JPS60206441A - Film forming apparatus - Google Patents

Film forming apparatus

Info

Publication number
JPS60206441A
JPS60206441A JP5934384A JP5934384A JPS60206441A JP S60206441 A JPS60206441 A JP S60206441A JP 5934384 A JP5934384 A JP 5934384A JP 5934384 A JP5934384 A JP 5934384A JP S60206441 A JPS60206441 A JP S60206441A
Authority
JP
Japan
Prior art keywords
liquid
film
carrier
temperature
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5934384A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Hirohide Munakata
博英 棟方
Yoshinori Tomita
佳紀 富田
Yutaka Hirai
裕 平井
Masahiro Haruta
春田 昌宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5934384A priority Critical patent/JPS60206441A/en
Publication of JPS60206441A publication Critical patent/JPS60206441A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To enlarge the degree of freedom in the planning of a monomolecular built-up film, in a film forming apparatus by Langmuir Blodgett's technique, by providing a detection means for detecting the temp. difference of the liquid and the carrier in a film forming development liquid tank. CONSTITUTION:After a liquid 10' (a liquid for forming a monomolecular film) is poured in a water tank 1, the surface temp. of the liquid is held to a predetermined temp. Subsequently, a desired film forming molecule group is dripped on the liquid surface 10 to develop the monomolecular film on the liquid surface 10. Then, desired surface pressure is applied to the monomolecular film by a float 3 and the liquid surface 10 is quietly moved up and down to form a monomolecular built-up film on the carrier 11. In this case, the temps. of the liquid 10' and the carrier 11 are controlled to a desired temps. by temp. detection means 13, 14, heating means 15, 16 and cooling means 15', 16' electrically connected to a temp. controller 17 and a film is formed while the temp. difference of the liquid 10' and the carrier 11 is controlled.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、成膜装置に関する。[Detailed description of the invention] (1) Technical field The present invention relates to a film forming apparatus.

(2)背景技術 従来、液面に展開された単分子膜を、その支持体である
固体担体の表面上に移し取ることにより、該担体上に単
分子膜又は単分子累積膜を成膜する方法として、所謂ラ
ングミュア・プロジェット法が知られている。
(2) Background technology Conventionally, a monomolecular film developed on a liquid surface is transferred onto the surface of a solid carrier that is its support, thereby forming a monomolecular film or a monomolecular cumulative film on the support. As a method, the so-called Langmuir-Prodgett method is known.

ラングミュア・プロジェット法の原理は、例えば分子内
に親木基と疎水基を有する構造の分子において、両者の
バランス(両親媒性のバランス)が適度に保たれている
とき、分子は水面上で親木基を下に向けて単分子の層に
なることを利用して単分子膜または単分子層の累積膜を
作成する方法である。
The principle of the Langmuir-Prodgett method is that, for example, in a molecule with a structure that has a parent wood group and a hydrophobic group in the molecule, when the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule will move on the water surface. This is a method of creating a monomolecular film or a cumulative film of monomolecular layers by using the fact that the parent tree faces downward to form a monomolecular layer.

この方法に使用される成膜装置の代表的な例を第1図に
示し、図面も参照しながらこの種の技術について以下に
説明する。
A typical example of a film forming apparatus used in this method is shown in FIG. 1, and this type of technology will be described below with reference to the drawings.

第1図の装置において、その上に単分子膜が展開される
液体、一般には水、メタノール、エチルアルコール等は
、角型水槽1に溜められる。角型水槽lの内側には、2
次元シリンダーとして機能する枠2、例えばポリプロピ
レン製等が水平に吊られており、液面lOを所望の広さ
に仕切っている。
In the apparatus shown in FIG. 1, a liquid on which a monomolecular film is to be developed, generally water, methanol, ethyl alcohol, etc., is stored in a rectangular water tank 1. Inside the square aquarium l, there are 2
A frame 2 that functions as a dimensional cylinder, for example made of polypropylene, is suspended horizontally and partitions the liquid surface lO into a desired width.

枠2の内側には、2次元ピストンとして機能し、液面1
0に展開される成膜用分子群に所望の表面圧を生じさせ
るための浮子3、例えばポリプロピレン製等が浮かべら
れている。
Inside the frame 2, it functions as a two-dimensional piston and has a liquid level 1.
A float 3 made of, for example, polypropylene is floated to generate a desired surface pressure on the film-forming molecules group developed on the surface.

