JPS60205521A - Microscope objective lens - Google Patents

Microscope objective lens

Info

Publication number
JPS60205521A
JPS60205521A JP6293484A JP6293484A JPS60205521A JP S60205521 A JPS60205521 A JP S60205521A JP 6293484 A JP6293484 A JP 6293484A JP 6293484 A JP6293484 A JP 6293484A JP S60205521 A JPS60205521 A JP S60205521A
Authority
JP
Japan
Prior art keywords
lens group
lens
negative
thickness
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6293484A
Other languages
Japanese (ja)
Other versions
JPH0426445B2 (en
Inventor
Koji Mori
孝司 森
Yoshiyuki Shimizu
義之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP6293484A priority Critical patent/JPS60205521A/en
Priority to US06/717,798 priority patent/US4666256A/en
Publication of JPS60205521A publication Critical patent/JPS60205521A/en
Publication of JPH0426445B2 publication Critical patent/JPH0426445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements

Abstract

PURPOSE:To compensate the variation in aberrations with the thickness of cover glass by moving the 3nd negative lens group of the microscope objective lens consisting of three lens groups which are positive, negative, and negative in refracting power. CONSTITUTION:The objective lens consists of the 1st lens group G1 with positive refracting power, the 2nd lens group G2 with negative refractive power, and the 3rd lens group G3 with negative refracting power successively from an object side; the 2nd lens group is movable along the optical axis and -50f<f2<-10f, where f2 is the focal length of the 2nd lens group and (f) is the focal length of the whole system. The 2nd lens group G2 is moved according to variation in the thickness of a parallel plane plate P arranged between the object O and the 1st lens group G1 to compensate aberration variation.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は顕微鏡対物レンズ、特に物体側に配置されるカ
バーガラス等の平行平面板の厚さの変化があっても良好
な結像性能を維持し得る対物レンズに関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention maintains good imaging performance even when the thickness of a microscope objective lens, particularly a parallel plane plate such as a cover glass placed on the object side, changes. The present invention relates to a possible objective lens.

(発明の背景) 一般に顕微鏡対物レンズはカバーガラスの厚さが一定の
基準値であることを前提として設計されているため、カ
バーガラスの厚さが基準値と異なる場合には結像性能は
劣化してしまう、この傾向は対物レンズのN、A、 (
開口数)が大きい程著しくなる。このため従来より、補
正環付き対物レンズとして、カバーガラスの厚さの変化
に伴って対物レンズ内のレンズ間隔を変化させ、これに
よって収差の悪化を防ぎほぼ良好な結像性能を維持する
ものが知られている。しかし、従来の一般的補正環付き
対物レンズでは、カバーガラスの厚さ変化に対する収差
補正の範囲は極めて狭(、N、A、0.6程度の場合厚
さで0.2 m〜0.3鶴の範囲が実用上の限界であっ
た。
(Background of the Invention) Microscope objective lenses are generally designed on the premise that the thickness of the cover glass is a constant reference value, so if the thickness of the cover glass differs from the reference value, the imaging performance will deteriorate. This tendency is caused by the objective lens N, A, (
The larger the numerical aperture), the more significant this becomes. For this reason, conventional objective lenses with correction rings have been designed to change the lens spacing within the objective lens as the thickness of the cover glass changes, thereby preventing aberrations from worsening and maintaining almost good imaging performance. Are known. However, with conventional general objective lenses with correction rings, the range of aberration correction for changes in cover glass thickness is extremely narrow (0.2 m to 0.3 m in thickness when N, A, and 0.6). The range of the crane was the practical limit.

