JPS60206392A - Auto density correction method and device of subtraction picture - Google Patents

Auto density correction method and device of subtraction picture

Info

Publication number
JPS60206392A
JPS60206392A JP59063042A JP6304284A JPS60206392A JP S60206392 A JPS60206392 A JP S60206392A JP 59063042 A JP59063042 A JP 59063042A JP 6304284 A JP6304284 A JP 6304284A JP S60206392 A JPS60206392 A JP S60206392A
Authority
JP
Japan
Prior art keywords
signal
image
difference signal
difference
subtraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59063042A
Other languages
Japanese (ja)
Other versions
JPH0363877B2 (en
Inventor
Nobuyoshi Nakajima
中島 延淑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP59063042A priority Critical patent/JPS60206392A/en
Priority to CA000477813A priority patent/CA1226976A/en
Priority to DE8585103804T priority patent/DE3580994D1/en
Priority to EP85103804A priority patent/EP0156393B1/en
Publication of JPS60206392A publication Critical patent/JPS60206392A/en
Priority to US07/318,465 priority patent/US5048110A/en
Publication of JPH0363877B2 publication Critical patent/JPH0363877B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a subtraction picture with constant background density by obtaining a histogram of a difference signal to derive its maximum frequency point signal, subtracting the maximum frequency point signal from a standard background density signal bearing a standard background density of a subtraction picture produced by a difference signal and correcting the density. CONSTITUTION:Assuming that a histogram with solid lines is of a difference signal where the density of a background BK of a reproduction picture attains to a favorable standard background density, first, a maximum frequency point signal X of anactual histogram is subtracted from a maximum frequency point signal X0, and its difference DELTAX is obtained. A signal correction circuit 24 adds uniformly the difference DELTAX to a difference signal Ssub introduced from a picture file 19. Accordingly, the difference signal Ssub is corrected so that the maximum frequency point signal of the histogram will be equal to the X0 without fail, and the background density goes to the standard background density in any case in the subtraction picture obtained from the corrected difference signal Ssub.

Description

【発明の詳細な説明】 (発明の分野) 本発明は放射線画像中 詳細には蓄積性蛍光体シートを用いて行4【う放射線画
像中デジタル1ノブ1〜ラクシヨン処理においで1常に
一定の適切イ【背i 11ffl Iuが得られるよう
に1Jブトラクション画像の濃度を自動的に補正する方
法おにび装置に関するものぐある。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention uses a stimulable phosphor sheet to perform a radiographic image in detail using a stimulable phosphor sheet to perform a digital 1 knob 1 in a radiographic image to a constant appropriate level in luxation processing. A method and device for automatically correcting the density of a 1J btraction image so as to obtain 11ffl Iu.

(発明の技術的背景および先行技術) 従来より放射線画像中 ンが公知となっている。この放射線画像のデジタルサブ
トラクションとは、異なった条件で撤影した2つのhり
射線画像を光電的に読み出してデジタル画像信号を得た
後、これらのデジタル画像信号を両画像の各画素を対応
ざI!て減詐処理し、放射線画像中の特定の構造物の画
像を形成するための差信号を1ηる方法であり、このJ
、うにしU 10た差信号を用いて特定構造物のみが抽
出された放射線画像を再生づることができる。
(Technical Background of the Invention and Prior Art) Radiographic imaging has been known for some time. This digital subtraction of radiographic images involves photoelectrically reading out two radiographic images subtracted under different conditions to obtain digital image signals, and then using these digital image signals to correspond each pixel of both images. I! This is a method in which the difference signal is reduced by 1η to form an image of a specific structure in a radiographic image.
, Ushi U10 difference signals can be used to reproduce a radiographic image in which only specific structures are extracted.

この1ナブトラクション処理には、基本的に次の4− 2つの方法がある。即ち、造影剤注入により特定の構造
物が強調された放射線画像の画像信号から、造影剤が注
入されていない放射線画像の画像信号を引き算(ザブト
ラクト)することによって特定の構造物を抽出するいわ
ゆる時間ザブトラクション処理と、同一の被写体に対し
て相異なるエネルギー分布を有する放射線を照射し、そ
の後この2つの放射線画像の画像信号間で適当な重みづ
けをした上で引き算(サブトラクト)を行ない特定の構
造物の画像を抽出するいわゆるエネルギーサブトラクシ
、ヨン処理である。
There are basically the following 4-2 methods for this 1-nabtraction process. That is, the so-called time period in which a specific structure is extracted by subtracting (subtracting) the image signal of a radiographic image in which no contrast agent has been injected from the image signal of a radiographic image in which a specific structure has been emphasized by contrast agent injection. Subtraction processing involves irradiating the same subject with radiation having different energy distributions, then applying appropriate weighting to the image signals of these two radiation images and performing subtraction (subtraction) to identify specific structures. This is a so-called energy subtraction process that extracts images of objects.

このサブトラクション処理は特に医療用のX線 。This subtraction process is especially useful for medical X-rays.

写真の画像処理において診断上ぎわめて有効な方法であ
るため、近年大いに注目され、電子工学技術を駆使して
その研究、開発が盛んに進められている。この技術は、
特にデジタル勺ブトラクション処理(通常Digita
l Radiography)と呼ばれ、DRと略称さ
れている。
Because it is an extremely effective diagnostic method for photographic image processing, it has attracted much attention in recent years, and its research and development are actively progressing by making full use of electronic engineering technology. This technology is
In particular, digital extraction processing (usually Digital
1 Radiography) and is abbreviated as DR.