浮子3の幅は枠2の内側より僅かに狭く作ってあり、2
次元ピストンとして図の左右方向に清らあり、2次元ピ
ストンとして図の左右方向に滑らかに動けるようになっ
ている。
The width of the float 3 is made slightly narrower than the inside of the frame 2,
As a dimensional piston, it moves horizontally in the figure, and as a two-dimensional piston, it can move smoothly in the left-right direction in the figure.

浮子3の右方向への動作は、浮子3を右方向に引っばる
とともに液面10に展開された成膜用分子群に所望の表
面圧を与えるための重り4によって行われる。浮子3の
左方向への動作ならびに停止は、浮子3に設けられた磁
石6と、不図示の保持機構によって左右に動くことが可
能な対磁石7との反発力によって行われる。
The rightward movement of the float 3 is performed by a weight 4 that pulls the float 3 to the right and applies a desired surface pressure to the film-forming molecules spread on the liquid surface 10. The leftward movement and stopping of the float 3 is performed by the repulsive force between a magnet 6 provided on the float 3 and a pair of magnets 7 that can be moved left and right by a holding mechanism (not shown).

成膜は1例えば所望の単分子膜を液面10に展開し、浮
子3、重り4、磁石6,7によって単分子膜に所望の表
面圧をかけた後、担体11を液面を横切るように上下す
ることにより行う。
Film formation is carried out in step 1. For example, a desired monomolecular film is spread on the liquid surface 10, a desired surface pressure is applied to the monomolecular film by the float 3, the weight 4, and the magnets 6, 7, and then the carrier 11 is moved across the liquid surface. This is done by moving up and down.

しかしながら、従来の装置では以下に述べるような問題
があった。
However, conventional devices have the following problems.

液面10に展開される単分子膜は、液面10上で2次元
系の挙動を示す0分子の面密度が低いときは2次元気体
の気体膜と呼ばれ、−分子あたりの占有面積(A)と表
面圧CF)の間には、FA=nRT の関係が成立する。ここで、nはモル数、Rは気体定数
、Tは絶対温度である。
A monomolecular film developed on the liquid surface 10 is called a gas film of a secondary gas when the areal density of molecules exhibiting two-dimensional system behavior on the liquid surface 10 is low, and the occupied area per molecule ( The relationship FA=nRT holds between A) and surface pressure CF). Here, n is the number of moles, R is the gas constant, and T is the absolute temperature.

気体膜の状態から、徐々に浮子3を右方に動かし、単分
子膜が展開する液面の広がりを次第に縮めて面密度を増
してゆくと1分子間相互作用が強まり、2次元液体の液
体膜を経て2次元固体の固体膜へと変わる。そのような
状態を示す代表的なF−1曲線を第2図に示す、ここで
、HAが気体膜、EHが固体膜、DE 、 BCが液体
膜であり、CDが中間相と呼ばれているものである。
From the state of a gas film, the float 3 is gradually moved to the right to gradually reduce the spread of the liquid surface where the monomolecular film develops and increase the surface density, which strengthens the interaction between molecules and causes the liquid to become a two-dimensional liquid. After passing through the film, it changes into a two-dimensional solid film. A typical F-1 curve showing such a state is shown in Figure 2, where HA is a gas film, EH is a solid film, DE and BC are liquid films, and CD is called an intermediate phase. It is something that exists.

液面に展開された単分子膜は、占有面層(A)と表面圧
(F)との関係において、上記のような挙動を示すが、
液面に展開された単分子膜を担体に移しとるためには固
体膜の状態を維持することが必要である。ところがF−
1曲線は1例えば1分子膜を構成する分子の構造、単分
子膜の展開される液体(溶液であれば溶媒や溶質)の種
類、濃度、湿1度、PH等の因子によってその形状が変
化し、これらの条件によっては気体膜の状態から表面圧
をあげていく際に、固体膜の状態を経過することなく膜
構造が破壊されてしまうことがある。このような場合に
は、単分子膜を担体上に移し取ることができない。
A monomolecular film developed on the liquid surface exhibits the above behavior in the relationship between the occupied surface layer (A) and the surface pressure (F).
In order to transfer the monomolecular film developed on the liquid surface to a carrier, it is necessary to maintain the state of a solid film. However, F-
For example, the shape of a curve changes depending on factors such as the structure of the molecules that make up a monomolecular film, the type of liquid in which the monomolecular film is developed (solvent or solute in the case of a solution), concentration, humidity level, PH, etc. However, depending on these conditions, when the surface pressure is increased from the gas film state, the film structure may be destroyed without passing through the solid film state. In such cases, it is not possible to transfer the monolayer onto the carrier.

