JPS60206146A - Method for analyzing impurity - Google Patents

Method for analyzing impurity

Info

Publication number
JPS60206146A
JPS60206146A JP6117684A JP6117684A JPS60206146A JP S60206146 A JPS60206146 A JP S60206146A JP 6117684 A JP6117684 A JP 6117684A JP 6117684 A JP6117684 A JP 6117684A JP S60206146 A JPS60206146 A JP S60206146A
Authority
JP
Japan
Prior art keywords
concentration
absolute value
determined
current
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6117684A
Other languages
Japanese (ja)
Inventor
Fumio Ichikawa
市川 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP6117684A priority Critical patent/JPS60206146A/en
Publication of JPS60206146A publication Critical patent/JPS60206146A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Abstract

PURPOSE:To obtain with ease a profile of absolute values related to the concentration distribution of an impurity in a semiconductor substrate by a method wherein comparison is made between the impurity concentration in a specimen and the absolute concentration of the ions of an element under measurement driven into a part to be tested of the specimen during a measurement conducted by using secondary ion mass spectrometric analysis. CONSTITUTION:The absolute value of the peak concentration of injected ions is theoretically determined by using the acceleration voltage and the dose size. Of the two regions 1a and 1b equipped with the same profile in a semiconductor substrate 1, ions are driven only into the region 1a. The region 1a is exposed to etching while the quantity of ions or a current (y2) is determined as indicated in a mass spectrometer. The absolute value of an ion injection peak value 1c is determined in view of the depth (y1) and the concentration (x1). The absolute value of 1d is determined by relative comparison with the ion injection peak value 1c. A current 1e is obtained by changing the specimen setting. The absolute value of the current 1e is equal to the absolute value 1d. The concentration 1f that is the wanted quantity is determined by relative comparison with the current 1e.

Description

【発明の詳細な説明】 (技術分野) この発明は、二次イオン質量分析法による不純物の分析
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for analyzing impurities by secondary ion mass spectrometry.

(従来技術) 二次イオン質量分析法(以下、SIMSと云うンは酸素
等の一部イオンを10〜15KVの電圧で加速し、試料
に照射し、その時試料よシ放出される二次イオンを質量
分析する方法である。
(Prior art) Secondary ion mass spectrometry (hereinafter referred to as SIMS) accelerates some ions such as oxygen with a voltage of 10 to 15 KV, irradiates the sample, and collects the secondary ions released from the sample. This is a method of mass spectrometry.

SIMSはオージェ電子分光法や光電子分光法等に比べ
微量不純物に対する感度が高い。
SIMS has higher sensitivity to trace impurities than Auger electron spectroscopy, photoelectron spectroscopy, and the like.

シリコンの代表的ドーピング不純物であるB、P。B and P are typical doping impurities for silicon.

Asに対しては、I X 10” atomi仕の検出
が可能といわれている。セして10” atoms/C
C〜10” atomシtの範囲で有線性の良い測定が
できる。
It is said that it is possible to detect As with I x 10" atoms.
Measurements with good wired performance are possible in the range of C to 10" atoms.

このSIMSの長所はエツチングしながらその試料に含
ま扛る不純物の分析ができる。したがって被測定不純物
の量に対応した電流等の検出量の時間的変化が、すなわ
ち、試料の断面方向の濃度グロファイルとして得ること
ができる。第1図はその場合の一例を示すものであり、
シリコンにAst注入したときの深さ対As不純物濃#
を示しており、上述のように、10” atoms/C
C10” atoms/(f、以上の範囲での直線性の
よさがわかる。
The advantage of SIMS is that impurities contained in a sample can be analyzed while etching. Therefore, it is possible to obtain a temporal change in the detected amount such as current corresponding to the amount of the impurity to be measured, that is, as a concentration profile in the cross-sectional direction of the sample. Figure 1 shows an example of such a case.
Depth vs. As impurity concentration when Ast is implanted into silicon
As mentioned above, 10” atoms/C
It can be seen that the linearity is good in the range of C10'' atoms/(f) or above.