さらに最近では例えば特開昭58−163340号公報
に示されるように、ぎわめで広い放射線露出域を有Jる
蓄4I′!1!を蛍光体シー1〜を2枚使用し、これら
の蛍光体シーi・に前述のように造影剤有り、無しの異
なった条イ′1で181−の被写体を透過した放射線を
照射して、これらの蛍光体シー1〜に造影剤が注入され
た部分の画像情+11が責なる放!8線画像を蓄積記録
し、これらの番(^画像を励起光による走査にJ、り読
み出してデジタル信号に変換し、これらデジタル信号に
より前記デジタルリ°ブトラクションを行なうことも提
案されでいる。−J二il!蓄積性蛍光体シー1〜とは
、例えば特開昭55−12429号公報に開示されてい
るように放射線(X線、α線、β線、γ線、紫外線等)
を照!1・l ?l”るとその放射線エネルギーの一部
を蛍光体中に蓄積し、その後可視光等の励起光を照q・
1すると蓄積されたエネルギーに応じ−C蛍九体か輝尽
yt光を示ずもので、ぎわめで広いラチチュード(露出
域)を有し、かつ著しく高い解像力を右する6のである
1、シたがって、この蛍光体シー1〜に蓄積記録された
放01線画像情報を利用して前記デジタルリ゛ブ1ヘラ
クシ」ンを行なえば、診断性能の高い放射線画像を1q
ることができる。
Furthermore, recently, as shown in Japanese Patent Application Laid-Open No. 58-163340, for example, there is a radiation exposure area that is extremely wide. 1! Using two phosphor sheets 1 to 1, these phosphor sheets i are irradiated with radiation that has passed through the object 181- with different stripes 1 with and without contrast agent as described above. The image information +11 of the part where the contrast agent was injected into these phosphor sheets 1~ is the release! It has also been proposed to accumulate and record 8-line images, scan these images with excitation light, read them out, convert them into digital signals, and perform the digital reconstruction using these digital signals. -J2il!Storable phosphor C1~ refers to radiation (X-rays, α-rays, β-rays, γ-rays, ultraviolet rays, etc.) as disclosed in, for example, Japanese Patent Application Laid-Open No. 55-12429.
Shine! 1.l? 1", a part of the radiation energy is accumulated in the phosphor, and then exposed to excitation light such as visible light.
1. Depending on the accumulated energy, -C fluorophores exhibit no phosphorescent light, have a very wide latitude (exposure range), and have extremely high resolution. 6. If the above-mentioned digital rib 1 scanning is performed using the radiation image information accumulated and recorded in the phosphor sheets 1 to 1, it is possible to obtain 1 q radiation image with high diagnostic performance.
can be done.

以上説明したような時間リブ1〜ラクシヨンによって得
られた差信号を用いて、例えば写真感材等にサブトラク
ション画像を形成した場合、造影剤を注入した特定構造
物以外の部分ずなわち背景は本来常に一定濃度(あるい
は輝度)に出力できるはずである。ところが放射線撮影
時に、放射線強頂を一定に設定しても実際に照射される
放射線の強度には僅かのバラツキが有り、ざらに前記蓄
積性蛍光体シーI〜の感度にもバラツキがあるので、上
記背景の濃度は各ザブトラクション画像によってまらま
らどなることが多い。この背景濃度がまちまちであるど
、複数のサブ1ヘラクション画像を比較して診断を下す
場合等において適正な診断が妨げられることが指摘され
ている。
When a subtraction image is formed on, for example, a photographic material using the difference signal obtained by the time rib 1~raction as explained above, the background, which is the part other than the specific structure injected with the contrast agent, is originally It should be possible to always output at a constant density (or brightness). However, during radiography, even if the radiation intensity is set constant, there are slight variations in the intensity of the actually irradiated radiation, and there are also variations in the sensitivity of the stimulable phosphor C. The density of the background often varies depending on each subtraction image. It has been pointed out that the variation in background density impedes proper diagnosis when making a diagnosis by comparing a plurality of sub-1 motion images.

(発明の目的) 本発明は上記のような事情に鑑みてなされたものであり
、常に一定の背景濃度のサブトラクション画像を得るこ
とができる、サブトラクション画像の自動淵疾補正方法
およびその方法を実施する 7− 装置を提供りることを目的とするものである。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and provides an automatic subtraction image correction method and method that can always obtain a subtraction image with a constant background density. 7- For the purpose of providing equipment.

(発明の構成) 本発明のリブ1〜ラクシ三1ン画像の自動淵度補iF方
法は、前述したように蓄積性蛍光体シー1〜を用いて行
なう]ノブトラクシ三1ン処理において、リブトラクシ
ョンによってtgIk差信号に対して階調処理を施ずに
際して、前記差信号のヒストグラムをめてぞの最大頻度
点信号をめ、差信号によるサブトラクション画像の標準
的な背趨瀾度を担持する標準湾頭81電信号から前記最
大頻度点信号を減じた差Δχをめ、次いで i)その階調処理を施り一部の差信号に前記差Δχを加
える補正、 11)その′階調処理に用いる階調変換テーブルを、前
記差Δχと絶対1「1が等しくて符号が逆の値−Δχだ
【プ入力信号軸方向にシフ1〜ざlる補iにのいずれか
一方の補正を行/7うようにしたものである。
(Structure of the Invention) The automatic deepness compensation iF method of the rib 1 to 31 images of the present invention is performed using the stimulable phosphor sheets 1 to 31 as described above. When the tgIk difference signal is not subjected to gradation processing, the histogram of the difference signal is calculated to find the maximum frequency point signal, and a standard waveform that carries the standard background trend degree of the subtraction image by the difference signal is obtained. Calculate the difference Δχ obtained by subtracting the maximum frequency point signal from the head 81 electric signal, and then i) perform the gradation processing and correct by adding the difference Δχ to a part of the difference signal; 11) use it for the gradation processing; The gradation conversion table is set to the difference Δχ and the value -Δχ, which is equal to absolute 1 and has an opposite sign. 7.