F−1曲線を支配する因子の中で、液体(中でも液面)
および担体の温度は特に重要な因子であり、これらの条
件いかんでは固体膜の相がなくなり、成膜が行えない等
の問題を生じる0例えば第3図に例示したペンタデシル
酸単分子膜の場合は、液面温度の上昇によって固体膜の
相がなくなった例である。
Among the factors that govern the F-1 curve, liquid (especially liquid level)
The temperature of the solid film and the temperature of the carrier are particularly important factors, and under these conditions, the phase of the solid film disappears, causing problems such as the inability to form a film.For example, in the case of the pentadecyl acid monomolecular film illustrated in Figure 3, This is an example in which the solid film phase disappears due to an increase in the liquid surface temperature.

また、液面に展開されている単分子膜の面積と、これを
移し取ることによって担体上に累積される単分子膜との
比を累積比と呼ぶが、これは成膜条件によっては必ずし
も1とはならず、温度条件、中でも担体と液体との温度
差に大きく影響される。
Also, the ratio of the area of the monomolecular film developed on the liquid surface to the monomolecular film accumulated on the carrier by transferring this is called the cumulative ratio, but this may not necessarily be 1 depending on the film forming conditions. Rather, it is greatly influenced by temperature conditions, especially the temperature difference between the carrier and the liquid.

しかしながら、担体と液体との温度差を検知する手段あ
るいは該温度差を制御する手段を備えた成膜装置は、従
来存在しなかった。
However, conventionally, there has been no film forming apparatus equipped with a means for detecting the temperature difference between the carrier and the liquid or a means for controlling the temperature difference.

(3)発明の開示 本発明は上記の事実に5鑑み成されたものであって1本
発明の目的は上記の問題点を解消し、更には単分子累積
膜の設計の自由度を拡張し得る新規な成膜装置を提供す
ることにある。
(3) Disclosure of the Invention The present invention has been made in view of the above-mentioned facts. 1. The purpose of the present invention is to solve the above-mentioned problems and further expand the degree of freedom in designing monomolecular cumulative films. The object of the present invention is to provide a new film forming apparatus that can obtain the desired results.

すなわち本発明は、成膜様分子群を液面に展開し、前記
分子群から成る膜を担体に移し取る成膜用展開液槽を備
え、前記槽内の液体前記担体との温度差を検知する検知
手段を設けたことを特徴とする成膜装置である。
That is, the present invention includes a film-forming developing solution tank for developing a film-forming molecule group on the liquid surface and transferring a film made of the molecule group to a carrier, and detecting a temperature difference between the liquid in the tank and the carrier. This film forming apparatus is characterized in that it is provided with a detection means for detecting.

以下、第4図に示す実施例装置をもとにして、本発明に
ついて詳細に説明する。
Hereinafter, the present invention will be explained in detail based on the embodiment shown in FIG.

第4図に例示した装置は、第1図に示したと同様の装置
に、液体と担体との温度差および該温度差の制御手段を
設けた例であり、第4図(a)は装置の概要を説明する
斜視図、第4図(b)はその断面図である。
The device illustrated in FIG. 4 is an example in which the same device as shown in FIG. 1 is provided with a temperature difference between the liquid and the carrier and a control means for the temperature difference. A perspective view for explaining the outline, and FIG. 4(b) is a sectional view thereof.

第4図の装置では、担体11、本例では平板状基板は図
に矢印で示した如く、液面10を上下に移動することが
可能である。担体11の上下は、不図示のリフト機構に
より上下可能とされた相体上下腕l2により行われるが
、担体11は担体保持ジグ21により担体上下腕12に
着脱可能に固定されている。
In the apparatus shown in FIG. 4, the carrier 11, in this example a flat substrate, can move up and down the liquid level 10, as indicated by arrows in the figure. The carrier 11 is raised and lowered by the companion upper and lower arms 12, which can be raised and lowered by a lift mechanism (not shown), and the carrier 11 is removably fixed to the carrier upper and lower arms 12 by carrier holding jigs 21.

