JPS6020591A - Cryogenic cooling medium transfer tube - Google Patents

Cryogenic cooling medium transfer tube

Info

Publication number
JPS6020591A
JPS6020591A JP58127001A JP12700183A JPS6020591A JP S6020591 A JPS6020591 A JP S6020591A JP 58127001 A JP58127001 A JP 58127001A JP 12700183 A JP12700183 A JP 12700183A JP S6020591 A JPS6020591 A JP S6020591A
Authority
JP
Japan
Prior art keywords
inner tube
tube
magnetic field
outer tube
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58127001A
Other languages
Japanese (ja)
Inventor
Yoshihisa Sato
義久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58127001A priority Critical patent/JPS6020591A/en
Publication of JPS6020591A publication Critical patent/JPS6020591A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the encroachment of heat from the outside by attaching electric paths and supporting members on an inside wall of an outer tube and arranging an inner tube in a manner it is located with a distance from the front end of said supporting members. CONSTITUTION:An inner tube 7 consisting of superconductive member is supported with floating apart from supporting members 10a, 10b and 10c and electric paths 11a, 11b and 11c are provided inside an outer tube 9. On this constitution, under a non-operation state at the beginning, the inner tube 7 is present on a part 10a of the supporting member and DC is flowed in the electric path 11a from a front surface of the present sheet of paper toward the back surface of it under this condition. Then, the magnetic field generated by the electric path 11a is going to be formed concentrically. However, the magnetic field formed by DC can not enter into the inner tube 7 because the tube 7 is superconductive, and the magnetic flux concentrates between the electric path 11a and the inner tube 7 to form a supporting recess generated by the magnetic field. By this recess of the magnetic field, the inner tube 7 can be supported in vacuum with floating apart from the supporting member 10a thereby enabling substantial reduction of the quantity of heat enchroachment.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超Et導用極低温冷媒の移送管に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryogenic refrigerant transfer pipe for conducting super-Et.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、核融合あるいは加速器等超電導マグネットを多数
用いる大規模システムが実現しつつあり、これらの超電
導マグネットの冷却に用いる極低温冷媒(液体ヘリウム
等)の長距離移送と、この移送に用いる移送管の熱侵入
号低減が重要な技術課題となりつつある。
In recent years, large-scale systems using many superconducting magnets such as nuclear fusion or accelerators have been realized, and the long-distance transfer of cryogenic refrigerants (liquid helium, etc.) used to cool these superconducting magnets and the transfer pipes used for this transfer are becoming more and more important. Reducing heat intrusion signals is becoming an important technical issue.

第1図及び第2図により本発明の背景と従来技術の問題
点を説明する。
The background of the present invention and problems of the prior art will be explained with reference to FIGS. 1 and 2.

第1図に於て貯槽lに蓄えられた極低温冷媒2を移送管
3で超電導マグネット4を収納する極低温容器5に移送
する。
In FIG. 1, the cryogenic refrigerant 2 stored in the storage tank 1 is transferred through the transfer pipe 3 to the cryogenic container 5 which houses the superconducting magnet 4.

一般に第1図に示すシステムは多数の超電導マグネット
から構成されるシステムに於て極低温冷媒の製造を集中
化し、システム効率を向上させる為に用いられる。第1
図では説明をIIFI 44にする為に極低温冷媒製造
装置は省略し、貯槽と超は導マグネットを各1式のみ示
した。
Generally, the system shown in FIG. 1 is used to centralize the production of cryogenic refrigerant and improve system efficiency in a system comprised of multiple superconducting magnets. 1st
In the figure, the cryogenic refrigerant manufacturing equipment is omitted in order to explain the IIFI 44, and only one set each of the storage tank and super conductive magnet is shown.

さて前述した移送管の断面は一般に第2図の如く構成さ
れている。第2図に於て極低温冷媒は内管7の中を流れ
、真空断熱層8によ)外気から熱しゃ断され、外管9か
らは熱抵抗の大きい支持材10(例えばli’)LP等
)で支持されている。
Now, the cross section of the aforementioned transfer pipe is generally constructed as shown in FIG. In FIG. 2, the cryogenic refrigerant flows through the inner tube 7 and is thermally isolated from the outside air (by the vacuum insulation layer 8), and from the outer tube 9 it flows through the support material 10 (for example, li', LP, etc.) with high thermal resistance. ) is supported.

