JPS60206568A - Welding method of stainless steel build-up metal - Google Patents

Welding method of stainless steel build-up metal

Info

Publication number
JPS60206568A
JPS60206568A JP6429184A JP6429184A JPS60206568A JP S60206568 A JPS60206568 A JP S60206568A JP 6429184 A JP6429184 A JP 6429184A JP 6429184 A JP6429184 A JP 6429184A JP S60206568 A JPS60206568 A JP S60206568A
Authority
JP
Japan
Prior art keywords
metal
welding
build
welding method
overlay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6429184A
Other languages
Japanese (ja)
Inventor
Tokuichi Hazama
狹間 徳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP6429184A priority Critical patent/JPS60206568A/en
Publication of JPS60206568A publication Critical patent/JPS60206568A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding

Abstract

PURPOSE:To improve uniformly resistance to a peeling crack by welding a base metal at suitable intervals by a build-up welding method then subjecting the remaining un-welded part to build-up welding by a welding method in which heat input quantity is relatively low. CONSTITUTION:A build-up metal 3 is formed to a base metal 1 by a stainless steel build-up welding method to be executed by using a belt-like electrode. The build-up metals 3 are successively formed at suitable intervals. The un-welded part remaining between the beads is subjected to build-up welding by a welding method in which a filler metal 5 is used and the heat input quantity is relatively low. Bead lap parts 6 are thus formed. The deposition of much intergranular carbide in the part near the boundary with the base metal on the previously welded build-up metal side is averted and the decrease in the hardness in the softened area in the weld heat affected zone of the base metal is suppressed by applying the low heat input welding method to the bead lap parts where the peeling crack is most liable to arise.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ハイドロクララキンク・リアクタのように
、高温高圧水素が介在する圧力容器において、その内面
にオーヌテナイト系ヌテンレ7鋼肉盛金属を施すヌテン
レヌ鋼肉盛金属の溶接方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is a pressure vessel in which high-temperature, high-pressure hydrogen is present, such as a hydroclara kink reactor, in which an overlay metal of autenitic Nutenre 7 steel is applied to the inner surface of the vessel. This invention relates to a method of welding Nutenrenu steel overlay metal.

〔従来技術〕[Prior art]

通常、高温高圧水素が介在する圧力容器には、母材とし
て水素侵食防止の観点からクロム・モリブデン鋼が使用
され、また、その内面には硫化水素に対する防食をはか
る目的でオーヌテナイト系ヌテンレヌ鋼の肉盛溶接が行
なわれている。
Normally, chromium-molybdenum steel is used as the base material for pressure vessels in which high-temperature, high-pressure hydrogen is present, from the perspective of preventing hydrogen corrosion, and the inner surface is made of autenitic Nutenrenu steel for the purpose of preventing corrosion from hydrogen sulfide. Mold welding is being performed.

そして、この高温高圧容器が操業状態にある時点では、
肉盛金属ならびに母材のそれぞれにおいて、容器内面か
ら入りこんできた水素原子が外面側に向って拡散しつつ
も、溶解限度内で固溶している。ところが、圧力容器の
操業停止時あるいは操業停止後においては、外部に数比
されきれずに肉盛金属中や母材中に残留した水素原子が
、温度降下に伴う水素溶解度の低下によりかなり過飽和
な状態で存在する。しかも、冷却後の水素濃度分布につ
いて数値解析を行なった結果、水素原子は冷却後、肉盛
金属と母材との境界部から少し内盛金属側に寄った位置
に集積しており、はく離割れの発生位置とこの水素濃度
のピーク位Igとがほぼ一致していることも明らかであ
る。
When this high-temperature, high-pressure vessel is in operation,
In each of the overlay metal and the base material, hydrogen atoms that have entered from the inner surface of the container diffuse toward the outer surface, but remain in solid solution within the solubility limit. However, when or after the operation of a pressure vessel is stopped, the hydrogen atoms remaining in the overlay metal or base material without being transferred to the outside become considerably supersaturated due to the decrease in hydrogen solubility accompanying the temperature drop. exist in a state. Moreover, as a result of numerical analysis of the hydrogen concentration distribution after cooling, it was found that after cooling, hydrogen atoms were accumulated at a position slightly closer to the inner fill metal side from the boundary between the overlay metal and the base metal, which caused delamination. It is also clear that the generation position of hydrogen almost coincides with the peak position Ig of this hydrogen concentration.