液体10’ および担体11の温度差の検知は、液体1
0′および担体11のそれぞれの温度を検知することで
行う。
Detection of the temperature difference between the liquid 10' and the carrier 11
This is done by detecting the respective temperatures of 0' and carrier 11.

液体温度の検知は温度コントローラー17−に電気的に
接続された液体温度センサー13で行う0本例の液体温
度センサー13は第5図にその拡大図を示す如く、サミ
スター18の温度検知部20を常に液面上に保持すると
ともに雰囲気温度の影響を受けないようにする等の目的
で、ドーナツ状の断面形状を有する発泡スチロール18
に温度検知手段たるサミスター19を保持する形式とし
である。液体10’の内部温度を検知することでも本発
明の目的は十分に達成されるが、好適な成膜を行うため
には、本例の如く単分子膜の展開される液体1G’の表
面、すなわち液面10の温度を直接検知する形式形式% 担体温度の検知は、温度コントローラー17に電気的に
接続され、しかも担体11に着脱可能に固定されている
相体温度センサー14で行う、本例の担体温度センサー
14はサミスターで構成され、その温度検知部が担体1
1の温度を直接検知する形式としである。
Detection of the liquid temperature is performed by the liquid temperature sensor 13 electrically connected to the temperature controller 17-.The liquid temperature sensor 13 of this example has a temperature detection section 20 of the thermistor 18 as shown in an enlarged view in FIG. Styrofoam 18 with a donut-shaped cross-section is used to keep the liquid above the liquid level and to avoid being affected by ambient temperature.
A thermistor 19, which is a temperature sensing means, is held at the top. Although the object of the present invention can be sufficiently achieved by detecting the internal temperature of the liquid 10', in order to form a suitable film, as in this example, it is necessary to In other words, in this example, the temperature of the liquid surface 10 is directly detected.The detection of the carrier temperature is performed by the phase temperature sensor 14 which is electrically connected to the temperature controller 17 and is detachably fixed to the carrier 11. The carrier temperature sensor 14 is composed of a thermistor, and its temperature detection part is connected to the carrier 1.
This is a type that directly detects the temperature of 1.

液体10’ と担体11の温度差の制御は、液体10′
および担体11のそれぞれの温度を制御することで行う
The temperature difference between the liquid 10' and the carrier 11 can be controlled by controlling the temperature difference between the liquid 10' and the carrier 11.
and by controlling the respective temperatures of the carrier 11.

液体10′の温度制御は、液体lO′をヒーター15で
加熱するか、またはベルチェ素子15’ で冷却するこ
とで行う0本例のヒーター15およびベルチェ素子15
′は、これ等を第4図(a)のにおけると同様の方向か
ら見た第6図に示される斜視図の如くにして、水槽1内
に設けられている。また、ヒーター15およびベルチェ
素子15′は温度コントローラー17を経て不図示の電
力供給源に接続されており、必要に応じてこれ等に電力
が供給され液体10′の加熱または冷却が行われる。す
なわち、液体温度センサー13で測定された液体1G’
の温度は温度コントローラー17に伝えられ、これから
出される信号によってヒーター15またはベルチェ素子
15′への電力の自動供給が行われることで、液体10
’の温度制御が行われる。
The temperature of the liquid 10' is controlled by heating the liquid lO' with the heater 15 or cooling it with the Bertier element 15'.
' are provided in the aquarium 1 as shown in the perspective view of FIG. 6 when viewed from the same direction as in FIG. 4(a). Further, the heater 15 and the Vertier element 15' are connected to a power supply source (not shown) via a temperature controller 17, and power is supplied to these as necessary to heat or cool the liquid 10'. That is, the liquid 1G' measured by the liquid temperature sensor 13
The temperature of the liquid 10 is transmitted to the temperature controller 17, and the signal output from this automatically supplies power to the heater 15 or the Bertier element 15'.
'Temperature control is performed.