上記方法を実/7[!iする本発明のリゾI〜ラクショ
ン画像の自動atα補正装置は、前記i)の補正を行な
8− う場合には、前述したような励起光走査と輝尽発光光の
光電的読み出しにより、蓄積性蛍光体シートの放射線画
像のデジタル信号を得る画像読取手段と、この画像読取
手段が読み取った、特定構造物に造影剤が注入された被
写体のデジタル画像信号と、造影剤が注入されない被写
体のデジタル画像信号とを、対応する画素間で減算して
特定構造物の画像を形成する差信号を得るサブトラクシ
ョン演緯手段と、この差信号に階調変換テーブルに基づ
いて階調処理を施す画像処理手段と、前記差信号のヒス
]・ダラムをめてその最大頻度点信号をめるヒストグラ
ム演算手段と、前記差信号ににるサブ1ヘラクション画
像の標準的な背景濃度を記憶する記憶手段と、該記憶手
段から読み出された前記標準背景濃度を担持する標準背
景濃度信号から前記最大頻度点信号を減算し、その差Δ
χを階調処理を受ける前の前記差信号に加える信号補正
回路とから構成される。
Implement the above method/7 [! When performing the correction in i) above, the automatic atα correction apparatus of the present invention performs the above-mentioned excitation light scanning and photoelectric readout of stimulated luminescence light. An image reading means for obtaining a digital signal of a radiation image of a stimulable phosphor sheet, and a digital image signal read by the image reading means of a subject whose specific structure has been injected with a contrast agent, and a subject whose specific structure has not been injected with a contrast agent. a subtraction calculation means for obtaining a difference signal by subtracting a digital image signal between corresponding pixels to form an image of a specific structure; and image processing for performing gradation processing on this difference signal based on a gradation conversion table. means, a histogram calculation means for calculating the maximum frequency point signal of the difference signal [His] and Durham, and a storage means for storing a standard background density of a sub-1 motion image included in the difference signal; The maximum frequency point signal is subtracted from the standard background density signal carrying the standard background density read out from the storage means, and the difference Δ
and a signal correction circuit that adds χ to the difference signal before undergoing gradation processing.

また上記信号補正回路に代えて、前記階調変換テーブル
を、前記差Δχと絶対値が等しくて符号が逆の一Δχだ
番ノ入力(に ′ljj軸方向にシフトさせる階調変換
テーブル補正回路を設【)れば、前述した11)の補正
を行なうことがrきる。
Further, in place of the signal correction circuit, a gradation conversion table correction circuit that shifts the gradation conversion table in the direction of the ``ljj axis to the input Δχ which has the same absolute value and opposite sign as the difference Δχ; By setting [), the above-mentioned correction 11) can be performed.

前記差信号のヒストグラムにお【Jる最大頻度点濃度は
、通常→Jブ]・ラクション画像の背Ej411ifl
 lσであるから、前述したような1)あるいは11)
の補正を行なえば、ザブ1ヘラクシ」ン画像において背
傾淵度は常に一定の標準的な背111a疫に設定される
ようになる。
In the histogram of the difference signal, [the maximum frequency point density of J is normal → J] - Back of the action image Ej411ifl
Since lσ, 1) or 11) as mentioned above
If this correction is performed, the degree of dorsal inclination will always be set to a constant, standard degree of dorsal inclination in the sub-1 helix image.

(実施態様) 以下、図面を参照して本発明の実施態様を説明する。(Embodiment) Embodiments of the present invention will be described below with reference to the drawings.

第1図は2枚の蓄積性蛍光体シー1−A、Bに同一の被
写体1を透過したX線2を異なった条件、つまり被写体
1の特定構造物に造影剤を注入し、あるいは注入1ノな
いでそれぞれ照射する状態を示す。すなわち例えば而管
造影(1)igitalanq iography)に
おいては、第1図の状態で第1の蓄積性蛍光体シー1〜
Aに、内管の造影剤を注入する前の被写体1のX線透過
像を蓄積記録し、次いで同一の被写体1の静脈に造影剤
を注入し、例えば腹部の場合は10秒程経過した後に同
様にこの被写体1のx1fA透過像を蓄積記録する。こ
のとぎX線源3の管電圧は同じとし、被写体1と蛍光体
シートA、Bとの位置関係も同じとし、造影剤の有無以
外には全く差がないような2つのX線画像をA、Bに蓄
積記録り−るようにする。
Figure 1 shows that X-rays 2 transmitted through the same subject 1 are applied to two stimulable phosphor sheets 1-A and B under different conditions. This shows the state of irradiation without any irradiation. That is, for example, in digital imaging (1) igitalanq iography, the first stimulable phosphor sheet 1 to
In A, the X-ray transmission images of the subject 1 are accumulated and recorded before the contrast medium is injected into the inner canal, and then the contrast medium is injected into the vein of the same subject 1. For example, in the case of the abdomen, after about 10 seconds have elapsed. Similarly, the x1fA transmission image of this subject 1 is accumulated and recorded. The tube voltage of the X-ray source 3 is the same, the positional relationship between the subject 1 and the phosphor sheets A and B is also the same, and two X-ray images with no difference other than the presence or absence of contrast agent are A. ,B.