このような構造の従来の極低温冷媒移送管においては、
外管9から内管7へ支持材10を伝って熱が侵入すると
いう欠点がある。
In conventional cryogenic refrigerant transfer pipes with this structure,
There is a drawback that heat penetrates from the outer tube 9 to the inner tube 7 through the support material 10.

〔発明の目的〕[Purpose of the invention]

本発明は外部からの熱侵入が極めて少い極低温冷媒移送
管を提供することを目的とする。
An object of the present invention is to provide a cryogenic refrigerant transfer pipe that allows very little heat to enter from the outside.

〔発明の概要〕[Summary of the invention]

この目的を達成するために本発明の極低温冷媒移送管に
おいては、外管の内壁面に電路2よび支持材をとりつけ
、また内管はこの支持材の先端との間に隙間をもって位
置しうるように配置し、電路に電流を流し、その磁気力
によって内管を中空に浮かせるようにする。
In order to achieve this purpose, in the cryogenic refrigerant transfer tube of the present invention, the electric circuit 2 and the support material are attached to the inner wall surface of the outer tube, and the inner tube can be positioned with a gap between it and the tip of the support material. The inner tube is placed in such a way that a current is passed through the circuit, and the magnetic force causes the inner tube to float in the air.

〔発明の実施列〕[Implementation sequence of the invention]

第3図を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described with reference to FIG.

内管7を超′礒導体で構成し、支持材10a、10b、
10cから浮き得る形に支持する。支持材10a、10
b、10cを短かめに作っておく。外管9の内側に電路
を設ける。第3図では支持材10a、10b、10cの
根本に電路11a、llb、llcを設けたが必ずしも
、このような構成とする必要性はなく、外管9の内側に
複数の電路を設ければよい。電路としては通常のブスバ
ーもしくはケーブルを外管の内側に布設すればよい。
The inner tube 7 is made of a superconductor, and supports 10a, 10b,
Support it in such a way that it can float from 10c. Support material 10a, 10
Make b and 10c shorter. An electric circuit is provided inside the outer tube 9. In FIG. 3, electric circuits 11a, llb, and llc are provided at the bases of the supporting members 10a, 10b, and 10c, but it is not necessarily necessary to have such a configuration.If multiple electric circuits are provided inside the outer tube 9, good. As the electric circuit, a normal bus bar or cable may be installed inside the outer tube.

さて、このような構成に於て初期の不通電状態では内管
7は支持材の一部(第3図では10a)の上に乗ってお
)、この状態で電路11aに第3図紙面表から裏へ向か
う直流電流を流す。すると電路11aのつくる磁場が同
心円状に形成されようとするが、内管7が超電導体の為
直流電流のつくる磁場は内管7の中に入り込めず(マイ
スナー効果)゛電路11aと内管7の間に磁束が集中し
、磁場による支持凹面が形成される。この磁場凹面によ
り内管7を支持材10aから浮かせ真空中に支持するこ
とができ、熱侵入量を大幅に低減することが出来る。
Now, in such a configuration, in the initial de-energized state, the inner tube 7 rests on a part of the support member (10a in FIG. 3), and in this state, the electric circuit 11a is Direct current flows from the to the back. Then, the magnetic field created by the electric path 11a tries to form concentric circles, but because the inner tube 7 is a superconductor, the magnetic field created by the DC current cannot enter the inner tube 7 (Meissner effect). Magnetic flux is concentrated between the points 7 and 7, and a supporting concave surface is formed by the magnetic field. This magnetic field concave surface allows the inner tube 7 to be floated from the support member 10a and supported in a vacuum, making it possible to significantly reduce the amount of heat penetration.

第3図では説明を簡単にする為電路11aにのみ電流を
流した例を示したが同図11b、IICの如く複数箇所
に電流を流し、磁場による支持面を複数箇所膜ければ、
移送管の曲り部に対処することができる。
In order to simplify the explanation, Fig. 3 shows an example in which current is passed only through the electric path 11a, but if current is passed in multiple locations as shown in Fig. 11b and IIC, and the support surface is covered by a magnetic field in multiple locations, then
It is possible to deal with bends in the transfer pipe.