担体11の温度制御も液体10′におけると同様に、ヒ
ーター1Bで担体11を加熱するか、またはベルチェ素
子1B’ で冷却することで行う0本例のヒーター1B
およびペメチェ素子1B’は、担体11の両面にそれぞ
れ1個づつが、担体保持ジグ21に着脱可能な状態で固
定されている。これ等ヒーター1Bおよびベルチェ素子
16′も温度コントローラー17を経て不図示の電力供
給源に接続されており、液体lO′ におけると同様に
して必要に応じてこれ等に電力が供給されることで、担
体11の温度制御が行われる。尚、これら液体10′あ
るいは担体11の加熱手段たるヒーター15.18およ
び冷却手段たるペルチェ素子15’、111’の液体1
0’および担体11への上記の配設の仕方は例であって
、その個数あるいは配設方法は上記例に限定されるもの
ではない、また、上記例ではペルチェ素子15’、1B
’を冷却手段としてのみ用いているが、ベルチェ素子1
5’ 、 18’は加熱手段として使用することもでき
、ヒーター15.18を設けないでベルチェ素子15’
 、’1B’ のみを配設して加熱および冷却を行うこ
とも可能である。
The temperature control of the carrier 11 is carried out by heating the carrier 11 with the heater 1B or cooling it with the Bertier element 1B' in the same manner as in the case of the liquid 10'.
One Pemeche element 1B' is removably fixed to the carrier holding jig 21 on both sides of the carrier 11. The heater 1B and the Vertier element 16' are also connected to a power supply source (not shown) via the temperature controller 17, and power is supplied to these as necessary in the same way as in the case of liquid lO'. The temperature of the carrier 11 is controlled. The liquid 10' or the heater 15.18 which is a heating means for the carrier 11 and the liquid 1 of the Peltier elements 15' and 111' which are cooling means.
The above arrangement of the Peltier elements 15' and the carrier 11 is an example, and the number or arrangement method thereof is not limited to the above example.
' is used only as a cooling means, but the Bertier element 1
5', 18' can also be used as a heating means, and the Vertier element 15' can be used without providing the heater 15.18.
, '1B' may be provided to perform heating and cooling.

温度コントローラー17に電気的に接続された温度検知
手段、加熱手段および冷却手段の設けられた上記構成の
装置によれば、液体10’および担体11の温度を検知
するとともに、液体10′ および担体11の温度を所
望の温度に制御することが可能であり、液体10′およ
び担体11の温度差を制御しつつ成膜を行うことができ
る。すなわち、検知した温度がそれぞれの設定値よりも
低いのであればヒーター15 、18により加熱し、高
いのであればベルチェ素子15’、1B’により冷却す
ることで、液体10′および担体11のそれぞれの温度
を所望の設定温度に保つことが可能であり、したがって
成膜に好適な所望の温度差を保持しながら成膜を行うこ
とができる。
According to the device having the above-mentioned configuration, which is provided with a temperature detection means, a heating means, and a cooling means electrically connected to the temperature controller 17, the temperature of the liquid 10' and the carrier 11 is detected, and the temperature of the liquid 10' and the carrier 11 is detected. It is possible to control the temperature of the liquid 10' to a desired temperature, and film formation can be performed while controlling the temperature difference between the liquid 10' and the carrier 11. That is, if the detected temperature is lower than each set value, it is heated by the heaters 15 and 18, and if it is higher, it is cooled by the Vertier elements 15' and 1B', thereby controlling the temperature of the liquid 10' and the carrier 11, respectively. It is possible to maintain the temperature at a desired set temperature, and therefore film formation can be performed while maintaining a desired temperature difference suitable for film formation.

成膜は、例えば以下のように行う、まず、水槽lに液体
10′、例えば一般に単分子膜を形成させる液体として
知られている前述の水、エタノール、金属水溶液等を注
入した後、液面温度を所定の温度に保持する。次いで周
知の方法1例えばスポイト等により所望の成膜用分子群
を液面lO上に滴下し、液面10上に単分子膜を展開す
る0次に。
Film formation is carried out, for example, as follows. First, the liquid 10', such as the aforementioned water, ethanol, metal aqueous solution, etc., which are generally known as liquids for forming a monomolecular film, is poured into the water tank L, and then the liquid level is lowered. Maintain the temperature at a predetermined temperature. Next, a well-known method 1, for example, zero-order, in which a desired film-forming molecule group is dropped onto the liquid surface 10 using a dropper or the like, and a monomolecular film is developed on the liquid surface 10.

