JPS60206580A - Method for shielding inside welding surface - Google Patents

Method for shielding inside welding surface

Info

Publication number
JPS60206580A
JPS60206580A JP6252784A JP6252784A JPS60206580A JP S60206580 A JPS60206580 A JP S60206580A JP 6252784 A JP6252784 A JP 6252784A JP 6252784 A JP6252784 A JP 6252784A JP S60206580 A JPS60206580 A JP S60206580A
Authority
JP
Japan
Prior art keywords
welding
welded
shielding gas
shielding
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6252784A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimura
藤村 浩史
Eizo Ide
栄三 井手
Jun Izumi
順 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6252784A priority Critical patent/JPS60206580A/en
Publication of JPS60206580A publication Critical patent/JPS60206580A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/325Devices for supplying or evacuating shielding gas

Abstract

PURPOSE:To release a shielding gas from a shielding gas generating source adsorbed with the shielding gas by weld heat and to shield easily an inside welding surface by disposing said generating source right under the butt parts to be welded and welding said parts. CONSTITUTION:Bodies 10a, b to be welded which are two pipe bodies are butted to each other and a shielding gas generating source 11 formed by adsorbing a non-oxidative shielding gas such as Ar into molecular sieves loaded with a chemical such as zeolite is disposed into the pipe right under the parts to be welded consisting of a groove. A welding torch 12 and a filler rod 13 are made to approach to the parts to be welded from above in this state and an arc is formed between the electrode of the torch 12 and the bodies 10a, b by which the base of the welding groove and the rod 13 are melted and mixed and a weld bead 14 is formed. The non-oxidative gas adsorbed to the source 11 is released from said source by the weld heat thereof to shield the rear of the bead 14, by which the defectless weld zone is obtd.

Description

【発明の詳細な説明】 本帖明は、溶接内面シールド方法に関する。[Detailed description of the invention] This chapter relates to a welding inner surface shielding method.

従来、TIG溶接に↓る管の突合せ溶接の鈴の内面シー
ルド方法は、−えば第1図に示すように行っている0図
中1は、突き合わさ几た被溶接管3a、3bの開先部に
溶〃口棒2を用いてTIG溶接を行うTIG)−チであ
る。4は、開先部に肉盛ら几た溶接ビードである。TI
Gトーチ1は1図ボしない溶接電源に接続さnている。
Conventionally, the inner surface shielding method for butt welding of pipes in TIG welding is carried out as shown in Figure 1.1 in Figure 0 shows the grooves of the pipes 3a and 3b to be welded which are butt welded. This is a TIG welding method in which TIG welding is performed using a welding rod 2 on the part. 4 is a weld bead that is overlaid on the groove. T.I.
The G torch 1 is connected to a welding power source that does not appear in the figure.

管3a、3b内には、内面7−ルド治具5が挿入されて
おり、供給源からAr等のシールドガス6t−開先部に
向けて分枝した流路7a・・・7dで供給するようにな
っている。
A shielding jig 5 is inserted into the tubes 3a and 3b, and a shielding gas 6t such as Ar is supplied from a supply source through channels 7a...7d that branch toward the grooves. It looks like this.

すなわち、TIG)−チ1の一部である電極と被溶接管
3b、3bとの間で溶接アークを発生させる。溶接アー
クは、被溶接管3a、3bの溶接開先底部を溶解するが
、溶解した被溶接管3a、3bと同じく溶解した溶那棒
2が混合。
That is, a welding arc is generated between the electrode, which is a part of the TIG)-chi 1, and the pipes to be welded 3b, 3b. The welding arc melts the bottoms of the welding grooves of the welded tubes 3a and 3b, but the melted welded tubes 3a and 3b are mixed with the melted molten rod 2.

凝固して溶接ビード4を形成する。この場合。It solidifies to form a weld bead 4. in this case.

溶接ビード4の裏表面は被溶接管3a、3bの管端から
挿入固定された内面シールド治具5から放出さ几るシー
ルドガス7a、7b、7c。
The back surface of the welding bead 4 is covered with shielding gases 7a, 7b, 7c discharged from the inner surface shielding jig 5 inserted and fixed from the ends of the pipes 3a, 3b to be welded.

