボットの剛性を大きく作ってあれば
、ロボットには非常に大きな力がかかることになシ、ロ
ボット?破損するか台8會こわすことに々9かねない。
The reflective photosensor 1 is used by being placed at the tip of the finger 6 of the robot hand 5, as shown in FIG. When the robot hand 5 lowers the fingers 6 to grasp the object 7, if the position data of the platform 8 is not accurately given to the robot, the rigidity of the robot will be greatly increased, even if the error is ~00 microns. If it were made, a very large amount of force would be applied to the robot, right? There is a risk of damaging or destroying the stand.

そこで、フィンガー6の先端と台8の距離が成る値に達
したら信号全量してロボッ)k制御することによpl 
フィンガー6と台8との衝突全回避できる。
Therefore, when the distance between the tip of the finger 6 and the stand 8 reaches a value, the full signal is output and the robot is controlled.
Collision between the finger 6 and the stand 8 can be completely avoided.

本発明の近接センサ装置の信号処理回路は、第3図に示
すように、発光ダイオード2には周波数fの交流電源回
路9が接続され、フォ))ランジスタ3には周波数fに
同調した選択増幅回路10、整流回路11、比較回路1
2.13が接続されて構成されている。
In the signal processing circuit of the proximity sensor device of the present invention, as shown in FIG. 3, the light emitting diode 2 is connected to an AC power supply circuit 9 of frequency f, and Circuit 10, rectifier circuit 11, comparison circuit 1
2.13 are connected and configured.

交流電源回路9は発光ダイオード2全周波数fで発光さ
せる。発光した光束は前方物体で反射してフォトトラン
ジスタ3に入射すると、電気信号に変換される。電気信
号の周波数fの成分は、選択増幅回路10で増幅され雑
音は除去される。この信号全整流回路1ノで整流して、
入射光束の強度に比fll した電気信号が得られる。
The AC power supply circuit 9 causes the light emitting diode 2 to emit light at all frequencies f. The emitted light beam is reflected by an object in front and enters the phototransistor 3, where it is converted into an electric signal. The frequency f component of the electrical signal is amplified by the selective amplification circuit 10 and noise is removed. This signal is rectified by full rectifier circuit 1,
An electrical signal proportional to the intensity of the incident light beam is obtained.

この信号を比較回路12.13に入力して、各々の比較
回路の設定電圧よ)大きくなったとき比較回路出力14
.15が”1″になるようにし、この信号で口?ッ)1
−制御することによっテ、ロボットの衝突を回避するよ
うに構成されている。なお、比較回路12.13は、ロ
ボット?高速で動かしているとき、前方障害物からの距
離がt2の所でロボットの速度を低速に切換え、tlO
所で停止させる(t2>tt)ように各設定電圧を設定
して、ロボットの停止音なめらかに制御するために設け
られている。
This signal is input to the comparison circuits 12 and 13, and when it becomes larger than the set voltage of each comparison circuit, the comparison circuit outputs 14.
.. Make 15 become "1" and use this signal as a mouth? )1
- The robot is configured to avoid collisions by controlling the robot. By the way, are comparison circuits 12 and 13 robots? When moving at high speed, the robot speed is changed to low speed when the distance from the obstacle in front is t2, and tlO
This is provided in order to control the robot to stop smoothly by setting each set voltage so that the robot stops at a certain point (t2>tt).

勿論ロボットが低速で動いている場合は、ひとつの比較
回路によっていきなシ停止制御してもよい。また整流回
路1ノの出力を計算機に入力し、信号の比較処理?計算
機内で行っても良い。
Of course, if the robot is moving at low speed, one comparison circuit may be used to control the robot to stop suddenly. Also input the output of rectifier circuit 1 into a computer and compare the signals. You can also do it in a computer.

〔発明の他の実施例〕[Other embodiments of the invention]

次に本発明の他の実施し1について説明する。 Next, another embodiment 1 of the present invention will be explained.