また、二次イオン買電分析装置におけるレンズ系ヌ量分
析系を調整することにより、任意の元素についてその含
有量の分析ができる。しかも、検出感度20 ppb程
度と極めて高く、上述の不純物濃度の範囲で直線性のよ
い測定が可能であることに加えて、相対値で数チの精度
で測定が可能である。
Further, by adjusting the lens-based amount analysis system in the secondary ion power purchase analyzer, the content of any element can be analyzed. Furthermore, the detection sensitivity is extremely high at about 20 ppb, and in addition to being able to measure with good linearity in the above-mentioned impurity concentration range, it is also possible to measure relative values with an accuracy of several orders of magnitude.

しかし、SIMSでの濃度の測定では、得ら詐る二次イ
オン強度を濃度に変換する必要があり、精度や再現性に
問題があった。すなわち、任意の元素の含有量の絶対測
定ができず、これは質量分析に入ってくる元素の量ラミ
流として測定するので、質量分析系に入ってくる量が質
量分析系の調整状態によって異なるため、相対的な測定
しかできない。したがって、精度や再現性に問題がある
However, when measuring concentration using SIMS, it is necessary to convert the obtained secondary ion intensity into concentration, which poses problems in accuracy and reproducibility. In other words, it is not possible to make an absolute measurement of the content of any element; this is measured as the amount of element flowing into the mass spectrometer, so the amount entering the mass spectrometry system varies depending on the adjustment state of the mass spectrometer system. Therefore, only relative measurements can be made. Therefore, there are problems with accuracy and reproducibility.

一般に、二次イオン強度を濃度に変換するには、濃度既
知の試料を測定し、二次イオン強度と濃度の検量線を作
製して行なわ扛ている。
Generally, to convert secondary ion strength into concentration, a sample with a known concentration is measured, and a calibration curve of secondary ion strength and concentration is created and calculated.

しかし、SIMS測定での二次イオン強度は、測定条件
、すなわち試料室真空度、−次イオン電流等により変わ
ってくるため、絶対濃度の測定には問題があった。
However, since the secondary ion intensity in SIMS measurement varies depending on the measurement conditions, ie, the degree of vacuum in the sample chamber, the secondary ion current, etc., there is a problem in measuring the absolute concentration.

(発明の目的) この発明の目的は、半導体基板中等の不純物濃度分布の
絶対値のプロフィルを簡便に得ることのできる不純物の
分析法を得ることにある。
(Objective of the Invention) An object of the present invention is to obtain an impurity analysis method that can easily obtain a profile of the absolute value of the impurity concentration distribution in a semiconductor substrate or the like.

(発明の概要) この発明の要点は、SIMSで、シリコン基板ノ・中の
ドーピング不純物の絶対濃度を測定するために、測定の
前にあらかじめ、測定対象元素を測定場所にイオン注入
して、測定対象の元素の濃度プロファイルを絶対値とし
て確定し、イオン注入の絶対濃度と被測定試料の濃度と
を相対的に比較することにより、被測定試料の絶対的な
濃度プロファイルをめることにある。
(Summary of the Invention) The main point of this invention is that in order to measure the absolute concentration of doping impurities in a silicon substrate using SIMS, an element to be measured is ion-implanted into the measurement location in advance before measurement. The objective is to determine the absolute concentration profile of the sample to be measured by determining the concentration profile of the target element as an absolute value and relatively comparing the absolute concentration of the ion implantation and the concentration of the sample to be measured.

(実施例) 次に、この発明の不純物の分析法の実施例について説明
する。通常SIMSのシリコン中のB、P、Asに対す
る検′出限界はI X 10” atoms/cc で
ある。たとえば約3 X 10” ’ atoma/c
cのB’(r含むシリコン基板をSIMSで測定すると
、第2図のような結果が得られる。
(Example) Next, an example of the impurity analysis method of the present invention will be described. Typically, the detection limit of SIMS for B, P, and As in silicon is I x 10'' atoms/cc. For example, approximately 3 x 10'' atoms/cc.
When a silicon substrate containing B'(r of c is measured by SIMS, the results shown in FIG. 2 are obtained.