このようにして、造影剤注入部の画像情報が異なる2つ
の放射線画像を2枚の蓄積性蛍光体シー1〜A、[3に
蓄積記録する。次にこれら2枚の蓄積性蛍光体シートA
、Bから、第2図に示すような画像読取手段によってX
線画像を読み取り、画像を表わすデジタル画像信号を得
る。先ず、蓄積性蛍光体シートAを矢印Yの方向に副走
査のために移動させながら、レーザー光110からのレ
ーザー光11を走査ミラー12によってX方向に主走査
させ、蛍光体シートAから蓄積X線エネルギーを、蓄積
記録されたX線画像にし1=がって輝尽発光光13とし
て発散させる。輝尽発光光13は透明なアクリル板を成
形して作られた集光板14の11− 一端面からこの集光板14の内部に入射し、中を全反射
を繰返しつつ)A1〜マル15に至り、輝尽発光光13
の発光ωが画像信QSとして出力される。この出力され
た画像信q3は増幅器とAID変換器を含む対数変換器
16ににり対数値(t。
In this way, two radiation images having different image information of the contrast agent injection part are accumulated and recorded on the two stimulable phosphor sheets 1 to A and [3. Next, these two stimulable phosphor sheets A
, B to X by an image reading means as shown in FIG.
The line image is read to obtain a digital image signal representing the image. First, while moving the stimulable phosphor sheet A in the direction of the arrow Y for sub-scanning, the laser beam 11 from the laser beam 110 is caused to main scan in the X direction by the scanning mirror 12, and the stimulable phosphor sheet A is moved in the direction of the arrow Y for sub-scanning. The linear energy is converted into an accumulated and recorded X-ray image and is therefore emitted as stimulated luminescence light 13. The stimulated luminescent light 13 enters the interior of the light condensing plate 14 from one end surface 11- of a light condensing plate 14 made by molding a transparent acrylic plate, and reaches A1 to circle 15 through repeated total reflection. , photostimulated light 13
The light emission ω is output as an image signal QS. This output image signal q3 is converted into a logarithmic value (t) by a logarithmic converter 16 including an amplifier and an AID converter.

qS)のデジタル画像信号10g5Aに変換される。こ
のデジタル画像信号l OQ 3△は例えば磁気テープ
等の記憶媒体17に記憶される。次に、全く同様にして
、もう1枚の蓄積111蛍光体シー1〜Bの記録画像が
読み出され、そのデジタル画像信号1oos、が同様に
記憶媒体17に記憶される。
qS) is converted into a digital image signal 10g5A. This digital image signal l OQ 3Δ is stored in a storage medium 17 such as a magnetic tape. Next, in exactly the same manner, the recorded image of another phosphor sheet 1-B of the storage 111 is read out, and its digital image signal 1oos is similarly stored in the storage medium 17.

次に、上述のようにして得られたデジタル画像信号l 
0GSA 1 l ogSBを用いてサブ1〜ラクシヨ
ン処理を行なう。第3図は本発明方法の第1実施態様に
よる自動濃度補止を実施しつつ行なわれるサブトラクシ
ョン処理の流れを示している。
Next, the digital image signal l obtained as described above is
Sub1 to luxion processing is performed using 0GSA 1 l ogSB. FIG. 3 shows the flow of subtraction processing performed while performing automatic density correction according to the first embodiment of the method of the present invention.

まず前記記憶媒体17内の画像ファイル17Aと、画像
ファイル17Bからそれぞれ、前記デジタル画像信号1
0(JSA−1ogsBが読み出され、サブ1〜ラクシ
ョン演算回路18に入力される。こ12− のサブトラクション演算回路18は、上記2つのデジタ
ル画像信号100SAとIooS、を対応する画素毎に
減算し、デジタルの差信号3subをめる。この差信号
5subは−たん画像ファイル19に記憶されてから、
画像処理回路20に入力され、該画像処理回路20にお
いて階調変換テーブル20aに基づいて階調処理される
First, the digital image signal 1 is extracted from the image file 17A and the image file 17B in the storage medium 17, respectively.
0 (JSA-1ogsB) is read out and input to the subtraction calculation circuit 18. The subtraction calculation circuit 18 subtracts the two digital image signals 100SA and IooS for each corresponding pixel. , a digital difference signal 3sub is generated.This difference signal 5sub is stored in the -tan image file 19, and then,
The image is input to the image processing circuit 20, where it undergoes gradation processing based on the gradation conversion table 20a.

階調処理を受けた差信号38ub’は、例えばCRT等
のディスプレイ装置や、走査記録装置等の再生記録装置
21に入力され、該差信号S S LJb′によってサ
ブトラクション画像が再生記録される。第4図はサブト
ラクション画像再生記録システムの一例として、画像走
査記録装置を示すものである。感光フィルム30を矢印
Yの副走査方向へ移動させるとともにレーザーご−ム3
1をこの感光フィルム30上にX方向に主走査させ、レ
ーザービーム31をA10変調器32により画像信号供
給器33からの画像信号によって変調することにより、
感光フィルム30上に可視像を形成する。この変調用画
像信号として、前記差信号Ssub’を使用すれば、デ
ジタルサブトラクション処理による所望の特定構)6物
のみの画像を感光フィルム30上に再生配録することが
できる。
The difference signal 38ub' that has undergone gradation processing is input to a display device such as a CRT, or a reproducing/recording device 21 such as a scanning recorder, and a subtraction image is reproduced and recorded using the difference signal S S LJb'. FIG. 4 shows an image scanning and recording apparatus as an example of a subtraction image reproduction and recording system. While moving the photosensitive film 30 in the sub-scanning direction of arrow Y, the laser beam 3
1 on this photosensitive film 30 in the X direction, and the laser beam 31 is modulated by the image signal from the image signal supply device 33 by the A10 modulator 32.
A visible image is formed on the photosensitive film 30. If the difference signal Ssub' is used as the modulation image signal, images of only six desired specific structures can be reproduced and recorded on the photosensitive film 30 by digital subtraction processing.