これに対し、本願と同一の出願人による特開昭56−1
42508号公報には顕微鏡対物レンズを物体側より順
に、物体側に凹面を向けた正′の接合メニスカスレンズ
の第ルンズ群、正レンズまたは接合正レンズの第2レン
ズ群及び合成で正屈折力の第3レンズ群で構成し、物体
面と対物レンズとの間に配置される平行平面板の厚さの
変化に応じて、第2レンズ群のみを光軸に沿って移動さ
せ、これによって平行平面板の広い範囲の厚さ変化があ
っても良好な結像性能を維持する技術が開示されている
。この技術によれば、確かに平行平面板の厚さ変化±1
.0鶴という極めて広い範囲にわたって優れた結像性能
を維持することが可能である。しかしながら、上記の技
術ではN、^、が0.6程度、倍率が40倍程度の対物
レンズが実用上の限界であり、より大きなN、^、また
はより高い倍率の対物レンズとしては未だ不十分であっ
た。
On the other hand, JP-A-56-1 filed by the same applicant as the present application
Publication No. 42508 describes a microscope objective lens, in order from the object side, a first lens group of a positive cemented meniscus lens with a concave surface facing the object side, a second lens group of a positive lens or a cemented positive lens, and a composite lens group with a positive refractive power. Consisting of a third lens group, only the second lens group is moved along the optical axis according to changes in the thickness of the parallel plane plate disposed between the object plane and the objective lens. A technique is disclosed that maintains good imaging performance even when the thickness of the face plate varies over a wide range. According to this technology, it is true that the thickness change of the parallel plane plate is ±1
.. It is possible to maintain excellent imaging performance over an extremely wide range of zero. However, with the above technology, the practical limit is an objective lens with an N,^, of about 0.6 and a magnification of about 40x, and it is still insufficient for an objective lens with a larger N,^ or a higher magnification. Met.

(発明の目的) 本発明の目的は、大きな開口数を有し高倍率であるにも
かかわらず、物体面と対物レンズとの間に配置されるカ
バーガラス等の平行平面板の厚さが大きく変化しても常
に優れた結像性能を維持することができる顕微鏡対物レ
ンズを提供することにある。
(Objective of the Invention) The object of the present invention is that, despite having a large numerical aperture and high magnification, the thickness of a parallel plane plate such as a cover glass placed between the object plane and the objective lens is large. To provide a microscope objective lens that can always maintain excellent imaging performance even when it changes.

(発明の概要) 本発明による顕微鏡対物レンズは、第1図の概略構成図
に示すごとく物体側から順に正屈折力を有し物体からの
光束を収斂光束に変換する第ルンズ群G1と、この収斂
光束中で光軸に沿って移動可能で負の屈折力をもつ第2
レンズ群G2、及び負の屈折力を持つ第3レンズ群G3
を有し、全系の焦点距離をf、該第2レンズ群の焦点距
離をr2とするとき、 一5Of <f2<−1Of (1) の条件を満たすものである。
(Summary of the Invention) As shown in the schematic configuration diagram of FIG. 1, the microscope objective lens according to the present invention includes, in order from the object side, a lens group G1 having a positive refractive power and converting a light beam from the object into a convergent light beam; A second lens movable along the optical axis in the converging beam and having negative refractive power.
a lens group G2 and a third lens group G3 having negative refractive power
When the focal length of the entire system is f and the focal length of the second lens group is r2, the following condition is satisfied: -5Of <f2<-1Of (1).

そして、物体0と第ルンズ群Glとの間に配置される平
行平面板Pの厚さの変化に応じて第2レンズ群G2を第
ルンズ群G1及び第3レンズ群G3に対して相対的に移
動させることにより、平行平面板Pの厚さ変化による収
差の変動を補正するものである。例えば、カバーガラス
や培養容器等の平行平面板Pの厚さが所定の設計基準値
より大きい場合には、第2レンズ群G2を第3レンズ群
G3側へ移動し、逆に平行平面板の厚さがより小さい場
合には、第2レンズ群G2を第ルンズ群Gl側へ移動す
ることにより、常に設計基準値におけると同様の収差補
正状態を維持することができる。
Then, the second lens group G2 is adjusted relative to the second lens group G1 and the third lens group G3 according to the change in the thickness of the parallel plane plate P disposed between the object 0 and the third lens group Gl. By moving it, variations in aberration due to changes in the thickness of the plane-parallel plate P are corrected. For example, if the thickness of the parallel plane plate P such as a cover glass or culture container is larger than a predetermined design standard value, the second lens group G2 is moved toward the third lens group G3, and conversely, the thickness of the parallel plane plate P is larger than a predetermined design standard value. When the thickness is smaller, by moving the second lens group G2 toward the second lens group Gl, it is possible to always maintain the same aberration correction state as at the design reference value.