7drcよってシールドさ几るため漣全11裏波ピード
が得られる。
Since it is shielded by 7 drc, you can get 11 ura wave speed.

しかしながら、この方法では、内面シールド治具5に被
溶接管3a、3b内に挿入する必要があるためvcb開
口部が必要である。このため。
However, in this method, it is necessary to insert the inner shield jig 5 into the pipes to be welded 3a, 3b, and therefore a vcb opening is required. For this reason.

開口部が無い場合、あるいは開口部があったとしても溶
接部から遠距離にある場合は適用できない欠点がある。
It has the disadvantage that it cannot be applied when there is no opening, or even if there is an opening, it is far away from the welding area.

また、第2図は、細管を用いる従来の内面シールド方法
を示している。第2図中、1は扇述と同様KTIG)−
チ、2は溶加棒% 3a。
Moreover, FIG. 2 shows a conventional internal shielding method using a thin tube. In Figure 2, 1 is KTIG (same as the fan)-
H, 2 is filler rod % 3a.

3bは仮溶接管、4は溶接ビードである。5aは開先に
開口さnたルートギャップ(1〜3扉m)に挿入された
細管である。細管5avcはArなどのシールドガス6
が供給され、流路7 e 、 7fに分枝さnて溶接ビ
ード4の裏面の酸化を防止するようになっている。
3b is a temporarily welded pipe, and 4 is a weld bead. 5a is a thin tube inserted into the root gap (doors 1 to 3) opened in the groove. The thin tube 5avc is filled with shielding gas 6 such as Ar.
is supplied and branched into channels 7e and 7f to prevent oxidation of the back surface of weld bead 4.

しかしながら、この方法では、ルートギャップを利用し
て細管5at−挿入するため密着した開先の場合は当然
適用できない、また、ルートギャップがある場合でも、
溶接が進行するにつれてルートギャップは次々に溶接ビ
ード4によって埋めらnる。このため初層溶接終了直 
には細管5at−引き抜かざるを得す、内面シールドが
不完全となり、しばしば溶接欠陥を発生する欠点がある
However, since this method utilizes the root gap to insert the thin tube 5at-, it cannot be applied when the grooves are in close contact, and even when there is a root gap,
As welding progresses, the root gap is successively filled by weld beads 4. Therefore, immediately after the first layer welding
However, since the thin tube 5at has to be pulled out, the inner shield becomes incomplete and welding defects often occur.

本発明は、かかる点に鑑みてなさ几たものであり、被溶
接体の形状寸法に左右さnず、しかも健蚕す溶接部を容
易に得ることができる溶接内面シールド方法を提供する
ものである。
The present invention has been devised in view of these points, and provides a method for shielding the inner surface of welding, which is independent of the shape and dimensions of the object to be welded, and which can easily obtain a healthy welded part. be.

即ち、本発明は、被溶接体を突き合せた被溶接部の直下
に、非酸化性のシールドガスr吸着したシールドガス発
生源全設置し、俯記被溶接部に溶接を施すと共に、溶接
の際の熱によって罰記シールドガス発生源から楯記シー
ルドガスを放散させるl客扱内面シールド方法である。
That is, in the present invention, all the shielding gas generation sources adsorbing non-oxidizing shielding gas r are installed directly below the welded part where the welded objects are brought together, and the welding is carried out on the welded part. This is a customer-friendly internal shielding method that dissipates the shielding gas from the source of the shielding gas using the heat generated during the process.

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

先ず、第3図に示す如く、被溶接体10a。First, as shown in FIG. 3, the object to be welded 10a.

10 aである2本の管体を突き合せる0次いで、突き
合せ部に形成された開先からなる被溶接部の直下に対応
する管体の内部にシールドガスを吸着したシールドガス
発生源11を設置する。
10 a Butt the two tubes together Next, place the shield gas generation source 11 that adsorbs the shield gas inside the tube corresponding to the part to be welded, which is the groove formed in the butt part. Install.