第5図は以ト説明したJζうなり一ブトラクシ」ンによ
り、所望の特定構造物の画像を得る様子を示すものであ
る。図中4AIま腹部に造影剤を注入する前のX線画像
を記録した第1の蓄積性蛍光体シー1〜Aから(qられ
る画像、4Bは同じ部分の造影剤を注入した後のX線画
像を記録した第2の蓄積性蛍光体シートE3から得られ
る画像、4Cは4Bの画像を表わJデジタル画像信号か
ら4Aの画像を表わ1デジタル画像信号を減詐して得た
、血管だけが見えるようにした1Jブ[−ラクション画
像である。
FIG. 5 shows how an image of a desired specific structure is obtained by the above-described Jζ beat single translation. In the figure, 4AI is an X-ray image from the first stimulable phosphor sheet 1 to A that records an X-ray image before contrast medium was injected into the abdomen (images q), and 4B is an X-ray image of the same area after contrast medium was injected. An image obtained from the second stimulable phosphor sheet E3 on which the image was recorded, 4C represents the image of 4B, J represents the image of 4A from the digital image signal, 1 blood vessel obtained by reducing the digital image signal This is a 1J block image with only the 1J block visible.

上記サブトラクション画像4Cにおいて、抽出された特
定構造物(血管)のまわりの背113に部分は、本来前
記差信号3sublfiO(ゼロ)となって、再生画像
上では常に一定濃度(輝爪)になるはずである。ところ
が前述したJ:うに撮影htt用線強麿のバラツキや、
蓄積性蛍光体シー1〜△、Bの感度のバラツキにより、
この背景BK部分の濃度はまちまちになってしまう。そ
こで第3図に示されるように、前記差信号5Subをヒ
ストグラム演停回路22に入力し、該差信号35 LJ
 bのヒスi・グラムをめる。このヒストグラムは第6
図に示ずにうに、通常、前記背mBKの領域を表わす大
きな山Mと、造影剤が注入された特定構造物部分を表わ
づ一小さな山田とを有する。したがって上記大きな山M
の位置が常に同じであれば、上記背elBKは常に一定
の濃度となる。ところが前記のような理由で、−F記ヒ
ストグラムは第6図に破線で示ずように変動してしまう
。そこでこの第6図の実線のヒストグラムを、再生画像
の背景BKのimiが好ましい標準的な濃度(標準背景
濃度)どなる差信号のものであるとすると、まずその最
大頻度点信号χ0 (標準背景濃度信号である)から、
実際のヒストグラムの最大頻度点信号χを減じ、その差
Δχ(−χ0−χ)をめる。この演算は第3図に示すよ
うに、上記ヒストグラム演算回路22がめた実際のヒス
トグラムの最大頻度15一 点信号χど、上記標準背景濃度を記憶さ1!た記憶手段
23から読み出された標準背景濃度信号χ0とを信号補
正回路24に入力し、該信号補正回路24において行な
う。そしてこの信号補正回路24は、画像ファイル19
から引き出されIこ前記差信号5subに上記差Δχを
一律に加算する。したがって差信号3 S IJ bは
常に、そのヒストグラムの最大頻度点信号が前記χ。と
なるように補正され、この補正後の差信号3 S IJ
 bを基に得られるサブ]ヘラクション画像において、
背姐淵度はいかなる場合も上記標準前[i!度どなる。
In the subtraction image 4C, the portion of the back 113 around the extracted specific structure (blood vessel) should originally have the difference signal 3sublfiO (zero), and should always have a constant density (bright nail) on the reproduced image. It is. However, the above-mentioned J: Sea urchin photography http line strength variation,
Due to the variations in sensitivity of the stimulable phosphors C1 to △ and B,
The density of this background BK portion varies. Therefore, as shown in FIG. 3, the difference signal 5Sub is input to the histogram stop circuit 22, and the difference signal 35LJ
Find the hisi-gram of b. This histogram is the 6th
Although not shown in the figure, it usually has a large ridge M representing the area of the dorsal mBK and a small ridge representing the specific structure portion into which the contrast agent has been injected. Therefore, the big mountain M
If the position of elBK is always the same, the density of the back elBK will always be constant. However, for the reasons mentioned above, the -F histogram fluctuates as shown by the broken line in FIG. Therefore, if we assume that the solid line histogram in Fig. 6 is a difference signal in which the imi of the background BK of the reproduced image is a preferable standard density (standard background density), first of all, its maximum frequency point signal χ0 (standard background density signal),
The maximum frequency point signal χ of the actual histogram is subtracted, and the difference Δχ (−χ0−χ) is calculated. As shown in FIG. 3, this calculation is performed by storing the maximum frequency 15 one-point signal χ of the actual histogram produced by the histogram calculation circuit 22, and storing the standard background density 1! The standard background density signal χ0 read out from the storage means 23 is input to the signal correction circuit 24, and the signal correction circuit 24 performs the correction. This signal correction circuit 24 then processes the image file 19.
The difference Δχ is uniformly added to the difference signal 5sub. Therefore, in the difference signal 3 S IJ b, the maximum frequency point signal of its histogram is always the above-mentioned χ. The difference signal 3 S IJ after this correction is corrected so that
In the sub]heraction image obtained based on b,
In any case, the back degree is before the above standard [i! I yell a lot.