ロボットハンドが高速で動く場合は、早めに停止するか
低速に切換え命令を出さガいと、制御遅れによってロボ
ットハンドを障害物に衝突させる心配がある。このよう
な場合に、第4図に示すように、整流回路1ノの出力信
号を微分回路16で一度微分したのち、比較回路で処理
してこの微分信号が一定値に到達したときにロボットの
減速なり停止全行うようにすることによシ、ロボットハ
ンドの速いときは、比較的長い近接距離で、ロボットハ
ンドの遅いときは比較的短い近接距離でロボット全減速
又は停止制御できるので、時間的に無駄のないIII突
回避制御ができる。
If the robot hand moves at high speed, if you issue a command to stop it early or switch to a low speed, there is a risk that the robot hand will collide with an obstacle due to control delays. In such a case, as shown in Fig. 4, the output signal of the rectifier circuit 1 is differentiated once by the differentiating circuit 16, and then processed by the comparator circuit, and when this differentiated signal reaches a certain value, the robot By decelerating or stopping the robot completely, when the robot hand is fast, the robot can be fully decelerated or stopped over a relatively long distance, and when the robot hand is slow, the robot can be fully decelerated or stopped over a relatively short distance, which saves time. This enables efficient III sudden avoidance control.

本発明のその他の実施列として、第5図に示すように、
第4図に示した比較回路13をゼロクロス検出回路17
で置換することによって、近接距離が、第6図に示すよ
うに、0.5〜1mの所にほとんどの材料がピーク値を
持っているので、このピーク点全利用して停止動作を行
うようにするもので、対象物の表面状態には線熱関係に
一定の場所でロボットハンドを止めることが出来る。
As another embodiment of the present invention, as shown in FIG.
The comparison circuit 13 shown in FIG.
By substituting with This allows the robot hand to be stopped at a fixed location depending on the surface condition of the object due to the linear heat.

すなわち、微分回路16の出力は、第6図に示すフォト
センサ出力とセンサ把持物間距離の特性のピーク点で符
合が反転するので零金よこぎる瞬間?ゼロクロス検出回
路28で検知し、この信号でロボッ)k停止させるもの
である。
That is, the output of the differentiator circuit 16 reverses its sign at the peak point of the characteristics of the photosensor output and the distance between the sensor and the object shown in FIG. It is detected by the zero cross detection circuit 28, and this signal causes the robot to stop.

さらにまた、本発明の他の実施例について説明する。こ
の近接センサ装置は第3図に示した信号処理回路にピー
ク値検出回路18と補正回路19全付加して構成したも
のである。このように構成することによって、反射形フ
ォトセンサ1の特性が対象物の表面状態によって若干信
号の大きさが変動しているとしても、対象物の表面状態
の違いによって生ずる信号の大きさの変動を消去するこ
とができる。ロボットが衝突回避すべき対象があらかじ
め決っているときは非常に有効である。
Furthermore, other embodiments of the present invention will be described. This proximity sensor device is constructed by adding a peak value detection circuit 18 and a correction circuit 19 to the signal processing circuit shown in FIG. With this configuration, even if the characteristic of the reflective photosensor 1 is that the signal magnitude varies slightly depending on the surface condition of the object, the fluctuation in the signal magnitude caused by the difference in the surface condition of the object can be avoided. can be erased. This is very effective when the object that the robot should avoid colliding with is determined in advance.

即ち、ロボットハンドをゆりくシと対象物に近づけて、
銑流回路11の出力のピーク値をピーク検出回路18で
検出し、記憶しておき、この信号で、補正回路19にお
いて運転中の整流回路1ノの出力を正規するようにすれ
ば、対象物の色や仕上面の相異による信号の変動全消去
することができる。このような構成は、第4図あるいは
第5図に示した回路にも適用できることは云うまでもな
い。またこの信号の補正は、計算機で行ってもよい。
In other words, slowly bring the robot hand closer to the object,
If the peak value of the output of the pig iron flow circuit 11 is detected and stored in the peak detection circuit 18, and the output of the rectifier circuit 1 in operation is normalized in the correction circuit 19 using this signal, the target Signal fluctuations due to differences in color or surface finish can be completely eliminated. It goes without saying that such a configuration can also be applied to the circuit shown in FIG. 4 or FIG. 5. Further, this signal correction may be performed by a computer.

この発明のさらに他の実施し1]について説明する。こ
の実施レリは、第8図に示すように、ロボットハンド5
の把持物の存在の有無と、第9図に示すように、フィン
ガー6と把持物7との間の距離の両方を知るように構成
したものである。
Still another embodiment 1 of the present invention will be described. In this implementation, as shown in FIG.
The device is configured to know both the presence or absence of a gripped object and the distance between the finger 6 and the gripped object 7, as shown in FIG.