浮子3により液面10上の単分子膜に所望の表面圧をか
け、所定の温度に保持した担体11を単分子膜の展開さ
れている液面10を静かに上下させれば、単分子膜又は
所望の累積度の単分子累積膜が担体11上に形成される
If a desired surface pressure is applied to the monomolecular film on the liquid surface 10 by the float 3, and the carrier 11 maintained at a predetermined temperature is gently moved up and down the liquid surface 10 on which the monomolecular film is spread, the monomolecular film is formed. Alternatively, a monomolecular cumulative film with a desired cumulative degree is formed on the carrier 11.

液面上に展開する成膜用分子群としては、液面上に単分
子膜を形成し得る分子1例えば、その分子内に親木基お
よび疎水基を有するような分子であれば使用することが
できるが、液面に展開する分子は同じものとしてもよい
し、異なる種類のものとしてもよい、もちろん、2種以
上の分子を液面上に展開して混合単分子累積膜を成膜す
る等のことも可能である。また、成膜用分子群を液面上
に展開する方法としては、タンク等から必要づつ液面上
に滴下する等のことも可能である。
As the film-forming molecule group to be developed on the liquid surface, molecules that can form a monomolecular film on the liquid surface, for example, molecules that have a parent group and a hydrophobic group within the molecule, can be used. However, the molecules deployed on the liquid surface may be the same or different types. Of course, two or more types of molecules may be deployed on the liquid surface to form a mixed monomolecular cumulative film. etc. are also possible. Further, as a method of spreading the film-forming molecules on the liquid surface, it is also possible to drop them onto the liquid surface as needed from a tank or the like.

液体又は担体の温度検知手段としては特に限定はないが
、前述のサミスターの他、例えば熱電対、容量温度計、
白金抵抗感熱体、炭素抵抗感熱体等の電気的に温度を検
知する素子等が好ましいものとして挙げられる。
The means for detecting the temperature of the liquid or carrier is not particularly limited, but in addition to the above-mentioned thermistor, for example, thermocouples, capacitance thermometers,
Preferred examples include elements that electrically detect temperature, such as platinum resistance heat susceptors and carbon resistance heat susceptors.

液体又は担体の加熱手段としては、固体や液体などを加
熱する手段として一般に広く知られているものを適宜使
用することが可能であるが、前述のヒーターやペルチェ
素子の他、例えば赤外線ランプ、マイクロ波加熱等の電
気的に制御し得る手段が好ましいものとして挙げられる
As the means for heating the liquid or carrier, it is possible to use any means that is generally widely known as a means for heating solids or liquids, etc. In addition to the above-mentioned heaters and Peltier elements, for example, infrared lamps, micro Electrically controllable means such as wave heating are preferred.

液体又は担体の冷却手段としても、固体や液体などを冷
却する手段として一般に広く知られそいるものを適宜使
用することが可能であるが、前述のペルチェ素子の他、
例えば冷却用コンプレッサー等の電気的に制御し得る手
段が好ましいものとして挙げられる。
As a cooling means for a liquid or a carrier, it is possible to appropriately use any means that is generally widely known as a means for cooling solids, liquids, etc. In addition to the above-mentioned Peltier device,
For example, electrically controllable means such as a cooling compressor are preferred.

また、液体の温度を一定とするために、ファン、−グネ
チ・クスターラー等により液体を撹拌する 6等のこと
も可能である。
Furthermore, in order to keep the temperature of the liquid constant, it is also possible to stir the liquid using a fan, a Gnech-Kusterer, or the like.

以上、担体をほぼ垂直に液面を横切るように上下させる
ことで成膜する場合を例として、本発明を説明したが1
本発明は上記例に限定されるものではなく、例えば円筒
状等の担体を液面付近に設けられたほぼ水平な軸の回り
を回転させることで、担体を上下に移動させ成膜する場
合、あるいは液面とほぼ水平になるようまに保持されし
かも上下可能な平板状の担体を液面と接触させることで
成膜する等の場合にも適用し得るものである。
The present invention has been described above using an example in which a film is formed by moving the carrier up and down almost vertically across the liquid surface.
The present invention is not limited to the above examples; for example, when a cylindrical carrier is rotated around a substantially horizontal axis provided near the liquid surface to move the carrier up and down to form a film, Alternatively, it can be applied to cases where a film is formed by bringing into contact with the liquid surface a flat carrier that is held substantially horizontally with the liquid surface and can be moved up and down.