ここで、シールドガスは%列えばIrOような非酸性の
ガスである。また、シールドガス発 i生唾11は、常
温でシールドガス茫吸着して捕獲しているが、溶接時の
熱等が加わると吸着作用を解除してシールドガスを放散
する機能を有するものであり1例えば固形化したケミカ
ルロープイツトモレキュラーシーブで構成されている。
Here, the shielding gas is a non-acidic gas such as IrO. In addition, the raw saliva 11 that generates shielding gas adsorbs and captures the shielding gas at room temperature, but when heat during welding is applied, the adsorption action is released and the shielding gas is released. For example, it is composed of solidified chemical ropes and molecular sieves.

以下、ケミカルロープイツトモレキュラーシーブについ
て説明する。
The chemical rope molecular sieve will be explained below.

nt−担持金属Me(例えばNa )の価数とし。nt - the valence of the supported metal Me (e.g. Na).

” O* / S 102 =: rnとすると化学式
Me(−)−(入1(h)m”8fox で表わさnる
ゼオライトと総称さルるアミノシリケート化合物の1群
が存在する。これらの化合物は三次元の網目構造を有す
るため、INaす、数百m2の挟着表面積を有し、極め
て良好な吸着能を示す、さらに、被吸着ガスの侵入する
細孔は窓(Window)と称され、その径は担持する
金属の種類によって変わる。−例として工業的に多用さ
n1bh型ゼオラ2 イトMe () ・CIylO宜)t*・(S iot
 ) nでは5Aと各々違う。
``O* / S 102 =: If rn, then there is a group of aminosilicate compounds collectively called zeolites, represented by the chemical formula Me(-)-(1(h)m''8fox).These compounds are Because it has a three-dimensional network structure, INa has a sandwiching surface area of several hundred m2 and exhibits extremely good adsorption ability.Furthermore, the pores through which the adsorbed gas enters are called windows. Its diameter varies depending on the type of metal supported.-For example, the industrially frequently used n1bh type zeola
) n is different from 5A.

このため窓径よりも小さな分子は吸着さ几るが、大きな
分子は吸着さnないので、ちょうど静(Sieve)の
様な作用をし、ゼオライトのことを分子vP(Mole
cular 5ieve)と称する場合もある。この性
質t一応用したものがクミ力ルローデッドモレキュラー
シーブスである。
For this reason, molecules smaller than the window diameter are adsorbed, but larger molecules are not adsorbed, so it acts just like a sieve, and zeolite is called molecular vP (Mole).
It is sometimes called curar 5ieve). Kumi's loaded molecular sieves are an application of this property.

つまり、窓径よりもわずかに分子の大きいガスを高温高
圧下で吸着させると、高密度で吸着剤に封じ込めらnで
常温大気圧にもどしてもそのまま保持されるが、再び高
温に加熱するとガスが放出される現象があり、この様な
機能を有するゼオライトをケミカルロープツトモレキュ
ラーシーブスと称している。
In other words, if a gas whose molecules are slightly larger than the window diameter is adsorbed at high temperature and pressure, it will not be confined in the adsorbent at high density and will remain as it is even if the temperature is returned to normal temperature and atmospheric pressure. Zeolites with such functions are called chemical rope molecular sieves.

その−クリを以下に示す。The chestnut is shown below.

Arは希ガスの一種であるか原子直径は3゜4A程度で
ある。一方、K−Aビオライトは罰述の様に龜径3Aで
あるため通常Arは吸着しない、しかし、温度350℃
、圧力2.600ataで1’−r’<K−Aゼオライ
トに接触させると1gあたり標準状態で1oocI!L
8程度のAr?!″吸着し。
Ar is a type of rare gas and has an atomic diameter of about 3°4A. On the other hand, K-A biolite has a diameter of 3A as mentioned above, so it usually does not adsorb Ar, but at a temperature of 350°C.
, when contacted with 1'-r'<K-A zeolite at a pressure of 2.600 ata, 10ocI per gram under standard conditions! L
Ar about 8? ! ``Adsorb.

呈温で3り月装置しても20%程度の自然放出に留まる
。こfL+a−250℃程度に加熱すると大部分のAr
1d放出さする。
Even if the device is used at different temperatures, the spontaneous release remains at around 20%. When heated to fL+a-250℃, most of the Ar
Release 1d.