さらに、はく離割れは、境界部近傍におけるこのピーク
水素濃度値がある一定の値を超える条件の下でのみ発生
することが、実験室的にもはく離割れ発生事例の解析の
面からも確められておシ、水素原子の著しい局部的集積
がはく離割れを引起こす第1の要因になっていると考え
られる。
Furthermore, it has been confirmed both in the laboratory and through the analysis of cases where delamination cracks occur that delamination cracks occur only under conditions where this peak hydrogen concentration near the boundary exceeds a certain value. It is believed that the significant local accumulation of hydrogen atoms is the primary cause of delamination cracking.

一方、はく離割れが発生する境界部近傍の肉盛金属中粗
大粒粒界や境界部の粒界には、溶接時あるいは溶接後熱
処理時に、ホ相側から移動した炭素が炭化物を形成して
おり、この炭化物の周辺にはミクロボイドが存在してl
/−1ル。
On the other hand, carbon migrated from the E-phase side during welding or post-weld heat treatment forms carbides at the coarse grain boundaries in the overlaid metal near the boundaries where delamination cracks occur and at the grain boundaries at the boundaries. , microvoids exist around this carbide, and l
/-1 le.

はく離割れは、冷却時に極めて過飽和な状態で集積した
水素原子がミクロボイド中で分子化(気体化)し、その
圧力がミクロボイドを巨視的な空隙へと押し拡げていっ
た結果形作られたものであると考えられる。その惹味で
粒界炭化物の存在もはく離割れ発生の大きな原因の一つ
として挙げられる。
Delamination cracks are formed as a result of hydrogen atoms accumulated in an extremely supersaturated state being molecularized (gasified) in microvoids during cooling, and the resulting pressure forces the microvoids to expand into macroscopic voids. it is conceivable that. The presence of grain boundary carbides is also cited as one of the major causes of delamination cracking.

以上に述べたように、はく離割れの発生原因として、発
生位置である肉盛金属と母材との境界部近傍(肉盛金属
側)において起こる次の2つの現象を挙げることができ
る。
As described above, the following two phenomena that occur near the boundary between the overlay metal and the base material (on the overlay metal side), which are the occurrence positions, can be cited as causes for the occurrence of delamination cracks.

(1)/l?i却時に残留した水素原子の著しい集積(
2)溶接時や溶接後熱処理時に起こる粒界炭化物の析出 前者の水素原子の集積量は、高温保持時に肉盛金属中や
母材中に固溶していた水素量に依存するだけでなく、母
材・溶接熱影響部の硬さによっても大きな影響を受ける
(1)/l? Significant accumulation of hydrogen atoms remaining during cooling (
2) The amount of hydrogen atoms accumulated in the former grain boundary carbide precipitation that occurs during welding and post-weld heat treatment not only depends on the amount of hydrogen dissolved in the overlay metal or base metal during high-temperature holding; It is also greatly affected by the hardness of the base metal and weld heat affected zone.

果により常温付近における水素溶解度は旨くなる。Depending on the result, the hydrogen solubility at around room temperature becomes better.

このような場合には冷却時、母相側の1熱影響部中に吸
蔵される水素量が増し、肉盛金属側に集積する水素風は
減少する。このため溶接熱影響部の硬さが高くなるよう
な施工法を採った場合には、はム、・ く離割れが発生しにくくなる。
In such a case, during cooling, the amount of hydrogen occluded in one heat-affected zone on the parent phase side increases, and the hydrogen wind that accumulates on the overlay metal side decreases. For this reason, if a construction method is used that increases the hardness of the weld heat affected zone, cracks and delamination will be less likely to occur.

まだ、後者の粒界炭化物の析出量は、溶接時には肉盛金
属が受ける後続パス等によるが(サイクルが関係し、溶
接後熱処理時にはその温度や保持時間の影響を受ける。
However, the amount of precipitation of the latter grain boundary carbide depends on the subsequent passes that the overlay metal undergoes during welding (it is related to the cycle, and is affected by the temperature and holding time during post-weld heat treatment).