上記のような補正が良好になされるためには、第2レン
ズ群の焦点距離が上記(1)式の如き条件を満たすとと
もに、各レンズ群の収差構造が以下のようであることが
必要である。尚、第1図中には以下の説明の理解を助け
るために、軸上物点からの近軸光線の様子の例を示した
。第ルンズ群G1にはその強い収斂作用と共にかなり大
きな負の球面収差を持たせる。第2レンズ群G2には正
の球面収差を持たせ、第ルンズ群G1で発生する負の球
面収差をほぼ相殺する。このため、条件式(1)の下限
を外れるならば、第2レンズ群としての負屈折力が弱く
なり過ぎ、正の球面収差の発生量が少なくなり、第ルン
ズ群での負の球面収差を良好に補正することが難しくな
り、他方、上限を越えるならば、第2レンズ群としての
屈折力が強(なり過ぎて球面収差の補正過剰をきたして
しまう。そして、負屈折力の第3レンズ群G3は全系の
ペッツバール和を補正し像面の平坦性を維持している。
In order for the above correction to be made well, it is necessary that the focal length of the second lens group satisfies the condition shown in equation (1) above, and that the aberration structure of each lens group is as follows. be. Incidentally, in order to facilitate understanding of the following explanation, an example of a paraxial ray from an on-axis object point is shown in FIG. The lens group G1 has a strong convergence effect and a fairly large negative spherical aberration. The second lens group G2 has positive spherical aberration, which almost cancels out the negative spherical aberration occurring in the second lens group G1. Therefore, if the lower limit of conditional expression (1) is exceeded, the negative refractive power of the second lens group becomes too weak, the amount of positive spherical aberration generated decreases, and the negative spherical aberration of the second lens group becomes too weak. On the other hand, if the upper limit is exceeded, the refractive power of the second lens group becomes too strong (too much, resulting in over-correction of spherical aberration). Group G3 corrects the Petzval sum of the entire system and maintains the flatness of the image plane.

尚、第3レンズ群G3中には空気間隔を介して互いに凹
面を向けて対向する2つのレンズ面を設け、この両凹面
での発散作用によりペッツバール和を補正することが望
ましいが、これは球面収差を補正するのが主目的である
本発明においては本質的なことではない。
It is desirable to provide two lens surfaces facing each other with concave surfaces in the third lens group G3 with an air gap in between, and to correct the Petzval sum by the divergence effect of these two concave surfaces. This is not essential to the present invention, whose main purpose is to correct aberrations.