また1本発明における担体としても、上記の平板状や円
筒状の担体の他、球状、角柱状、シート状等、所望の形
状の担体を使用し得るものである。
Further, as the carrier in the present invention, in addition to the above-mentioned flat plate-shaped or cylindrical carriers, carriers having a desired shape such as spherical, prismatic, sheet-shaped, etc. can be used.

以下に上記装置を用いて成膜を行った具体例を示し、本
発明について更に詳細に説明する。
The present invention will be described in further detail below by showing specific examples in which film formation was performed using the above-mentioned apparatus.

〈具体例) 第4図の装置を用いて、平板状のシリコン基板の上にス
テアリン酸の単分子累積膜を成膜した。
<Specific Example> Using the apparatus shown in FIG. 4, a monomolecular cumulative film of stearic acid was formed on a flat silicon substrate.

水槽中に清浄な蒸留水を入れ、Cdα2を4×10°4
諺o1/見以下の濃度になるように溶かし、さらにHα
又はKHCO3を楯加して、単分子膜を展開する液体の
P)[をpH=8〜8.5に調整した。液面温度を12
℃、基板温度を8℃に設定した後、ステアリン酸の0.
1%ベンゼン溶液をスポイトで液面上に0.1mQ滴下
し、液面にステアリン酸の単分子膜を展開した。浮子を
動かし単分子膜の表面圧を上げていった所、20〜30
dynes/amの表面圧で累積操作に好適な固体膜の
状態が得られた。この液面に垂直に、清浄なシリコン基
板を上下に数回移動させたところ、シリ、コン基板上に
極めて安定で且つ膜欠陥のない単分子累積膜が形成され
た。
Pour clean distilled water into the aquarium and add Cdα2 to 4×10°4
Proverb: 1/Dissolve to a concentration below, and then add Hα
Alternatively, KHCO3 was added as a shield to adjust the pH of the liquid P) for developing a monomolecular film to 8 to 8.5. Set the liquid surface temperature to 12
℃, and after setting the substrate temperature to 8℃, the stearic acid concentration was 0.5℃.
A 1% benzene solution was dropped at 0.1 mQ onto the liquid surface using a dropper, and a monomolecular film of stearic acid was spread on the liquid surface. When the surface pressure of the monomolecular film was increased by moving the float, the pressure was 20 to 30.
A solid membrane condition suitable for accumulation operation was obtained at a surface pressure of dynes/am. When a clean silicon substrate was moved up and down several times perpendicular to the liquid level, an extremely stable monomolecular cumulative film with no film defects was formed on the silicon substrate.

シリコン基板をガラス、石英、およびこれ等にアルミニ
ウムを蒸着した平板状基板などとして上記同様の成膜を
行ったところ、どの場合にも安定で且つ膜欠陥のない単
分子累積膜が成膜された。
When films were formed in the same manner as above using silicon substrates such as glass, quartz, and planar substrates on which aluminum was vapor-deposited, stable monomolecular cumulative films with no film defects were formed in all cases. .

しかも、これら膜の累積率は85〜100%と良好な値
を示した。
Furthermore, the cumulative percentage of these films was 85 to 100%, which was a good value.