はぼ同じ構造において内管を浮かす他の方法として電磁
反発力(ローレンツ力)によるものがある。すなわち第
3図において内管7を常電導体(例えば鋼管)で構成す
る。そして内管に第3図紙訂の裏から表に向かう直流電
流を、また外管9の内側に設けた電路11a、llb、
llcに第3図紙面の表から裏に向かう直流電流を流す
と、内管7は電磁反発力(ローレンツ力)により支持材
10a + 10 b+10Cから離れて浮き上り真空
中に保持される。この′電磁反発力は向い合う2本の電
線に電流を流す場合、電流の向きが同一の場合電線は互
いに吸引し合い、電流の向きが反対の場合は互いに反発
し合う現象として、日常的に良く知られた原理である。
Another method of floating the inner tube with almost the same structure is to use electromagnetic repulsion (Lorentz force). That is, in FIG. 3, the inner pipe 7 is made of a normal conductor (for example, a steel pipe). Then, a direct current flowing from the back to the front of the paper in Figure 3 is applied to the inner tube, and electric circuits 11a, llb, provided inside the outer tube 9,
When a direct current is applied to the llc from the front to the back of the paper in FIG. 3, the inner tube 7 is lifted away from the support member 10a+10b+10C due to electromagnetic repulsion (Lorentz force) and held in a vacuum. This 'electromagnetic repulsion force' is a phenomenon that occurs on a daily basis when current is passed through two wires facing each other, and when the current direction is the same, the wires attract each other, and when the current direction is opposite, they repel each other. This is a well-known principle.

内管は極低温状態にあるのでその抵抗値は常温(300
K)の抵抗値の171o00以下となる。したがって円
管に1流を流すことによるジュール発熱は支持材10a
を通した熱伝導による熱侵入量より少ない。故に内管を
常電導体で構成した場合にも、内管を真空中に支持する
ことによる熱侵入量の低減効果は極めて大きい。
Since the inner tube is at an extremely low temperature, its resistance value is at room temperature (300
The resistance value of K) is 171o00 or less. Therefore, the Joule heat generated by flowing one flow through the circular pipe is generated by the supporting material 10a.
This is less than the amount of heat that enters through heat conduction. Therefore, even when the inner tube is made of a normal conductor, the effect of reducing the amount of heat penetration by supporting the inner tube in a vacuum is extremely large.

なお、支持材102等は第3図のように電路118等の
上に取付けるのではなく、電路11a等に隣接して外管
9の内壁面に取付けてもよい。また、電路11a等およ
び内管7に流す電流は交流でも実際上はとんど差支えな
い〇 〔発明の効果〕 以上述べた如く本発明の極低温冷媒移送管においては、
その内管を中空に浮かせることができるので、熱侵入量
を極めて少くすることができる。
Note that the support member 102 and the like may be attached to the inner wall surface of the outer tube 9 adjacent to the electric circuit 11a etc., instead of being attached on the electric circuit 118 etc. as shown in FIG. In addition, there is practically no problem with alternating current flowing through the electric circuit 11a etc. and the inner tube 7. [Effects of the Invention] As described above, in the cryogenic refrigerant transfer tube of the present invention,
Since the inner tube can be suspended in the air, the amount of heat intrusion can be extremely reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は極低温冷媒移送管が使用される状況を一般的に
示す断面図、第2図は従来の極低温冷媒移送管の断面図
、第3図は本発明の一実施例を示す断面図である。 1・・貯槽、 2・・・極低温冷媒、 3・・移送管、 4・・超電導マグネット、5 極低温
容器、 7 内管 8・・・真空断熱ノー、 9・・外管、10 、10a
 、 10b 、 l0C−支持材、11a、llb、
llc −電路。
Fig. 1 is a cross-sectional view generally showing the situation in which a cryogenic refrigerant transfer pipe is used, Fig. 2 is a cross-sectional view of a conventional cryogenic refrigerant transfer pipe, and Fig. 3 is a cross-sectional view showing an embodiment of the present invention. It is a diagram. 1... Storage tank, 2... Cryogenic refrigerant, 3... Transfer pipe, 4... Superconducting magnet, 5 Cryogenic container, 7 Inner tube 8... Vacuum insulation no, 9... Outer tube, 10, 10a
, 10b, 10C-support material, 11a, llb,
llc - electrical circuit.