このような基本構造を基準として、第ルンズ群Glと第
3レンズ群G3との間で第2レンズ群G2が相対的に軸
上を移動することにより球面収差を変化させることがで
きる。すなわち、第ルンズ群Glを射出する収斂光束中
に負屈折力の第2レンズ群G2が位置するため、第2レ
ンズ群G2がその基準位置よりも第3レンズ群G3側に
移動すれば、収斂光束が第2レンズ群G2を切る高さが
基準位置でのそれより低くなり、第2レンズ群G2での
正の球面収差の発生量が城、少する。逆に、第2レンズ
群G2がその基準位置よりも第1レンズ群Gl側に移動
すれば、収斂光束が第2レンズ群G2を切る高さが基準
位置のそれよりも高くなり、第2レンズ群G2での正の
球面収差量が増大する。従って対物レンズと物体面との
間に配置れるカバーガラス等の平行平面板Pの厚さによ
って大きく変動する球面収差は、第2レンズ群G2の移
動により補正される。すなわち、平行平面板Pの厚さが
厚くなれば正の球面収差が発生するので、これを補正す
るためには第2レンズ群G2での正の球面収差量を減少
すべく第2レンズ群を第3レンズ群G3側に移動し、他
方、平行平面板Pの厚さが薄(なれば負の球面収差が発
生するので、第2レンズ群G2での正の球面収差量を増
大すべく第2レンズ群を第ルンズ群Gl側に移動すれば
よい。
Based on such a basic structure, the spherical aberration can be changed by moving the second lens group G2 relatively on the axis between the lens group Gl and the third lens group G3. That is, since the second lens group G2 with negative refractive power is located in the convergent light beam exiting the lens group Gl, if the second lens group G2 moves from its reference position to the third lens group G3 side, the convergence occurs. The height at which the light beam cuts through the second lens group G2 becomes lower than that at the reference position, and the amount of positive spherical aberration generated in the second lens group G2 becomes smaller. Conversely, if the second lens group G2 moves closer to the first lens group Gl than its reference position, the height at which the convergent light beam cuts through the second lens group G2 becomes higher than that at the reference position, and the second lens The amount of positive spherical aberration in group G2 increases. Therefore, the spherical aberration, which varies greatly depending on the thickness of the parallel plane plate P such as a cover glass placed between the objective lens and the object surface, is corrected by the movement of the second lens group G2. In other words, as the thickness of the parallel plane plate P increases, positive spherical aberration occurs, so in order to correct this, the second lens group G2 must be adjusted to reduce the amount of positive spherical aberration in the second lens group G2. On the other hand, the thickness of the parallel plane plate P is thin (if this happens, negative spherical aberration will occur, so in order to increase the amount of positive spherical aberration in the second lens group G2), It is sufficient to move the second lens group toward the second lens group Gl.

上記のごとき本発明の基本的特徴は、既に述べたように
、第ルンズ群によって物体からの光束を収斂光束に変換
し、負屈折力の第2レンズ群を通過後も光束の収斂状態
がほぼ維持されることにある。そして第3レンズ群の通
過後に所定の像面位置にて集光される。このために、第
1図に示したごとく、軸上物点からの近軸光線が各レン
ズ群を切る高さについては、第1121群G1で最も高
く、第2レンズ群G2、第3レンズ群G3の順に低くな
っている。第1、第2レンズ群それぞれにおける軸上物
点からの近軸光線の切る高さの最高値を順にhl、 h
2.第3レンズ群を出射する高さをh3とするとき、h
l>h2>h3であることが必要である。従って、各レ
ンズ群の有効径については第・lレンズ群が最も大きく
、第3レンズ群が最も小さくなり、6h3>hl>2h
3程度に構成することが望ましい。尚、本発明をより高
倍率の対物レンズに適用した場合には、hlのh3に対
する比の値はより大きくなり、より低倍率の対物レンズ
に適用した場合にはhlのh3に対する比の値はより小
さくなる。又、第1121群G1を通過した光線の勾配
は全系を通過した光線の勾配の5倍ないし10倍の値を
持つことが望ましい。これは前述したように、第2レン
ズ群G2が光軸に沿って第1121群G1と第3レンズ
群G3との間を移動する際に、第2レンズ群G2に入射
する光線の高さによって、球面収差の補正量が異なるた
めであり、高倍率の対物レンズ程この勾配は大きくなり
、低倍率の対物レンズ程この勾配は小さくなる傾向にあ
る。また、本発明のとと(第ルンズ群の有効径を最も大
きくする構成は、作動距離を大きくするために有利であ
り、後述する実施例のごとく長大な作動距離が可能とな
る。
As mentioned above, the basic feature of the present invention is that the light flux from an object is converted into a convergent light flux by the first lens group, and the convergence state of the light flux remains almost constant even after passing through the second lens group with negative refractive power. It is about being maintained. After passing through the third lens group, the light is focused at a predetermined image plane position. For this reason, as shown in Fig. 1, the height at which the paraxial ray from the on-axis object point cuts through each lens group is highest in the 1121st lens group G1, then in the second lens group G2 and third lens group. It is lowest in the order of G3. The highest values of the cutting heights of paraxial rays from the on-axis object point in each of the first and second lens groups are hl and h in order.
2. When the height at which light exits the third lens group is h3, h
It is necessary that l>h2>h3. Therefore, regarding the effective diameter of each lens group, the lth lens group is the largest and the third lens group is the smallest, 6h3>hl>2h
It is desirable to configure the number to about 3. Note that when the present invention is applied to an objective lens with a higher magnification, the value of the ratio of hl to h3 becomes larger, and when the present invention is applied to an objective lens with a lower magnification, the value of the ratio of hl to h3 becomes larger. become smaller. Further, it is desirable that the gradient of the ray passing through the 1121st group G1 has a value that is 5 to 10 times the gradient of the ray passing through the entire system. As mentioned above, this is due to the height of the rays incident on the second lens group G2 when the second lens group G2 moves between the 1121st lens group G1 and the third lens group G3 along the optical axis. This is because the amount of correction of spherical aberration is different, and the higher the magnification of the objective lens, the larger this gradient becomes, and the lower the magnification of the objective lens, the smaller this gradient tends to be. Furthermore, the configuration of the present invention in which the effective diameter of the first lens group is maximized is advantageous for increasing the working distance, and a long working distance is possible as in the embodiments described later.