第7図は本発明方法の第2実施態様による自動濃度補正
を行なうザブトラクション処理の流れを示すものである
。この場合ヒストグラム演算回路22からの最大頻度点
信号χと、記憶手段23からの標準曹狽si信号χ0は
階調変換テーブル補正回路12/Iに入力される。前記
画像処理回路20において用いられる階調変換デープル
20aは第8図に示されるようなしのであるが、上記階
調変換テーブル補正回路124は前記信号補正回路16
− 24と同様にΔχ−χ0−χをめてから、補正項一Δχ
を画像処理回路20に送り、本来の階調変換テーブル2
0a (第8図の実線)を、−Δχだ番ノ入力信号軸方
向にシフトさせる(第8図の破線)。このように階調変
換テーブル20aがシフトされると、階調処理後の差信
号S、sub’はいかなる場合でも常に、ヒストグラム
の最大頻度点信号が前記標準背景濃度信号χ0となって
いる差信号3 S LJ bが上記本来の階調変換テー
ブル20aによって階調処理された場合と同じ値をとる
FIG. 7 shows the flow of subtraction processing for automatic density correction according to the second embodiment of the method of the present invention. In this case, the maximum frequency point signal χ from the histogram calculation circuit 22 and the standard Cao si signal χ0 from the storage means 23 are input to the gradation conversion table correction circuit 12/I. The tone conversion table 20a used in the image processing circuit 20 is of the type shown in FIG.
− After calculating Δχ−χ0−χ in the same way as in 24, the correction term - Δχ
is sent to the image processing circuit 20, and the original gradation conversion table 2 is
0a (solid line in FIG. 8) is shifted in the direction of the input signal axis by -Δχ (broken line in FIG. 8). When the gradation conversion table 20a is shifted in this way, the difference signal S, sub' after gradation processing is always a difference signal in which the maximum frequency point signal of the histogram is the standard background density signal χ0. 3 S LJ b takes the same value as when gradation processing is performed using the original gradation conversion table 20a.

したがって上記差信号3sub’によって得られたサブ
トラクション画像におい−C1背IBKの濃度は常に標
準背景濃度となる。
Therefore, in the subtraction image obtained by the difference signal 3sub', the density of -C1 back IBK always becomes the standard background density.

なお標準背景濃度信号χ0は前述のように、好ましい標
準背景濃度のサブトラクション画像を形成する差信号5
subのヒストグラムの最大頻度点信号をめて得る他、
特に差信号5subのヒストグラムをめなくても、標準
的な背景濃度のサブトラクション画像を形成する差信号
5Subから、画像座標点を指示して前傾濃度信号を抽
出したり、あるいは好J、シい標準背顕淵1ηを表わJ
−信号を発生さUて、その信号を使用するJ、うにして
もよい。
As mentioned above, the standard background density signal χ0 is the difference signal 5 that forms a subtraction image with a preferable standard background density.
In addition to obtaining the maximum frequency point signal of the sub histogram,
In particular, without looking at the histogram of the difference signal 5sub, you can specify the image coordinate point and extract the forward-tilted density signal from the difference signal 5Sub that forms a subtraction image with a standard background density. J represents the standard dorsal abyss 1η
- It may be possible to generate a signal and use that signal.

(発明の効宋) 以上訂細に説明した通り本弁明にJ:れば、2枚の蓄積
性蛍光体シー1〜を利用しく filられるfli¥間
リブトすクション画像の背順澹度を常に一定に設定でき
るので、極めて診断1/1に優れ医療分野にお【ノる利
用価値が高いサブ1〜ラクション画像がILlられるよ
うになる。
(Efficacy of the invention Sung Dynasty) As explained in detail above, in this defense, it is necessary to use two sheets of stimulable phosphor sheet 1~, and to always keep the degree of back-order of the printed action image between the two stimulable phosphor sheets. Since it can be set to a constant value, it becomes possible to use sub-1 to traction images that are extremely excellent in diagnosis 1/1 and have high utility value in the medical field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法におりる放射線画像の蓄積記録ステ
ップを示す31明図、 第2図は上記蓄積記録がなされた腎積性蛍光体シートか
らの放射線画像情+IJ読取りを説明Jる概略図、 第3図は本発明方法の第1実施態様により自動濃度補正
を行なうサブトラクション処理の概要を説明する概略図
、 第4図はザブトラクション画像の再生記録システムの一
例を示す概略図、 第5図は造影剤注入の放射線画像および造影剤非注入の
IIi射線画像と、これら放射線画像から得られる時間
勺ブトラクション画像の例を示す概略図、 第6図はザブトラクション画像を形成する差信号のヒス
トグラムの例を示すグラフ、 第7図は本発明方法の第2実7Il!!態様により自動
ai1度修正を行なうサブ1−ラクション処理の概要を
説明Jる概略図、 第8図は、]二2第2実施態様方法にお(プる階調変換
テーブルの補正を説明するグラフである。 1・・・被写体 2・・・X線 3・・・X線源 4A、4B・・・X線画像4C・・・
Vブ1〜ラクション画像 10・・・レーデ−光f、11・・・レーザー光]2・
・・走査ミラー 13・・・輝尽発光光15・・・フォ
トマル 16・・・対数変換器18・・・サブトラクシ
ョン演算回路 19− 20・・・画像処理回路 20a・・・階調変換テーブ
ル22・・・ヒストグラム演算回路 23・・・記憶手段 24・・・信号補正回路124・
・・階調変換テーブル補正回路A、B・・・蓄積性蛍光
体シート 1oqs 、1ocksB・・・デジタル画像信号△ 3 S LJ b・・・デジタル画像信号の差信号3 
S LJ b ’・・・階調処理された差信号20−
Fig. 1 is a 31-picture diagram showing the step of accumulating and recording radiation images in the method of the present invention, and Fig. 2 is a schematic diagram illustrating the radiation image information + IJ reading from the nephrogenic phosphor sheet on which the accumulation and recording described above has been performed. 3 is a schematic diagram illustrating an overview of subtraction processing that performs automatic density correction according to the first embodiment of the method of the present invention; FIG. 4 is a schematic diagram illustrating an example of a subtraction image reproduction/recording system; The figure is a schematic diagram showing an example of a radiographic image with contrast medium injection, a IIi radiographic image without contrast medium injection, and a temporal subtraction image obtained from these radiographic images. A graph showing an example of a histogram, FIG. 7 is the second example of the method of the present invention. ! FIG. 8 is a schematic diagram illustrating the outline of sub-1-raction processing that performs automatic AI 1-degree correction depending on the embodiment, and FIG. 1... Subject 2... X-ray 3... X-ray source 4A, 4B... X-ray image 4C...
Vb1~Raction image 10... Radical light f, 11... Laser light] 2.
... Scanning mirror 13 ... Stimulated luminescence light 15 ... Photomultiple 16 ... Logarithmic converter 18 ... Subtraction calculation circuit 19 - 20 ... Image processing circuit 20a ... Gradation conversion table 22 ...Histogram calculation circuit 23...Storage means 24...Signal correction circuit 124.
... Gradation conversion table correction circuits A, B ... Stimulable phosphor sheet 1 oz, 1 ocks B ... Digital image signal △ 3 S LJ b ... Digital image signal difference signal 3
S LJ b'...Difference signal 20- subjected to gradation processing