すなわち、ロボットハンド5の向い合ったフィンガー6
にそれぞれ、発光ダイオードとフォトトランジスタ全一
体化した反射形フォトセンサ20.21f相対して取シ
つけ、各々のフォトダイオード全それぞれfl 、fl
の異なる周波数の交流電流で発光させ、これらの光全各
々のフォトトランジスタで受光し、相手方の発光ダイオ
ードの発する光の周波数成分の信号の有無によって、フ
ィンガー間の把持物の存在の有無を検知すると同時に、
自分方の発光ダイオードの発す−る光の大きさによって
、フィンガーと把持物間の距離を知るロボット・・ンド
に用いられている近接センサ装置である。
In other words, the opposing fingers 6 of the robot hand 5
Reflective photosensors 20 and 21f each having a light emitting diode and a phototransistor integrated are mounted opposite each other, and each photodiode is fl and fl, respectively.
The light is emitted using alternating currents with different frequencies, and all of these lights are received by each phototransistor, and the presence or absence of a signal of the frequency component of the light emitted by the other light emitting diode is used to detect the presence or absence of an object held between the fingers. at the same time,
This is a proximity sensor device used in robots that can determine the distance between a finger and an object it is holding based on the intensity of light emitted by its own light emitting diode.

このように構成することによって、同じセンサで、フィ
ンガー間の把持物の存在の有無とフィンガーと把持物間
の距離の両方が同時に計測できることになシ、センサ孕
取シつける場合の空間的制約全克服できると同時に、ロ
ボットハンドに沿わせるリード線の数も少なくできる効
果がある。
With this configuration, the same sensor can simultaneously measure both the presence or absence of a gripped object between the fingers and the distance between the fingers and the gripped object. At the same time, it has the effect of reducing the number of lead wires that the robot hand must follow.

すなわち、この反射形フォトセンサ20゜21は、ロボ
ットハンドのフィンガー6.6に相対して設けられ、反
射形フォトセンサ21の発光ダイオードには、周波数f
1の交ME電流奮、反射形フォトセンサ22の発光ダイ
オードには周波数f2の交流電流を流して、各々の光束
22.23が互いに相手方のフォトトランジスタに到達
するように構成されている。
That is, this reflective photosensor 20° 21 is provided facing the finger 6.6 of the robot hand, and the light emitting diode of the reflective photosensor 21 has a frequency f.
An alternating current of frequency f2 is applied to the light emitting diode of the reflective photosensor 22, so that each light flux 22 and 23 reaches the phototransistor of the other.

しかるにフィンガー6の間に把持物7が存在する場合は
、光束22.23は把持物7の表面で反射され自分力の
フォトトランジスタに入射する。
However, when a gripped object 7 is present between the fingers 6, the light beams 22 and 23 are reflected by the surface of the gripped object 7 and enter the self-powered phototransistor.

したがって、反射形フォトセンサ2oのフォトトランジ
スタ出力の12成分と反射形フォトセンサ21のフォト
トランジスタ出力のfl成分の有無によってフィンガー
6間の把持物7の有無が検出できる。もし把持物が硝子
のような透明物質で出来ている場合は、反射光と透過光
の両方がフォトトランジスタに入射することになシ、各
々のフォトトランジスタ出方に周波数fl及び周波数f
2の2成分が含まれるが否かによって把持物7の存在が
検出できる。
Therefore, the presence or absence of the object 7 held between the fingers 6 can be detected based on the presence or absence of the 12 components of the phototransistor output of the reflective photosensor 2o and the fl component of the phototransistor output of the reflective photosensor 21. If the object to be held is made of a transparent material such as glass, both reflected light and transmitted light will be incident on the phototransistor, and each phototransistor will have a frequency fl and a frequency f.
The presence of the grasped object 7 can be detected depending on whether or not the two components No. 2 are included.

一方、把持物7からの反射光束による把持物迄の距離を
測定する手段は前述した実施例と同様に構成されている
On the other hand, the means for measuring the distance to the held object using the reflected light beam from the held object 7 is constructed in the same manner as in the embodiment described above.