(実施例) 次に、本発明の実施例に基づいて、各レンズ群の具体的
レンズ構成について述べる。第2図は本発明による第1
実施例のレンズ構成図であり、第3図及び第4図はそれ
ぞれ 発明による第2、第3実施例のレンズ構成図であ
る0図中には軸上物点0からの近軸光線が実線で示され
ている。図示した実施例のごと(、第1121群G1は
物体からの光束を収斂光束に変換するためのかなり強い
正屈折力を有し、このためには少なくとも3個の再レン
ズ成分L1. L2. L3を有する必要がある。その
うち最も物体側の正レンズL1は物体側に凹面を向けた
メニスカス形状であること、第2の正レンズL2は像側
の面がより曲率の強い面であること力く望ましく、3つ
の正レンズの少なくとも1つに貼合わせ面を設けること
が望ましし1゜また、第2レンズ群G2は負の屈折力と
球面収差を正に太き(発生する作用とを持つために、図
示した実施例のごとく、物体側に凸な負メニスカスレン
ズL4、両凸正レンズL5及び゛負しン几6の貼合わせ
で形成されている。全体の形状は正レンズ形状であるカ
ベ、負メニスカスレンXL4. L6の屈折率が両凸レ
ンズL5のそれより高いため合成では負の屈折力を有し
ている。これは第2レンズ群G2が球面収差を正方向に
補正する作用を持つぺ(意図されたものだからである。
(Example) Next, a specific lens configuration of each lens group will be described based on an example of the present invention. FIG. 2 shows the first embodiment according to the present invention.
FIGS. 3 and 4 are lens configuration diagrams of an embodiment, respectively. In FIG. It is shown in As per the illustrated embodiment, the 1121st group G1 has a fairly strong positive refractive power for converting the light beam from the object into a convergent light beam, and for this purpose at least three re-lensing components L1.L2.L3 are used. The positive lens L1 closest to the object side must have a meniscus shape with a concave surface facing the object side, and the second positive lens L2 must have a surface with a stronger curvature on the image side. It is desirable that at least one of the three positive lenses be provided with a bonding surface. Therefore, as in the illustrated embodiment, it is formed by laminating a negative meniscus lens L4 convex to the object side, a biconvex positive lens L5, and a negative sinusoid lens 6.The overall shape is a positive lens shape. Since the refractive index of the negative meniscus lens XL4.L6 is higher than that of the biconvex lens L5, the composite has a negative refractive power.This is because the second lens group G2 has the effect of correcting spherical aberration in the positive direction. To have (because it was intended).