Claims (1)

【特許請求の範囲】 1)2枚の蓄積1/1蛍光体シートのそれぞれに、特定
構造物に造影剤が注入された被写体ど造影剤が注入され
ない前記被写体を透過した放射線を照射して、これら蛍
光体シー1〜に前記特定構造物の画像情報がnいに異な
る放1)tFAiiI像を蓄積記録し、これらの蛍光体
シートに励起光を走査して前記放射線画像を輝尽発光光
に変換し、この輝尽発光光の発光量を光電的に読み出し
てデジタル画像信号に変換し、両画像の対応する画素間
でこのデジタル画像信号の減算を行なって放射線画像の
特定構造物の画像を形成する差信号を得、その後この差
信号に、所定の階調変換テーブルに基づいて階調処理を
施すようにした放射線画像の時間ザブトラクション処理
におい−(゛、前記差信号のヒストグラムをめて次にイ
の最大頻度点信号をめ、前記差信号によるサブトラクシ
ョン画像の標準背景i1度を担持する標準背景濃度信号
から前記最大頻度点信号を減じた差Δχをめ、次いで 1)前記階調処理を施す前の前記差信号に前記差Δχを
加える補正、 11)前記階調処理に用いる階調変換テーブルを、前記
差Δχと絶対値が等しく符号逆の値−Δχだ番ノ入力信
号軸方向にシフトさせる補正のいずれか一方の補正を行
なうことを特徴とづるザブトラクション画像の自動濃度
補正方法。 2)放射線画像が蓄積記録された蓄積性蛍光体シートに
励起光を走査し、それによって前記蓄積性蛍光体シート
から発せられた輝尽発光光を光電的に読み出してデジタ
ル画像信号に変換する画像読取手段と、この画像読取手
段が読み取った、特定構造物に造影剤が注入された被写
体のデジタル画像信号と、造影剤が注入されない前記被
写体のデジタル画像信号とを、対応する画素間で減算し
て前記特定構造物の画像を形成する差信号を得るサブト
ラクション演篩手段と、この差信号に階調変換テーブル
に基づいて階調処理を施り画像処理手段と、前記差信号
のヒストグラムをめてその最大頻度点信号をめるヒスト
グラム演篩手段ど、前記差信号による1ノ−ブトラクシ
」ン画像の標準背景濃度を記憶する記憶手段と、該記憶
手段から読み出された前記標準背明淵1αを担持りる標
準NV FA flifi度信号から11rt記最人頼
度点(HHを減咋し、イの差Δχを前記階調処理を受【
」る前の前記差信号に加える信号補正回路とからなる4
Jブ1〜ラクション画像の自動11i1度補正装置。 3)放射線画像が蓄積記録された蓄積f1蛍光体シー1
−に励起光を走査し、それによって前記蓄積v1蛍光体
シートから発せられた輝尽発光光を光電的に読み出して
デジタル画像イh弓に変換する画像読取手段と、この画
像読取手段が読み1yつだ、特定構造物に造影剤が11
人された被ry体のデジタル画像信号と、造影剤が注入
され4fい前記被写体のデジタル画像信号とを、対応η
る画索聞で減算して前記特定4M造物の画像を形成り−
る差信号を冑る]ノブトラクション演算手段と、この差
信号に階調変換テーブルに基づいて階調処理を施す画像
処理手段と、前記差信号のヒストグラムをめてその最大
頻度点信号をめるヒストグラム演算手段と、前記差信号
によるザブ1〜ラクション画像の標準背景濃度を記憶す
る記憶手段と、該記憶手段から読み出された前記標準背
景濃度を担持する標準背景濃度信号から前記最大頻度点
信号を減算し、前記階調変換テーブルを、前記差Δχと
絶対値が等しくて符号が逆の−Δχだけ入力信号軸方向
にシフトさせる階調変換テーブル補正回路とからなるサ
ブ]−ラクション画像の自動淵反補正装置。 −:3−
[Scope of Claims] 1) Irradiating each of the two storage 1/1 phosphor sheets with radiation that has passed through a subject in which a contrast agent has been injected into a specific structure and a subject in which no contrast agent has been injected; The image information of the specific structure is emitted in these phosphor sheets 1 to 1) Accumulating and recording tFAiii images, and excitation light is scanned over these phosphor sheets to convert the radiation image into stimulated luminescence light. The amount of stimulated luminescence light is read out photoelectrically and converted into a digital image signal, and this digital image signal is subtracted between corresponding pixels of both images to create an image of a specific structure in the radiation image. In time subtraction processing of radiographic images, which obtains a difference signal to be formed and then performs gradation processing on this difference signal based on a predetermined gradation conversion table, Next, calculate the maximum frequency point signal (a), calculate the difference Δχ obtained by subtracting the maximum frequency point signal from the standard background density signal carrying the standard background i1 degree of the subtraction image by the difference signal, and then 1) the gradation processing 11) A correction in which the difference Δχ is added to the difference signal before the gradation process is performed; 1. An automatic density correction method for a subtraction image, characterized in that one of the corrections for shifting the subtraction image is performed. 2) An image in which excitation light is scanned across a stimulable phosphor sheet on which a radiation image has been stored and recorded, and thereby stimulated luminescence light emitted from the stimulable phosphor sheet is read out photoelectrically and converted into a digital image signal. A reading means, and a digital image signal of a subject whose specific structure has been injected with a contrast agent, which is read by the image reading means, and a digital image signal of the object to which no contrast agent has been injected are subtracted between corresponding pixels. subtraction calculation means for obtaining a difference signal forming an image of the specific structure; image processing means for performing gradation processing on the difference signal based on a gradation conversion table; and a histogram of the difference signal. A histogram operation means for storing the maximum frequency point signal, a storage means for storing the standard background density of the one-nove traction image based on the difference signal, and the standard background density 1α read from the storage means. From the standard NV FA flifi degree signal carrying
and a signal correction circuit that adds to the difference signal before
Automatic 11i 1 degree correction device for Jb1~action images. 3) Storage f1 phosphor sheet 1 in which radiation images are stored and recorded
- an image reading means for scanning excitation light on the phosphor sheet, thereby photoelectrically reading out the stimulated luminescent light emitted from the storage v1 phosphor sheet and converting it into a digital image; 11 Contrast agents are present in specific structures.
A digital image signal of a human subject and a digital image signal of the subject injected with a contrast agent are set to correspond to η
Form an image of the specific 4M structure by subtracting it with the picture index.
a knob traction calculation means for processing the difference signal; an image processing means for performing gradation processing on the difference signal based on a gradation conversion table; and a histogram of the difference signal to find its maximum frequency point signal. a histogram calculation means, a storage means for storing standard background densities of sub-1 to traction images based on the difference signal, and a maximum frequency point signal from the standard background density signal carrying the standard background densities read from the storage means; and a gradation conversion table correction circuit that shifts the gradation conversion table in the direction of the input signal axis by -Δχ, which has an absolute value equal to and opposite in sign to the difference Δχ. Fuchi anti-correction device. -:3-
JP59063042A 1984-03-30 1984-03-30 Auto density correction method and device of subtraction picture Granted JPS60206392A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59063042A JPS60206392A (en) 1984-03-30 1984-03-30 Auto density correction method and device of subtraction picture
CA000477813A CA1226976A (en) 1984-03-30 1985-03-28 Method and apparatus for automatically correcting subtraction image density
DE8585103804T DE3580994D1 (en) 1984-03-30 1985-03-29 METHOD AND DEVICE FOR THE AUTOMATIC CORRECTION OF A SUBTRACTION IMAGE.
EP85103804A EP0156393B1 (en) 1984-03-30 1985-03-29 Method and apparatus for automatically correcting subtraction image desity
US07/318,465 US5048110A (en) 1984-03-30 1989-02-27 Method and apparatus for automatically correcting subtraction image density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063042A JPS60206392A (en) 1984-03-30 1984-03-30 Auto density correction method and device of subtraction picture