以上に説明した如く、本発明の特徴は成膜装置に担体お
よび液体の温度差を検知する手段を設りすたことにあり
、検知手段を設けたことで、成膜時の温度差制御が可能
になった。
As explained above, the feature of the present invention is that the film forming apparatus is equipped with a means for detecting the temperature difference between the carrier and the liquid, and by providing the detecting means, it is possible to control the temperature difference during film formation. Became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の成膜装置の一例、第2図は代表的なF−
A曲線を説明する図、第3図はF−A曲線の温度変化を
説明する図、第4図は本発明に係る成膜装置の実施例、
第5図は第4図における液面温度センサーの拡大図、第
6図は第4図におけるヒーターとペルエ素子の配列を説
明するための斜視図!ある。 1−m−水槽 2−一一枠 3−−−浮子 4−一一重り 5−m−滑車 6一−−磁石 7−−一対磁石 8−一一吸引パイブ 9−−−吸引ノズル 10−m−液面 10’−−−液体 11−’−担体 12−−−担体上下腕 13−m−液体温度センサー 14−−一担体温度センサー 15 .16 −一−ヒーター 15’ 、 1B’−m−ペルチェ素子17−−一温度
コントローラー 18−m−発泡スチロール 18−m−すミスタ− 20−m−すミスタ−の温度検知部 21−m−担体保持ジグ 第 11!1(a) 第 2 図 A(入り 第 3 図
Figure 1 shows an example of a conventional film forming apparatus, and Figure 2 shows a typical F-
A diagram for explaining the A curve, FIG. 3 is a diagram for explaining the temperature change of the F-A curve, and FIG. 4 is an embodiment of the film forming apparatus according to the present invention.
Fig. 5 is an enlarged view of the liquid surface temperature sensor in Fig. 4, and Fig. 6 is a perspective view for explaining the arrangement of the heater and Pelue element in Fig. 4! be. 1-m-water tank 2-11 frame 3--float 4-11 weight 5-m-pulley 6-1-magnet 7--pair of magnets 8-11 suction pipe 9--suction nozzle 10-m -Liquid level 10'--Liquid 11-'-Carrier 12--Carrier upper and lower arms 13-m-Liquid temperature sensor 14--Carrier temperature sensor 15. 16--heater 15', 1B'-m-Peltier element 17--temperature controller 18-m-styrofoam 18-m-mister 20-m-temperature detection part of the m-mister 21-m-carrier holding Jig No. 11!1 (a) Fig. 2 A (input Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 成膜用分子群を液面に展開し、前記分子群から成る膜を
担体に移し取る成膜用展開液槽を備え、前記槽内の液体
と前記担体との温度差を検知する検知手段を設けたこと
を特徴とする成膜装置。
A film-forming developing solution tank for developing a film-forming molecule group on a liquid surface and transferring a film made of the molecule group to a carrier, and a detection means for detecting a temperature difference between the liquid in the tank and the carrier. A film forming apparatus characterized in that:
JP5934384A 1984-03-29 1984-03-29 Film forming apparatus Pending JPS60206441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5934384A JPS60206441A (en) 1984-03-29 1984-03-29 Film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5934384A JPS60206441A (en) 1984-03-29 1984-03-29 Film forming apparatus

Publications (1)

Publication Number Publication Date
JPS60206441A true JPS60206441A (en) 1985-10-18

Family

ID=13110563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5934384A Pending JPS60206441A (en) 1984-03-29 1984-03-29 Film forming apparatus

Country Status (1)

Country Link
JP (1) JPS60206441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449171A2 (en) * 1990-03-30 1991-10-02 Hoechst Aktiengesellschaft Process to reduce defects in ultra-thin layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449171A2 (en) * 1990-03-30 1991-10-02 Hoechst Aktiengesellschaft Process to reduce defects in ultra-thin layers

Similar Documents

Publication Publication Date Title
JP5475846B2 (en) Lithographic apparatus support table, lithographic apparatus and device manufacturing method
Rio et al. Moving contact lines of a colloidal suspension in the presence of drying
US20060068447A1 (en) Directed assembly of functional heterostructures
TWI421644B (en) Lithographic apparatus and method
JP2011192991A (en) Lithographic apparatus and method
KR101473280B1 (en) A substrate table assembly, an immersion lithographic apparatus and a device manufacturing method
US9383654B2 (en) Fluid handling structure, lithographic apparatus and device manufacturing method
TW201003326A (en) Substrate table, lithographic apparatus and device manufacturing method
JP6556869B2 (en) Support apparatus, lithographic apparatus, and device manufacturing method
Agapov et al. Length scale selects directionality of droplets on vibrating pillar ratchet
Zhang et al. Fabrication of honeycomb polyvinyl butyral film under humidity provided by super saturated salt solutions
JPS60206441A (en) Film forming apparatus
JPS60206437A (en) Film forming apparatus
Zhang et al. Marangoni convection in binary mixtures
JPS60206436A (en) Film forming method
Jiang et al. Interfacial microdroplet evaporative crystallization on 3D printed regular matrix platform
JPS60206438A (en) Film forming apparatus
JPS60206440A (en) Film forming apparatus
Okubo Convectional and sedimentation dissipative patterns of Miso soup
JPS60206439A (en) Film forming apparatus
US20130272338A1 (en) Methods and systems for improved membrane based calorimeters
US5670624A (en) Two-dimensional aggregation and fixation of protein by injection into a substrate solution having higher surface tension and specific gravity
JP3192250B2 (en) Method for developing semiconductor substrate
JPH03209492A (en) Fixing device
Prins et al. Response of an equilibrium film to external disturbances