そして、主にペッツバール和の補正を担う第3レンズ群
G3は全体として負の屈折力を有し、図示した実施例の
ごとく物体側に凸面を向けたメニ 。
The third lens group G3, which is mainly responsible for correcting the Petzval sum, has a negative refractive power as a whole, and has a convex surface facing the object side as in the illustrated embodiment.

スカス形状の前群G31と物体側に凹面を同番すたメニ
スカス形状の後群2G32とで構成されることカベ望ま
しい。さらに前群G31は弱い正屈折力を有し、後群は
弱い負屈折力を有することが望ましい。ここで前群G3
1の最も像側の凹面Raと後群の最も物体側の凹面Rh
とが、第3レンズ群中における前述したごとき互いに対
向する凹面として機能する。
It is preferable that the front group G31 is composed of a scarlet-shaped front group G31 and a meniscus-shaped rear group 2G32 having a concave surface of the same number on the object side. Further, it is desirable that the front group G31 has a weak positive refractive power, and the rear group has a weak negative refractive power. Here the front group G3
1, the most image-side concave surface Ra, and the rear group's most object-side concave surface Rh.
and function as mutually opposing concave surfaces as described above in the third lens group.

第3レンズ群の前群G31は正レンズL7.負レンズL
8、物体側に凸面を向けた正メニスカスレンズL9の貼
合わせ、或いは正レンズL7と負レンズL8との貼合わ
せで構成されることが望ましい。但し、前群C31中の
負レンズL8と正メニスカスレンズL9との貼合わせは
いわゆるハイパークロマティックレンズを形成している
ため、この貼合わせ面の向きは逆向きにすることも可能
である。また、第3レンズ群の後群G32は、両凹負レ
ンズLIOと両凸正レンズLllとの貼合わせで構成さ
れることが望ましい。
The front group G31 of the third lens group is a positive lens L7. Negative lens L
8. It is desirable that the lens be constructed by laminating a positive meniscus lens L9 with its convex surface facing the object side, or laminating a positive lens L7 and a negative lens L8. However, since the negative lens L8 and the positive meniscus lens L9 in the front group C31 are bonded together to form a so-called hyperchromatic lens, the direction of the bonded surfaces can also be reversed. Moreover, it is desirable that the rear group G32 of the third lens group is constructed by laminating a biconcave negative lens LIO and a biconvex positive lens Lll.

以下、本発明による実施例について詳述する。Examples according to the present invention will be described in detail below.

本実施例は、いわゆる乾燥系対物レンズで屈折率、分散
の異なった3種のカバーガラスに対応できるよう設計さ
れたものである。3例とも倍率50倍、N、A、 =0
.7で、作動距離11.0. #1.Ofであり、全系
の焦点距離fと同等の長さを有している。物体と対物レ
ンズとの間に基準厚さのカバーガラスC,G。
This embodiment is a so-called dry objective lens designed to be compatible with three types of cover glasses having different refractive indexes and dispersions. All three cases had a magnification of 50x, N, A, = 0
.. 7, working distance 11.0. #1. Of, and has a length equivalent to the focal length f of the entire system. Cover glasses C and G of standard thickness are placed between the object and the objective lens.

が挿入された状態のレンズ構成図が第2図である。FIG. 2 is a diagram showing the structure of the lens with the lens inserted.