この第2図は、−次イオン02 による二次イオン強度
の時間変化を示す。横軸はスパッタ時間、縦軸は得られ
るゝゝB+の二次イオン強度である。二次イオン強度と
濃度は比例関係にあり、通常は二次イオン強度から濃度
を算出する。このためには、濃度既知の試料により、検
量線を作成する必要がある。
This FIG. 2 shows the time change of the secondary ion intensity due to the -order ion 02. The horizontal axis is the sputtering time, and the vertical axis is the obtained secondary ion intensity of B+. There is a proportional relationship between secondary ion strength and concentration, and the concentration is usually calculated from the secondary ion strength. For this purpose, it is necessary to create a calibration curve using samples whose concentrations are known.

しかし、この濃度と二次イオン強度の検量線は測定条件
によシ変化し、特にシリコン中の酸素の測定等では大き
な問題となる。
However, the calibration curve of this concentration and secondary ion strength changes depending on the measurement conditions, which is a big problem, especially when measuring oxygen in silicon.

第3図は約3 X 10” atoms/ccのB’に
含む試料にB+It 150 keV、I X 101
4cm″イオン注入後SIMsで測定した結果である。
Figure 3 shows a sample containing approximately 3 X 10" atoms/cc of B' with B+It 150 keV, I X 101
These are the results measured by SIMs after 4 cm'' ion implantation.

イオン注入のピーク濃度は、計算によりめることが可能
である。イオン注入ピーク位置での二次イオン強度Aと
シリコン半導体基板内部での二次イオン強度Bおよびピ
ーク濃度から、シリコン半導体基板濃度を算出すること
ができる。この第3図の例では、ピーク濃度5.35 
X 1018atoms/cc より、シリコン半導体
基板濃度は3.2 X 10”atoms/CCが得ら
れた。
The peak concentration of ion implantation can be determined by calculation. The silicon semiconductor substrate concentration can be calculated from the secondary ion intensity A at the ion implantation peak position, the secondary ion intensity B inside the silicon semiconductor substrate, and the peak concentration. In this example of Figure 3, the peak concentration is 5.35.
From X 1018 atoms/cc, a silicon semiconductor substrate concentration of 3.2 X 10''atoms/CC was obtained.

ここで、イオン注入のピーク濃度はその絶対値が加速電
圧、ドーズ量よシ理論的にめら扛、数多の精度で絶対値
が得られる。加速電圧50KV〜100KV、ドース量
10”〜10’個/eraで電流値をモニタすることに
より、イオン注入のピーク濃度が上述のように数多で判
る。このピーク濃度を基準として、同一材料の被測定物
を比較できる。
Here, the absolute value of the peak concentration of ion implantation is theoretically different from the accelerating voltage and the dose amount, and the absolute value can be obtained with a large degree of precision. By monitoring the current value at an accelerating voltage of 50 KV to 100 KV and a dose of 10'' to 10' ions/era, the peak concentration of ion implantation can be determined in numbers as described above. Based on this peak concentration, the Measured objects can be compared.

従って、既知のイオン注入ピーク濃度と相対値を比較す
ることにより、被測定試料のピーク濃度の絶対値を精度
よくめることができる。
Therefore, by comparing the known ion implantation peak concentration and the relative value, the absolute value of the peak concentration of the sample to be measured can be determined with high accuracy.

なお、表面近傍のプロファイルをめたい場合は、第4図
(&)に示すように、半導体基板1中の同じプロファイ
ルを有する部分1a、lbのうち、たとえば一方の部分
1aにのみイオンを注入し、この部分1aを深さ方向に
エツチングしつつ質量分析計のイオン強度(電流)を測
定する。
Note that if you want to have a different profile near the surface, as shown in FIG. While etching this portion 1a in the depth direction, the ion intensity (current) of the mass spectrometer is measured.