Claims (1)

【特許請求の範囲】 1、外管と、この外管の内壁面に配置された電路と、こ
の電路または前記外管の内壁面に固着され前記外管の中
心軸方向に突出する支持材と、この支持材の先端との間
に隙間を存して前記外管内中心部に保持しうる如く設け
られた内管とを備えたことを特徴とする極低温冷媒移送
管。 2、内管を超電導体とし、電路に電流を流すようにした
ことを特徴とする特許請求の範囲第1項記載の極低温冷
媒移送管。 3、 内管を常電導体とし、この内管と′電路を往復路
として電流をhすようにしたことを特徴とする特許請求
の範囲第1項記載の極低温冷媒移送管。
[Scope of Claims] 1. An outer tube, an electric circuit disposed on the inner wall surface of the outer tube, and a supporting member fixed to the electric circuit or the inner wall surface of the outer tube and protruding in the central axis direction of the outer tube. A cryogenic refrigerant transfer tube comprising: an inner tube that is provided with a gap between it and the tip of the support material so as to be able to be held in the center of the outer tube. 2. The cryogenic refrigerant transfer tube according to claim 1, wherein the inner tube is made of a superconductor and a current is passed through the electric circuit. 3. The cryogenic refrigerant transfer tube according to claim 1, characterized in that the inner tube is a normal conductor, and the inner tube and the electrical circuit are used as reciprocating paths to carry current.
JP58127001A 1983-07-14 1983-07-14 Cryogenic cooling medium transfer tube Pending JPS6020591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127001A JPS6020591A (en) 1983-07-14 1983-07-14 Cryogenic cooling medium transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127001A JPS6020591A (en) 1983-07-14 1983-07-14 Cryogenic cooling medium transfer tube

Publications (1)

Publication Number Publication Date
JPS6020591A true JPS6020591A (en) 1985-02-01

Family

ID=14949217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127001A Pending JPS6020591A (en) 1983-07-14 1983-07-14 Cryogenic cooling medium transfer tube

Country Status (1)

Country Link
JP (1) JPS6020591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117798A (en) * 1984-07-04 1986-01-25 Kawasaki Heavy Ind Ltd Double-shell adiabatic receptacle
JP2005249195A (en) * 2004-03-01 2005-09-15 Nexans Double wall container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117798A (en) * 1984-07-04 1986-01-25 Kawasaki Heavy Ind Ltd Double-shell adiabatic receptacle
JPH0417308B2 (en) * 1984-07-04 1992-03-25 Kawasaki Heavy Ind Ltd
JP2005249195A (en) * 2004-03-01 2005-09-15 Nexans Double wall container

Similar Documents

Publication Publication Date Title
JP4880229B2 (en) Superconducting power transmission cable and power transmission system
US3619479A (en) Electrical conductor of electrically normal conducting metal and superconducting material
JPH0277106A (en) Ceramic superconductor very low temperature current conductor
CN101109583A (en) Cryogenically cooled equipment comprising current leads for electric equipment
JP2021515415A (en) Helium-cooled high-temperature superconducting member for large-current high-temperature superconducting current leads
CN102360711A (en) Superconducting magnetizer
CN100483902C (en) Iron core supported high-temp. superconductive winding
JPS6020591A (en) Cryogenic cooling medium transfer tube
JPS5912004B2 (en) Quasi-superconducting coil
JPS6197806A (en) Cooling device of magnetic part used in nmr picture device
Montgomery et al. A high field magnet combining superconductors with water-cooled conductors
Foster et al. Superconducting superferric dipole magnet with cold iron core for the VLHC
Singh et al. Conceptual design of a high temperature superconducting generator
CN112509779A (en) Superconducting magnet system for space magnetic plasma thruster
JPH01312299A (en) Transfer tube
MXPA02004830A (en) High temperature superconducting rotor power leads.
KR101642591B1 (en) High temperature superconductive current lead structure
US3343111A (en) High field strength magnetic device
JPH06163095A (en) Superconducting connection lead provided with thermal plug
US4675636A (en) Superconducting magnet
JPH0439909A (en) Superconducting magnet
JPS60170274A (en) Superconductive device
Kobayashi et al. Manufacturing of liquid helium free superconducting magnets for industrial use
JPH0570921B2 (en)
Haskell et al. The economics of superconducting magnets