Publications (2)

Publication Number Publication Date
JPS60206392A true JPS60206392A (en) 1985-10-17
JPH0363877B2 JPH0363877B2 (en) 1991-10-02

Family

ID=13217875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063042A Granted JPS60206392A (en) 1984-03-30 1984-03-30 Auto density correction method and device of subtraction picture

Country Status (1)

Country Link
JP (1) JPS60206392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158639A (en) * 1984-08-30 1986-03-25 株式会社島津製作所 Digital subtraction system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158639A (en) * 1984-08-30 1986-03-25 株式会社島津製作所 Digital subtraction system

Also Published As

Publication number Publication date
JPH0363877B2 (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JPH0362411B2 (en)
US5048110A (en) Method and apparatus for automatically correcting subtraction image density
US4816681A (en) Method and apparatus for improving quality of energy subtraction image
US4761739A (en) Density correcting method and apparatus for energy substraction image
JP3201853B2 (en) Signal-to-density mapping method with controlled contrast
JPH0372779A (en) Compander method for picture data
US5028781A (en) Density correcting method and apparatus for subtraction image
JPS60206392A (en) Auto density correction method and device of subtraction picture
EP0135908A2 (en) Digital fluoroscopy apparatus
JPH03263982A (en) Method and apparatus for displaying energy subtraction picture
JPS60222034A (en) Image formation in energy subtraction
JPS60207642A (en) Method and apparatus for automatically correcting density ofsubtraction image
JPS6331641A (en) Method for processing radiation image information
JPS6185929A (en) Method and apparatus for improving quality of energy subtraction image
JPH0363878B2 (en)
JPS60224386A (en) Method and device of density correction of subtraction picture
JPS5910839A (en) Processing method of subtraction picture
JPH0471395B2 (en)
JPH03133278A (en) Method and apparatus for forming energy subtraction picture
JPH0262075B2 (en)
JPS60251475A (en) Method and unit for optimizing gradation processing of subtraction picture
JPS60227735A (en) Automatic density correcting method and apparatus of subtraction image
JPH02239598A (en) Exposure compensating device of radiographic device
JPH0261253B2 (en)
JP2791887B2 (en) Radiation image information reading and displaying device