いずれの場合も炭化物析出量 へか多いほどはく離割れ
発生に怒影響を与えるものと考えられている。
In either case, it is thought that the greater the amount of carbide precipitation, the more it will have a greater effect on the occurrence of delamination cracks.

つぎに、帯状電極を用いる肉盛溶接法で従来から行なわ
れている並列的に肉盛溶接ビードを重ねていく施工法を
第1図に示す。
Next, FIG. 1 shows a construction method in which overlay welding beads are overlapped in parallel, which has been conventionally performed by overlay welding using a strip electrode.

すなわち、母jFA’ (1)に帯状電極(2)により
肉盛金属(3)を形成し、その溶接ビードに隣接して、
約5〜10朋程度重ねながら新しい溶接ビードを置いて
いく。この帯状電極(2)としては、通常50〜150
間幅のものが使われているが、単位長さ溶接するのに要
する入熱量は他の溶接法に比べてかなり高い。
That is, a metal overlay (3) is formed on the base jFA' (1) using a strip electrode (2), and adjacent to the weld bead,
Lay down new weld beads, overlapping them about 5 to 10 tom. This strip electrode (2) usually has a density of 50 to 150
However, the amount of heat input required to weld a unit length is considerably higher than that of other welding methods.

このようにして施工された肉盛金属(3)では、隣合う
溶接ビード重ね部(4)直下の母材・溶接熱影響部に硬
さの低い軟化域が存在する。この軟化域は先に置かれた
肉盛金属の下にあって、後鯖ビード溶接時にその溶接熱
サイクルを受けて形成されたものである。と同時に、同
じ溶接熱サイクルの影響を受けて裏部された肉盛金属側
では、その粒界に炭化物がldF出する。このようにビ
ード重ね部(4)の先に溶接された肉盛金属(3)側に
おいては、他の部分に比べて溶接熱影響部の硬さが低く
、肉盛金属中の粒界に炭化物が多く析出しているという
、はく離割れの発生しやすい条件がそろっている。
In the overlay metal (3) constructed in this manner, a softened region with low hardness exists in the base metal/weld heat affected zone directly below the adjacent weld bead overlapped portion (4). This softened area is located under the previously placed overlay metal and was formed as a result of the welding heat cycle during post-mackerel bead welding. At the same time, under the influence of the same welding thermal cycle, carbides are produced at the grain boundaries on the side of the overlaid metal on the back side. In this way, on the side of the overlay metal (3) welded to the tip of the bead overlapped part (4), the hardness of the weld heat affected zone is lower than that of other parts, and carbides are formed at the grain boundaries in the overlay metal. The conditions that make it easy for delamination cracks to occur are met.

本発明者は、オートクレーブを用いて小型肉盛試験片に
よるはく離割れ再現試験を行なった。従来からの施工法
で溶接した肉盛金属のビード重ね部より採取した試験片
では、はく離割れ書現試験後の切断面の顕微鏡観察によ
って、第2図に示すような位置にはく離割れが発生して
いることが確認された。
The present inventor conducted a delamination crack reproduction test using a small overlay test piece using an autoclave. In a test piece taken from the overlapped bead of overlay metal welded using the conventional construction method, microscopic observation of the cut surface after the delamination crack writing test revealed that delamination cracks had occurred at the locations shown in Figure 2. It was confirmed that

そして、はく離割れが、ビード重ね部の先に溶接された
肉盛金属側の境界部近傍に2いて優先的に発生すること
は、このような再現試験で得られた数多くの実験テーク
により明らかであり、今日1でに報告されたはく離割れ
の発生事例によっても裏向けられている。
Furthermore, it is clear from the numerous experimental takes obtained in such reproduction tests that delamination cracks preferentially occur near the boundary on the side of the overlay metal welded to the tip of the bead overlap. This is also contradicted by the case of delamination cracking reported today.