本実施例の諸元を表1〜表3にそれぞれ示す。但し、表
中左端の数字は物体側からの順序を示し、doは対物レ
ンズの最前レンズ面の頂点からカバーガラス表面までの
距離を示す、また、バックフォーカスBfの値、及びカ
バーガラスC,G、の厚さが変化した場合の可変間隔の
値も併記した。
The specifications of this example are shown in Tables 1 to 3, respectively. However, the numbers at the left end of the table indicate the order from the object side, do indicates the distance from the vertex of the frontmost lens surface of the objective lens to the surface of the cover glass, and the value of the back focus Bf and the cover glasses C and G. The value of the variable interval when the thickness of , changes, is also shown.

表1 (第1実施例) f=1.000 8f=45.4613尚、第1実施例
に用いたカバーガラスの屈折率は1.4910B 、ア
ツベ数は57.57であり、第2実施例に用いたカバー
ガラスの屈折率は1.58518 、アツベ数は30.
24であり、第3実施例に用いたカバーガラスの屈折率
は1.5871G 、アツベ数は33.43である。ま
た、上記の各実施例において、全系の焦点距離をfとし
た時G2の焦点距離はそれぞれ−26゜82f、 −2
0,62f、 −19,06fとならている。
Table 1 (First Example) f=1.000 8f=45.4613The refractive index of the cover glass used in the first example was 1.4910B, and the Abbe number was 57.57. The refractive index of the cover glass used was 1.58518, and the Atsbe number was 30.
24, the refractive index of the cover glass used in the third example is 1.5871G, and the Abbe number is 33.43. Furthermore, in each of the above embodiments, when the focal length of the entire system is f, the focal length of G2 is -26°82f, -2
0.62f, -19.06f.

第5図〜第7図は各実施例について物体面から像面まで
の距離が245鶴となるように比例拡大して、実用上の
対物レンズとした時の収差図であり、(A)はカバーガ
ラスC,G、のない状態での諸収差図(B)はカバーガ
ラスC,G、がIMの状態における諸収差図(C)はカ
バーガラスC,G、が1.5mに厚くなった状態での諸
収差図である。各収差図では球面収差(Sph ) 、
非点収差(Ast ) 、歪曲収差(Dis ) r 
コマ収差(Coma)を示し、基準光をd線(λ−58
7.6 m)とし、色の球面収差を示すためにC線(λ
−656.3 m)及びF線(λ−486.1鶴)も併
記した。また図中のyの値は像高を表わす。
Figures 5 to 7 are aberration diagrams for each example when the distance from the object surface to the image plane is proportionally enlarged to be 245 mm and used as a practical objective lens, and (A) is A diagram of various aberrations without cover glasses C and G (B) is a diagram of various aberrations with cover glasses C and G in IM (C) is a diagram of various aberrations with cover glasses C and G thickened to 1.5 m. It is a diagram of various aberrations in the state. In each aberration diagram, spherical aberration (Sph),
Astigmatism (Ast), distortion aberration (Dis) r
It shows coma aberration (Coma), and the reference light is d-line (λ-58
7.6 m), and C-line (λ
-656.3 m) and F line (λ-486.1 Tsuru) are also shown. Further, the value of y in the figure represents the image height.

各収差図によれば、本実施例の対物レンズがいずれも倍
率50倍という高い倍率で、N、^、=0.7という大
開口数と長い作動距離を有しながらも、カバーガラスの
厚さ0〜1.5mという広い範囲にわたって常に優れた
結像性能が維持されていることが明らかである。
According to each aberration diagram, although the objective lenses of this example all have a high magnification of 50 times, a large numerical aperture of N,^,=0.7, and a long working distance, the thickness of the cover glass It is clear that excellent imaging performance is always maintained over a wide range of 0 to 1.5 m.