而して、複数接部の上方に溶接トーチ12と溶加棒13
を近づけ1図示しない溶接電源から溶接トーチ12の一
部である′を極と被溶接体10 a 、 10 bとの
[田に溶接アークを発生させる。
Thus, a welding torch 12 and a filler rod 13 are placed above the multiple joints.
1, a part of the welding torch 12 is brought close to the welding power source (not shown), and a welding arc is generated between the electrode and the objects to be welded 10a and 10b.

溶接アークは、被溶接体10 a 、 10 bの溶接
開先底部を溶解するが溶解した被溶接体10 a 、 
10 bと同じく溶解した溶加棒13が混合、凝固して
溶接ビード14を形成する。
The welding arc melts the bottom of the welding groove of the objects to be welded 10a, 10b, but the melted objects to be welded 10a,
Similarly to 10b, the melted filler rod 13 is mixed and solidified to form a weld bead 14.

この溶接によって開先部のルートギャップやキーホール
を貫通したアーク、或は溶接ビードの輻射熱にエリシー
ルドガス発生源11が加熱さfL、、 pLr 等の非
酸化性ガスが発生する。このため、溶接ビード14の裏
面は空気がらシールドさ′fL、健全な溶接部が得らn
る。゛また。溶接後には、シールドガス発生源1)は、
被溶接体10 a 、 10 bの端部から空気、水1
等を挿入することにより、容易に排出さnる。
By this welding, the Elishield gas generation source 11 is heated by the arc penetrating the root gap and keyhole of the groove, or by the radiant heat of the weld bead, and non-oxidizing gases such as fL, pLr, etc. are generated. Therefore, the back surface of the weld bead 14 is shielded from air, making it impossible to obtain a sound weld.
Ru.゛Again. After welding, the shielding gas source 1) is
Air and water 1 from the ends of the objects to be welded 10 a and 10 b
etc., it can be easily ejected.

なお、本発明方法は、TIG溶接、MIG溶接1M入G
溶接、プラズマ溶接、被僅アーク溶接8等め裏波溶接の
内面シールドに適用できるものである。
Note that the method of the present invention is applicable to TIG welding, MIG welding with 1M
It can be applied to inner shields for welding, plasma welding, slight arc welding, and Uranami welding.

また、第4図は、本発明方法の他の例を示している。こ
の例では、シールドガス発生源15としてケミカル口−
デイツドモレキュラーノーブをグラスウール、プラスチ
ック、水16紙等からなる多孔質容器15a内に収容し
たものを1吏用している。その他の点は、実施例のもの
と同様であるので、説明を省略する。
Moreover, FIG. 4 shows another example of the method of the present invention. In this example, a chemical port is used as the shielding gas generation source 15.
One container is used in which a dated molecular knob is housed in a porous container 15a made of glass wool, plastic, water paper, or the like. The other points are the same as those of the embodiment, so the explanation will be omitted.

このような他の実施ψりのものでも、アーク熱や溶接ビ
ード14からの輻射熱によ2て、多孔質容器15aから
シールドガス(例え14Ar)が放出さnる。放出さA
H/(シールドガスは、被溶接体10 a 、 1θb
の内面と多孔質容器15aで形成さnる空間に滞留する
ため、効率良く溶接ビード14の裏面をシールドするこ
とができるものである。
Even in such other embodiments, shielding gas (for example, 14Ar) is released from the porous container 15a due to arc heat or radiant heat from the weld bead 14. released A
H/(shielding gas is welded object 10a, 1θb
Since it remains in the space formed by the inner surface of the porous container 15a and the porous container 15a, the back surface of the weld bead 14 can be efficiently shielded.