この実施例の信号処理回路は、第10図に示すように、
一方のフィンが−6に設けられている反射形フォトセン
サ20の発光ダイオード24には周波数f2の交流電源
回路25が接続され、光束22を発光するようになって
いて、受光用のフォトトランジスタ26には周波数12
の信号のみを選択する選択増幅回路27と整流回路28
および比較回路29が接続され、近接距離が出力端30
から検出されるようになっている。他方のフィンガー6
に設けられている反射形フォトセンサ21には発光ダイ
オード3ノを周波数ftで発光させる交流電源回路32
と、フォトトランジスタ33の受光信号の周波数fx 
、fzに同調された選択増幅回路34.35、整流回路
36.37および比較回路38で構成されている。すな
わち整流回路37の出力39の有無で把持物の有無が、
比較回路38の出力40の大きさでフィンが−6と把持
物7間の距離が判る。この交流電源回路32の周波数1
1と距N1.全検出する側の選択増幅回路34の同調周
波数は等しく構成されている。
The signal processing circuit of this embodiment is as shown in FIG.
An AC power supply circuit 25 with a frequency of f2 is connected to the light emitting diode 24 of the reflective photosensor 20 whose one fin is provided at -6, and is adapted to emit a luminous flux 22, and a phototransistor 26 for light reception. has a frequency of 12
A selection amplification circuit 27 and a rectification circuit 28 that select only the signal of
and comparison circuit 29 are connected, and the proximity distance is the output end 30.
It is now detected from other finger 6
The reflective photosensor 21 provided in the
and the frequency fx of the light reception signal of the phototransistor 33
, fz, selective amplifier circuits 34, 35, rectifier circuits 36, 37, and comparison circuit 38. In other words, the presence or absence of the held object depends on the presence or absence of the output 39 of the rectifier circuit 37.
The distance between the fin -6 and the object 7 can be determined from the magnitude of the output 40 of the comparison circuit 38. Frequency 1 of this AC power supply circuit 32
1 and distance N1. The tuning frequencies of all the selective amplifier circuits 34 on the detection side are configured to be equal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成の一部金示す斜視図、第2図は本
発明をロボットハンドに応用した例の一部切欠の正面図
、第3図は本発明の構成の信号処理回路を示すブロック
図、第4図および第5図は本発明の他の実施例全示す信
号処理回路のブロック図、第6図は特性図、第7図は本
発明の他の実施列?示す信号処理回路のブロック図、第
8図および第9図は本発明全ロボットハンドに応用した
他の例の一部切欠の正面図、第10図は本発明の他の笑
施例金示す信号処理回路のブロック図である。 1.20.21川反射形フォトセンサ、2゜24.31
・・・発光ダイオード、3,26,3311.フォトト
ランジスタ、9,25.32・・・交流電源回路、10
,27,34.35・・・選択増幅回路、11,26,
36.37川整流回路、12.29.38・・・比較回
路。 出願人代理人 弁理士 鈴 江 武 彦第2図 第6図 tンサーとF分生物Eめ間め巽1%ffi(mm)第 
7 図 9Re、聞 第9図
Fig. 1 is a perspective view showing a part of the structure of the present invention, Fig. 2 is a partially cutaway front view of an example in which the invention is applied to a robot hand, and Fig. 3 is a signal processing circuit of the structure of the present invention. 4 and 5 are block diagrams of signal processing circuits showing all other embodiments of the present invention, FIG. 6 is a characteristic diagram, and FIG. 7 is a block diagram of another embodiment of the present invention. 8 and 9 are partially cutaway front views of another example in which the present invention is applied to a complete robot hand, and FIG. 10 is a block diagram of a signal processing circuit shown in another embodiment of the present invention. FIG. 2 is a block diagram of a processing circuit. 1.20.21 River reflection type photosensor, 2゜24.31
...Light emitting diode, 3,26,3311. Phototransistor, 9, 25. 32... AC power supply circuit, 10
, 27, 34. 35... selection amplification circuit, 11, 26,
36.37 River rectifier circuit, 12.29.38... Comparison circuit. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Figure 6
7 Figure 9Re, Listen Figure 9

Claims (1)