こnにより、第4図(b)の深さ対濃度の関係から明ら
かなように、イオン注入ピーク値ICの絶体値がめられ
、このイオン注入ピーク値ICとの相対比較より、絶対
値1dが算出さ九る。
As a result, the absolute value of the ion implantation peak value IC can be determined, as is clear from the relationship between depth and concentration in FIG. 4(b), and from the relative comparison with this ion implantation peak value IC, the absolute value is calculated.

次に、被測定試料のセツティングを変えて、第4図(c
)に示すように電流1ek求める。この電流1eの絶対
値は第4図(b)の絶対値1dに等しい。
Next, change the setting of the sample to be measured and set it as shown in Figure 4 (c).
), find the current 1ek. The absolute value of this current 1e is equal to the absolute value 1d in FIG. 4(b).

そしてめる濃度1fは電流1eと相対的に比較すること
によシ絶対値がめられる。
Then, the absolute value of the concentration 1f can be determined by relatively comparing it with the current 1e.

(発明の効果) この発明は以上説明したように、あらかじめ測定対象の
元素を測定場所にイオン注入して一測定対象の元素の濃
度グロファイルを絶対値として確定し、イオン注入の絶
対濃度と被測定試料の濃度とを相対的に比較して被測定
試料の絶対的な濃度グロファイルをめるようにしたので
、シリコンウェハ中のドーピング不純物濃度の絶対測定
が可能となり。
(Effects of the Invention) As explained above, in this invention, the element to be measured is ion-implanted into the measurement location in advance, and the concentration profile of the element to be measured is determined as an absolute value. Since the absolute concentration profile of the sample to be measured is obtained by comparing the concentration of the sample to be measured relatively, it becomes possible to measure the absolute concentration of doping impurities in silicon wafers.

(1)半導体基板中のドーピング不純物および金属中の
不純物量の測定、 (2)イオン注入の加速電圧を適当に選択することによ
り、ある特定部分の濃度グロファイルの測定、(3)シ
リコン中の酸素、炭素濃度の測定、等の測定が簡便に行
える。
(1) Measuring the amount of doped impurities in the semiconductor substrate and impurities in the metal, (2) Measuring the concentration profile of a specific part by appropriately selecting the accelerating voltage for ion implantation, (3) Measuring the concentration profile of a certain part in the silicon. Measurements such as oxygen and carbon concentration can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSIMSにより試料をエツチングしながら試料
の断面方向の不純物濃度グロファイルをめた場合の深さ
対As不純物濃度の関係を示す図、第2図は3 X 1
0” atoms/ccのBを含むシリコンヲSIMS
で測定した時のスパッタ時間対“B+2次イオン強度の
関係の結果を示す図、第3図は3 X 101015a
to/ccのBt−含むシリコンにB”k 150 K
eV、I X l 014cm−2イオン注入を行い、
SIMSで測定したスパッタ時間対“B+2次イオン強
度の関係を示す図、第4図(a)ないし第4図(c)は
この発明の不純物の分析法におけるシリコン半導体基板
表面近傍の不純物濃度プロファイルをめる方法を説明す
るための図である。 特許出願人 沖電気工業株式会社 第1図 深さくμm) 第2図 to5 ”31 、・[・[△ 専 第4図
Figure 1 shows the relationship between depth and As impurity concentration when the impurity concentration profile in the cross-sectional direction of the sample is determined while etching the sample using SIMS. Figure 2 shows the relationship between depth and As impurity concentration.
Silicon SIMS containing B of 0” atoms/cc
Figure 3 shows the results of the relationship between sputtering time and "B + secondary ion strength when measured at 3 x 101015a.
to/cc of Bt-containing silicon B”k 150 K
eV, I X l 014 cm-2 ion implantation,
Figures 4(a) to 4(c), which show the relationship between sputtering time and "B+ secondary ion strength measured by SIMS," show the impurity concentration profile near the surface of a silicon semiconductor substrate in the impurity analysis method of the present invention. Patent applicant Oki Electric Industry Co., Ltd. Figure 1 Depth: μm) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 二次イオン質量分析法で不純物濃度を測定する際に、測
定対象元素を測定対象領域の一部に被測定物の濃度より
高くなるようにイオン注入して、イオン注入による濃度
プロフィルのピーク値より被測定物の濃度を測定するこ
とを特徴とする不純物の分析法。
When measuring impurity concentration using secondary ion mass spectrometry, the element to be measured is ion-implanted into a part of the measurement target region so that the concentration is higher than the concentration of the target object, and the peak value of the concentration profile due to ion implantation is An impurity analysis method characterized by measuring the concentration of an analyte.
JP6117684A 1984-03-30 1984-03-30 Method for analyzing impurity Pending JPS60206146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6117684A JPS60206146A (en) 1984-03-30 1984-03-30 Method for analyzing impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6117684A JPS60206146A (en) 1984-03-30 1984-03-30 Method for analyzing impurity