なお、第2図の溶接法は工し−り1−ロ7ラク肉盛溜接
法、帯状電極寸法は0.4 t X 75wmm、肉盛
金属は347、J’WJI ’11’条件は691℃x
15311、水素暴露条件は(454°C、I’aOk
gf/cy! H−2)X431+で、日ははく離割れ
検出位置、数字ははく離割れ長さOn+)である。
The welding method shown in Fig. 2 is the welding method using 1-7 easy overlay welding, the strip electrode size is 0.4t x 75wmm, the overlay metal is 347, and the J'WJI '11' condition is 691. ℃x
15311, hydrogen exposure conditions were (454°C, I'aOk
gf/cy! H-2) In X431+, the date is the delamination crack detection position and the number is the delamination crack length (On+).

〔発明の目的〕[Purpose of the invention]

この発明は、従来の施工方法のように、帯状電極を用い
た肉盛溶接法で並列的に肉盛溶接ビードな重ねていった
ときに、最もはく離割れが発生しゃすいビード重ね部に
着目し、この部分の耐はく離割れ性を高めることにより
、肉盛金属全体の耐はく離割れ性を向上させることを目
的とする。
This invention focuses on the overlapped part of the bead where delamination cracking is most likely to occur when overlay weld beads are stacked in parallel using the overlay welding method using a strip electrode, as in the conventional construction method. The purpose is to improve the peeling cracking resistance of the entire overlay metal by increasing the peeling cracking resistance of this part.

〔発明の構成〕[Structure of the invention]

この発明は、帯状電極を用いて施工するヌテンレヌ鋼肉
盛溶接方法によシ、肉盛ビード相互の間に適当な間隔を
おいて溶接したのち、ビード相互の間に残された未施工
部分を比較的大〆L量の低い溶接方法によシ肉盛溶接す
ることを特徴とするヌテンレヌ鋼肉盛金属の溶接方法で
ある。
This invention uses a Nutenrenu steel build-up welding method using a strip electrode, and after welding the build-up beads with an appropriate distance between them, the unfinished portions remaining between the beads are welded. This is a method for welding overlay metal of Nutenrenu steel, which is characterized by overlay welding using a welding method with a relatively low amount of L.

〔発明の効果〕〔Effect of the invention〕

したがって、この発明によると、帯状電極を用いる肉盛
溶接法によって先に適当な間隔をあけて溶接しておき、
その後桟された未溶接部分を別に比較的入熱量の低い溶
接法によって肉盛溶接することにより、溶接された肉盛
金属は、帯状電極を用いて施工した溶接ビード中央部に
おいても、低入熱溶接法で施工した溶接金属とのビード
重ね部においても、耐はく離割れ性が均質に向上し、従
来の施工法では圧力容器の操業条件等に制約を加えかね
ないビード重ね部という局所的に肉盛金属の耐はく離割
れ性を低下させていた部分を、なくすことができる。
Therefore, according to the present invention, welding is first performed at appropriate intervals by an overlay welding method using a strip electrode, and
After that, the welded overlay metal is overlaid with a relatively low heat input welding method on the unwelded part of the crosspiece, and the welded overlay metal has a low heat input even in the center of the weld bead performed using a strip electrode. The peeling cracking resistance is uniformly improved even in the bead overlapped area with the weld metal applied by the welding method. It is possible to eliminate the portion that degrades the peeling and cracking resistance of the plated metal.

〔実施例〕〔Example〕

つきにこの発明を、その実施例を示した第3図とともに
説明する。
The present invention will now be explained with reference to FIG. 3 showing an embodiment thereof.

母材(1)に帯状電極を用いて施工するヌテンレヌ鋼肉
盛溶接方法により、肉盛金属(3)を形成するとともに
、適当な間隔をおいて順次肉盛金属(3)を形成し、ビ
ート相互の間に残された未施]=部分を、溶加材(5)
を用いて比較的入熱量の低い溶接方法によシ肉盛溶接し
、ビード重ね部(6)を形成する。
The overlay metal (3) is formed on the base material (1) by the Nutenrenu steel overlay welding method using a strip electrode, and the overlay metal (3) is formed in sequence at appropriate intervals, and the beat The unfinished part left between the filler metal (5)
The bead overlapped portion (6) is formed by overlay welding using a welding method with a relatively low heat input.

なお、帯状電極を用いて施工する肉盛溶接の際に残す間
隔は、帯状電極の寸法ならびに後で未溶接部分に対して
適用される溶接法の種類によって 。
The spacing left when overlaying welding using a strip electrode depends on the dimensions of the strip electrode and the type of welding method that will be applied to the unwelded parts later.