【特許請求の範囲】[Claims] 発光素子と受光素子と金有する反射形フォトセンサと、
この反射形フォトセンサの発光素子を周波数fの交流電
流で発光させる交流電源と、前記反射形フォトセンサの
受光素子に入射する光束のうち前記周波数fの成分のみ
金取り出す選択増幅回路と全具備してなること全特徴と
する近接センサ装置。
a reflective photosensor having a light emitting element, a light receiving element and a metal;
It is fully equipped with an AC power source that causes the light emitting element of the reflective photosensor to emit light with an alternating current of frequency f, and a selective amplification circuit that extracts only the component of the frequency f of the luminous flux incident on the light receiving element of the reflective photosensor. Proximity sensor device with all the features.
JP59063593A 1984-03-31 1984-03-31 Proximity sensing apparatus Pending JPS60207081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063593A JPS60207081A (en) 1984-03-31 1984-03-31 Proximity sensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063593A JPS60207081A (en) 1984-03-31 1984-03-31 Proximity sensing apparatus

Publications (1)

Publication Number Publication Date
JPS60207081A true JPS60207081A (en) 1985-10-18

Family

ID=13233718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063593A Pending JPS60207081A (en) 1984-03-31 1984-03-31 Proximity sensing apparatus

Country Status (1)

Country Link
JP (1) JPS60207081A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309882A (en) * 1987-06-12 1988-12-16 Stanley Electric Co Ltd Optical obstacle detecting device
JPH02114312A (en) * 1988-10-24 1990-04-26 Yokogawa Electric Corp Optical detector
FR2694457A1 (en) * 1992-07-31 1994-02-04 Chebbi Brahim Semiconductor laser for the detection of light radiation, process for obtaining a photosensitive detector, and application of such a laser to the detection of light radiation.
JP2017207303A (en) * 2016-05-16 2017-11-24 日本精工株式会社 Proximity sense sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150876A (en) * 1982-03-03 1983-09-07 Mitsubishi Electric Corp Reflecting type light sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150876A (en) * 1982-03-03 1983-09-07 Mitsubishi Electric Corp Reflecting type light sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309882A (en) * 1987-06-12 1988-12-16 Stanley Electric Co Ltd Optical obstacle detecting device
JPH0555824B2 (en) * 1987-06-12 1993-08-18 Stanley Electric Co Ltd
JPH02114312A (en) * 1988-10-24 1990-04-26 Yokogawa Electric Corp Optical detector
FR2694457A1 (en) * 1992-07-31 1994-02-04 Chebbi Brahim Semiconductor laser for the detection of light radiation, process for obtaining a photosensitive detector, and application of such a laser to the detection of light radiation.
EP0583191A1 (en) * 1992-07-31 1994-02-16 Brahim Chebbi Semiconductor laser used as a light detector and its application in an optical detection system
JP2017207303A (en) * 2016-05-16 2017-11-24 日本精工株式会社 Proximity sense sensor

Similar Documents

Publication Publication Date Title
US4766322A (en) Robot hand including optical approach sensing apparatus
US4936676A (en) Surface position sensor
FR2761772B1 (en) MICRO-MACHINED INDUCTIVE SENSOR, PARTICULARLY FOR MEASURING THE POSITION AND/OR MOVEMENT OF AN OBJECT
US6392247B1 (en) Sensor and detection system having wide diverging beam optics
JPS60207081A (en) Proximity sensing apparatus
US4649270A (en) Photo-electric object detector having removable field stop means
US4991509A (en) Optical proximity detector
JP2005063184A (en) Self-propelled moving device and position correction method
JP2003099189A5 (en)
Wang et al. Research on robot obstacle avoidance method on PSD and sonar sensors
JPS62105207A (en) Guiding device for mobile robot
JPS6225210A (en) Distance detecting equipment
Li et al. A DSP Based Non-Vision Sensor Data Acquisition System for Autonomous Mobile Robot
JPS63243709A (en) Measuring apparatus for distance
JPH06118178A (en) Object detector
JPH0412804B2 (en)
JPS615485U (en) Paper detection device
JPH0587509U (en) Gap measuring device
SU901821A1 (en) Touch-free position pickup
JPH05150897A (en) Three-diemsional digitizer
JPS63243710A (en) Measuring apparatus for distance
JP2542257B2 (en) Position and heading measurement system for mobile
JP2895922B2 (en) Optical distance measuring device
RO138060A2 (en) Equipment for on-line measuring the air gap of medium- and high-power rotary electric machines
SU1033869A1 (en) Wire diameter touch-free measuring device