Publications (1)

Publication Number Publication Date
JPS60206146A true JPS60206146A (en) 1985-10-17

Family

ID=13163576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6117684A Pending JPS60206146A (en) 1984-03-30 1984-03-30 Method for analyzing impurity

Country Status (1)

Country Link
JP (1) JPS60206146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046026A1 (en) * 2022-08-31 2024-03-07 华为技术有限公司 Semiconductor device preparation method and apparatus, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046026A1 (en) * 2022-08-31 2024-03-07 华为技术有限公司 Semiconductor device preparation method and apparatus, and semiconductor device

Similar Documents

Publication Publication Date Title
Walder et al. Isotope ratio measurement of lead, neodymium and neodymium–samarium mixtures, hafnium and hafnium–lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer
Moriguti et al. Precise lithium isotopic analysis by thermal ionization mass spectrometry using lithium phosphate as an ion source material
US4510387A (en) Ion micro-analysis
JPS60206146A (en) Method for analyzing impurity
Williams et al. Quantitative SIMS analysis of hydrogenated amorphous silicon using superimposed deuterium implant standards
Chia et al. Recent advances in secondary ion mass spectrometry to characterize ultralow energy ion implants
Buyuklimanli et al. Near-surface secondary-ion-mass-spectrometry analyses of plasma-based B ion implants in Si
Smith et al. On-line ion implantation for quantification in secondary ion mass spectrometry: determination of trace carbon in thin layers of silicon
Briche et al. High accuracy isotope dilution analysis for the determination of ethanol using gas chromatography-combustion-isotope ratio mass spectrometry© Copyright LGC (Teddington) Ltd. 2000.
Wätjen et al. Bi-implanted silicon reference material revisited: uniformity of the remaining batch
JP2001141676A (en) Quantitative analysis method in secondary ion mass spectrometry
Tomita et al. Estimation of ultra-shallow implants using SIMS, NRA and chemical analysis
JPH1151885A (en) Secondary ion mass spectrometry
Liu et al. Impact and correction of analytical positioning on accuracy of zircon U-Pb dating by SIMS
JP3374497B2 (en) Concentration distribution measurement method
JP2002181746A (en) Quantitative analysis method and auxiliary sample and standard sample thereof
Bubert et al. Dose determination of nickel implantations in silicon wafers
Castaing X-ray microprobe techniques
US6690009B1 (en) Method of determining the charge carrier concentration in materials, notably semiconductors
Chi et al. High precision measurements of arsenic and phosphorous implantation dose in silicon by secondary ion mass spectrometry
JP2000206063A (en) Method for analyzing impurity concentration of interface
JPH06347427A (en) Secondary ion mass spectrometry method
JP2001221755A (en) Secondary ion mass spectrometry
JPH1083970A (en) Method for determining thickness of masking photoresist in semiconductor-ion-implantation process
JP2001004564A (en) Quantitative determination method for trace amount of boron in thin-film solid and analytical method for composition of thin-film solid