決定する。decide.

そしてこの発明は、はく離割れが最も起こりやすいビー
ド重ね部に低入熱溶接法を適用することにより、先に溶
接した肉盛金属側の母材と境界部近傍に粒界炭化物が多
く析出するのを避け、母材・溶接熱影響部の軟化域にお
ける硬さの低下を抑制する。そしてこれらの効果をもっ
て、この発明はビード重ね部における肉盛金属の耐はく
離割れ性の局所的劣化をなくしている。
In addition, by applying a low heat input welding method to the bead overlapped part where delamination cracking is most likely to occur, this invention prevents the precipitation of many grain boundary carbides near the boundary with the base metal on the previously welded overlay metal side. This prevents the decrease in hardness in the softened region of the base metal and weld heat-affected zone. With these effects, the present invention eliminates local deterioration in the peeling and cracking resistance of the built-up metal in the bead overlapped portion.

そして、この発明を適用したビート重ね部、すなわち帯
状電極を用いて施工した肉盛金属の端部における耐はく
離割れ性は、その肉盛金属中央部における耐はく離割れ
性と同等となる。壕だ、この発明に適用する低入熱溶接
法で溶接された肉盛金属それ自体は、母材・溶接熱影響
部にほとんど軟化域を形成させず、隣接する肉盛金属粒
界に炭化物を析出させないため、その耐はく離割れ性は
帯状電極を用いて溶接した肉盛金属の耐はく離割れ性よ
シもかなシ高い。
The peeling and cracking resistance at the beat overlapping portion to which the present invention is applied, that is, at the end of the overlay metal constructed using the strip electrode, is equivalent to the peeling and cracking resistance at the central portion of the overlay metal. Well, the overlay metal itself welded using the low heat input welding method applied to this invention hardly forms a softened zone in the base metal/weld heat affected zone, and creates carbides at the adjacent overlay metal grain boundaries. Since no precipitation occurs, its resistance to delamination and cracking is even higher than that of overlay metal welded using a strip electrode.

以上に述べたように、はく離割れは、高温高圧水素が介
在する雰囲気の下で肉盛金属および母材中に固溶してい
た水素原子が、冷却後境界部近傍の肉盛金属側に著しく
集積し、極めて過飽和となった水素原子が肉盛金属粒界
に析出している炭化物の周辺で気体化していく過程で発
生するものである。
As mentioned above, delamination cracking occurs when hydrogen atoms that have been solidly dissolved in the overlay metal and the base metal in an atmosphere containing high-temperature, high-pressure hydrogen are deposited on the overlay metal side near the boundary after cooling. This is generated during the process in which hydrogen atoms that have accumulated and become extremely supersaturated are gasified around carbides precipitated at grain boundaries of overlay metal.

そして、従来の施工法では、ビート重ね部の先に溶接し
た肉盛金属側において、境界部近傍の肉盛金属粒界に多
くの炭化物が析出するのを避けられず、母相・溶接熱影
響部には軟化域が形成される。母材・熱影響部の軟化域
は、水素原子をトラップする転位等の存在が少なく、常
温付近での水素溶解度が低いため、結果的に冷却後肉盛
合成側に集積する水素原子の量を増やすことになる。こ
のようなことから従来の施工法ではビード重ね部で肉盛
金属ははく庫割れを発生しやすく、この局所的な朗はく
離割れ性の低い部分の存在が、場合によってははく離割
れを引起こさずに操業できる圧力容器の構造(板厚など
)や操業条件(温度。
In the conventional construction method, it is unavoidable that a large amount of carbide precipitates at the grain boundaries of the overlay metal near the boundary on the side of the overlay metal welded at the end of the bead overlapped part, resulting in the influence of the parent phase and welding heat. A softened area is formed in the area. In the softened region of the base metal/heat-affected zone, there are few dislocations that trap hydrogen atoms, and hydrogen solubility near room temperature is low.As a result, the amount of hydrogen atoms that accumulate on the overlay synthesis side after cooling is reduced. It will be increased. For this reason, in conventional construction methods, overlay metal is prone to delamination cracks in the bead overlapped areas, and the presence of these local areas with low delamination cracking resistance may cause delamination cracks in some cases. The structure (plate thickness, etc.) and operating conditions (temperature, etc.) of a pressure vessel that can be operated without

水素圧、冷却速度など)を制限することになる。(hydrogen pressure, cooling rate, etc.).