以上説明した如く、本発明に係る溶接内面シフiレド方
法によれば、被溶接体の形状寸法に左右されず、しかも
健全な溶接部を容易に得ることができるものである。
As explained above, according to the weld inner surface sifting method according to the present invention, it is possible to easily obtain a sound welded portion regardless of the shape and dimensions of the object to be welded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、従来の内面シールド方法により管
の突合せ溶接を行なっている状態を示す説明図、第3図
は1本発明方法を示す説明図、第4図は、本発明の他の
例?示す説明図である。 IQ a e 10 b・・・被溶接体、11・・・シ
ールドガス発生源、12・・・溶接トーチ、13・・・
溶加棒。 14・・・溶接ビード、15・・・シールドガス発生源
、J5a・・・多孔質容器。 出願人復代理人 弁理士 鈴 江 武 彦第1図 す 第2図 升 6 第3図 1 第4図
1 and 2 are explanatory diagrams showing the state in which pipes are butt welded using the conventional inner shielding method, FIG. 3 is an explanatory diagram showing the method of the present invention, and FIG. 4 is an explanatory diagram showing the method of the present invention. Other examples? FIG. IQ a e 10 b... object to be welded, 11... shield gas generation source, 12... welding torch, 13...
Adder rod. 14... Welding bead, 15... Shield gas generation source, J5a... Porous container. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 2 Box 6 Figure 3 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 被溶接体を突き合せた被溶接部の直下に、非酸化性のシ
ールドガスを吸着したシールドガス発生源を設置し、前
記被溶接部に溶接を施すと共に、溶接の際の熱によって
前記シールドガス発生源から臀1記シールドガスを放歌
させることを符徴とする溶接内面シールド方法。
A shielding gas generation source adsorbing non-oxidizing shielding gas is installed directly under the welded part where the welded objects are brought together, and the welding is performed on the welded part, and the shielding gas is generated by the heat during welding. A welding inner shielding method characterized by releasing the shielding gas from the source.
JP6252784A 1984-03-30 1984-03-30 Method for shielding inside welding surface Pending JPS60206580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6252784A JPS60206580A (en) 1984-03-30 1984-03-30 Method for shielding inside welding surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6252784A JPS60206580A (en) 1984-03-30 1984-03-30 Method for shielding inside welding surface

Publications (1)

Publication Number Publication Date
JPS60206580A true JPS60206580A (en) 1985-10-18

Family

ID=13202745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6252784A Pending JPS60206580A (en) 1984-03-30 1984-03-30 Method for shielding inside welding surface

Country Status (1)

Country Link
JP (1) JPS60206580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237067A (en) * 2012-05-15 2013-11-28 Azbil Corp Welding method and welding equipment
JP2013237066A (en) * 2012-05-15 2013-11-28 Azbil Corp Welding method and welding equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127339A (en) * 1977-04-14 1978-11-07 Sansei Kakou Kk Method of welding steel pipe*etc*

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127339A (en) * 1977-04-14 1978-11-07 Sansei Kakou Kk Method of welding steel pipe*etc*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237067A (en) * 2012-05-15 2013-11-28 Azbil Corp Welding method and welding equipment
JP2013237066A (en) * 2012-05-15 2013-11-28 Azbil Corp Welding method and welding equipment

Similar Documents

Publication Publication Date Title
EP1733838B1 (en) Coated welding electrode, method for forming a weld bead, and method for forming a coated welding electrode.
JPS60206580A (en) Method for shielding inside welding surface
JP2006341313A (en) Tig braze welding method using mixture of argon/helium/hydrogen
JP4037914B2 (en) Multi-purpose multi-transition multi-position shield gas for arc welding
JPH04258380A (en) Improved gas shield for welding
KR20010040773A (en) Method for making sealed flux-cored wire for arc welding
JPS6146393A (en) Method for shielding inner face of welding
US3102188A (en) Welding method
US2355988A (en) Weld rod covering
JPS6146397A (en) Flux cored wire
JPH0144226Y2 (en)
US3243569A (en) Electric arc welding flux and method
JPS60210396A (en) Backing material for welding
JPS60203396A (en) Coated electrode
US3673373A (en) Weld support for welding apparatus
CN214161710U (en) Arc welding equipment with protection function
US1738246A (en) Cutting electrode
JPS5823591A (en) Production for small diameter metallic tube involving plastic coated filament material
JPH05318111A (en) Manufacture of long sized metal pipe for power cable
JPS5913951B2 (en) Melting type flux for submerged arc welding
JPH01210172A (en) Fusion welding method for resin laminated metal plates
JPH0239345B2 (en)
JPS58187276A (en) Electronic beam welding method
JPS591519B2 (en) Manufacturing method of ultra-low hydrogen coated arc welding rod
JPH03198996A (en) Manufacture of flux-cored wire for arc welding excellent in arc welding characteristic