この発明は、従来の施工法におけるビード重ね部に対し
て比較的入熱量・の低い溶接法を適用することによシ、
先に溶接した肉盛金属側で肉盛金属粒界に析出する炭化
物の量を減らし、母材・熱影響部に形成される軟化域の
硬さ低下を抑えている。
This invention has been achieved by applying a welding method with a relatively low heat input to the bead overlapped part in the conventional construction method.
The amount of carbide precipitated at the grain boundaries of the overlay metal on the previously welded overlay metal side is reduced, suppressing the decrease in hardness of the softened region formed in the base metal/heat affected zone.

このようにビード重ね部においてはく離割れ発生の要因
となっていた2つの問題点を解消することによって、こ
の部分における肉盛金属の耐はく離割れ性を向上させる
ことができる。
By solving the two problems that caused the occurrence of delamination cracks in the bead overlapping portion in this manner, it is possible to improve the delamination crack resistance of the overlay metal in this portion.

この発明を適用したときの肉盛金属の耐はく離割れ性向
上の効果を、従来の施工法によった場合との比較として
第1表に示す。
Table 1 shows the effect of improving the peeling and cracking resistance of overlay metal when this invention is applied, in comparison with the conventional construction method.

ここでは、先に記したような効果が期待できる低入熱溶
接法として、被覆アーク溶接法(実施例1)と、プラズ
マ溶接法(実施例2)を増剤したときのはく離割れ再現
試験の結果を示している。
Here, as a low heat input welding method that can be expected to have the effects described above, we will present a delamination cracking reproduction test when using a coated arc welding method (Example 1) and a plasma welding method (Example 2) with additives. Showing results.

いずれの溶接法によっても、この発明を適用したときの
肉盛金属の耐はく離割れ性は、従来法で施工した肉盛金
属・ビード重ね部の耐はく離割れ性を上回シ、ビード中
央部の耐はく離割れ性と同等となっている。
Regardless of the welding method, the peeling cracking resistance of the overlaid metal when this invention is applied exceeds the peeling cracking resistance of the overlaid metal/bead overlapped part constructed using the conventional method, and It has the same resistance to peeling and cracking.

第1表 はく離割れ再現試験の結果 性2)帯状電極寸法 0.4tX75v′順注3) 溶
接後熱処理条件 690′CX16h注4) 温度 4
50’cs保持時間゛48h、冷却速度: 400 ’
c/h注5) 割れの有無は超音波探傷試験により冷却
直後から5日を経る間に増加する境界部からのエコー高
さ変化量で判定 X印1割れ発生・・・変化量5.0fIBを超える 。
Table 1 Results of delamination crack reproduction test 2) Strip electrode dimensions 0.4tX75v' Note 3) Post-weld heat treatment conditions 690'CX16h Note 4) Temperature 4
50'cs holding time゛48h, cooling rate: 400'
c/h Note 5) The presence or absence of cracks is determined by the amount of change in the echo height from the boundary that increases over a period of 5 days from immediately after cooling using an ultrasonic flaw detection test. Exceed.

△印 軽微な割れ発生・・・変化量1.0dBを超え5
.0dll以下○印 割れ発生せず・・・変化量1.o
clB以下
△ mark Slight cracking...change exceeds 1.0 dB 5
.. 0 dll or less ○ mark No cracking...Change amount 1. o
clB or less

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶接方法の斜視図、第2図(a)。 (b)は試験片切断面で検出された割れの分布を示す平
面図、正面図、第3図はこの発明のヌテンレヌ鋼肉盛金
属の溶接方法の1実施例の斜視図である。 (1)・・・母材、(3)・・・肉盛金属、(6)・・
・ビード重ね部。 代理人 弁理士 藤田龍太部 第1図 第3図
FIG. 1 is a perspective view of a conventional welding method, and FIG. 2(a). (b) is a plan view and a front view showing the distribution of cracks detected on the cut surface of the test piece, and FIG. 3 is a perspective view of one embodiment of the welding method for overlay metal of Nutenrene steel of the present invention. (1)... Base material, (3)... Overlay metal, (6)...
・Bead overlap part. Agent: Patent Attorney Ryuta Fujita Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] ■ 帯状電極を用いて施工するヌテンレヌ鋼肉盛溶接方
法によシ、肉盛ビード相互の間に適当な間隔をおいて溶
接したのち、ビード相互の間に残された未施工部分を比
較的入熱量の低い溶接方法により肉盛溶接することを特
徴とするヌテンレヌ鋼肉盛金属の溶接方法。
■ With the Nutenrenu steel build-up welding method, which uses a strip electrode, after welding the build-up beads with an appropriate distance between them, the unfinished areas left between the beads are relatively inlaid. A method for welding Nutenrenu steel overlay metal, which is characterized by overlay welding using a welding method with a low amount of heat.
JP6429184A 1984-03-31 1984-03-31 Welding method of stainless steel build-up metal Pending JPS60206568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6429184A JPS60206568A (en) 1984-03-31 1984-03-31 Welding method of stainless steel build-up metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6429184A JPS60206568A (en) 1984-03-31 1984-03-31 Welding method of stainless steel build-up metal

Publications (1)

Publication Number Publication Date
JPS60206568A true JPS60206568A (en) 1985-10-18

Family

ID=13253982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6429184A Pending JPS60206568A (en) 1984-03-31 1984-03-31 Welding method of stainless steel build-up metal

Country Status (1)

Country Link
JP (1) JPS60206568A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105234527A (en) * 2015-11-12 2016-01-13 上海电气核电设备有限公司 Method for performing stainless steel strip-electrode submerged-arc build-up welding on low-alloy parent steel
US20170106470A1 (en) * 2015-10-15 2017-04-20 GM Global Technology Operations LLC Laser beam welding with a spiral weld path having a first order of continuity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170106470A1 (en) * 2015-10-15 2017-04-20 GM Global Technology Operations LLC Laser beam welding with a spiral weld path having a first order of continuity
US10118249B2 (en) * 2015-10-15 2018-11-06 GM Global Technology Operations LLC Laser beam welding with a spiral weld path having a first order of continuity
CN105234527A (en) * 2015-11-12 2016-01-13 上海电气核电设备有限公司 Method for performing stainless steel strip-electrode submerged-arc build-up welding on low-alloy parent steel

Similar Documents

Publication Publication Date Title
US5688419A (en) Method for mitigating residual stresses in welded metal components using high torch travel speeds
US8322592B2 (en) Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
EP1256411B1 (en) Welding method for a welded joint in high strength, ferrite type heat resistant steels
JP6662396B2 (en) Manufacturing method of laser welded joint
US4575611A (en) Method of joining pipes
EP0114893B1 (en) Build-up welding method
JPS60206568A (en) Welding method of stainless steel build-up metal
EP0092621B1 (en) A method for surface-welding of austenitic stainless steel
US2054405A (en) Welding chromium-nickel-titanium steels
JPS62101393A (en) Welding repairing method for carbon steel material or the like
JPS63180377A (en) Manufacture of welding joint
JPH07290244A (en) Method for welding clad steel pipe
JP3751411B2 (en) Dissimilar metal welding method
EP0756643B1 (en) Method for mitigating residual stresses in welded metal components using high torch travel speeds
JPH06320280A (en) Butt welding method for both-side clad plural layer steels
JPS6056478A (en) Prevention of peeling and cracking of build-up metal consisting of austenitic stainless steel
JP2000230996A (en) Repair method for nuclear reactor structure
JPH08281367A (en) Repairing method for anvil
JPS594237B2 (en) Steel wire for gas shield arc welding
JPH0630831B2 (en) Pressure vessel with excellent corrosion resistance and hydrogen delamination cracking resistance
JPH0119999B2 (en)
KR100403384B1 (en) Method of Welding Inconel 690 to Austenitic Stainless Steel Having no Dissimilar Clad Crack
JPS60118372A (en) Build-up welding method of stainless steel to inside surface of pressure vessel
KR20230098270A (en) Nickel-Based Alloys for Pipeline Tube Manufacturing
JP3265037B2 (en) Ni-Mo based TIG welding wire for cryogenic steel