(発明の効果) 以上の如(、本発明°によれば、大きな開口数を有し高
倍率であるにもかかわらず、物体面と対物レンズとの間
に配置されるカバーガラス等の平行平面板の厚さが大き
く変化しても常に優れた結像性能を維持することができ
る顕微鏡対物レンズが達成される。そして、実施例に示
したごとく、カバーガラスが存在しない状態からカバー
ガラスの厚さが1.5ms+までの範囲て連続的に良好
な結像性能が維持されるため、ある透明物体の表面から
表面内部までを連続的にしかも仔細な観察及び検査を行
うことが可能である。
(Effects of the Invention) As described above (according to the present invention), despite having a large numerical aperture and high magnification, the parallel plane of the cover glass etc. disposed between the object plane and the objective lens A microscope objective lens that can always maintain excellent imaging performance even when the thickness of the face plate changes greatly is achieved.As shown in the example, the thickness of the cover glass changes from the state where there is no cover glass to the thickness of the cover glass. Since good imaging performance is maintained continuously over a range of up to 1.5 ms+, it is possible to continuously and minutely observe and inspect a transparent object from the surface to the inside of the surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による対物レンズの基本を示す概略構成
図、第2図は本発明による第1実施例のレンズ構成図、
第3図は本発明による第2実施例のレンズ構成図、第4
図は本発明による第3実施例のレンズ構成図、第5図〜
第7図は各実施例についてカバーガラスの厚さが異なる
状態での諸収差図であり、各収差図において(A)はカ
バーガラスのない状態での諸収差図(B)はカバーガラ
スが1論の状態における諸収差図(C)はカバーガラス
が1.5mmに厚くなった状態での諸収差図である。 〔主要部分の符号の説明〕 P・・町カバーガラス Gl・・・第ルンズ群 G2・・・第2レンズ群 G3・・・第3レンズ群 出願人 日本光学工業株式会社 代理人 渡辺隆男 手続補正書(転) 昭和59年特許願第62934号 2、発明の名称 顕微鏡対物レンズ 3、補正をする者 事件との関係 特許出願人 東京都千代田区丸の内3丁目2番3号 (411)日本光学工1中1立会肚 フタオカ シゲタダ′ 輔催長福岡成忠 4、代理人 〒140 東京部品用区西大井1丁目6番3号5、?鉦
命令の日付 昭和59年6月6日(発送日:昭和59年6月26日)
6、補正の対象
FIG. 1 is a schematic configuration diagram showing the basics of an objective lens according to the present invention, FIG. 2 is a configuration diagram of a lens of a first embodiment according to the present invention,
FIG. 3 is a lens configuration diagram of the second embodiment according to the present invention,
The figures are lens configuration diagrams of the third embodiment of the present invention, and Figs.
FIG. 7 shows various aberration diagrams for each example when the thickness of the cover glass is different. The aberration diagram (C) in the theoretical state is a diagram of various aberrations in a state where the cover glass is thickened to 1.5 mm. [Explanation of symbols of main parts] P... Town cover glass Gl... Second lens group G2... Second lens group G3... Third lens group Applicant Nippon Kogaku Kogyo Co., Ltd. Agent Takao Watanabe Procedural amendment Written (Translated) 1982 Patent Application No. 62934 2 Name of the invention Microscope objective lens 3 Relationship to the case of the person making the correction Patent applicant Nippon Kogaku Kogyo, 3-2-3 Marunouchi, Chiyoda-ku, Tokyo (411) 1 of 1 Witness: Shigetada' Coordinator: Shigetada Fukuoka 4, Agent: 1-6-3-5 Nishi-Oi, Tokyo Parts Ward, 140 ? Date of gong order: June 6, 1980 (Shipping date: June 26, 1982)
6. Subject of correction

Claims (1)

【特許請求の範囲】 物体側から順に、正屈折力を持ち物体からの光束を収斂
光束に変換する第ルンズ群、該収斂光束中で光軸に沿っ
て移動可能で負の屈折力をもつ第2レンズ群、及び負屈
折力を持つ第3レンズ群を有し、全系の焦点距離をf、
該第2レンズ群の焦点距離をf2とするとき、 一5Of <f2<−1Of の条件を満たし、該物体と該第ルンズ群との間に配置さ
れる平行平面板の厚さの変化に応じて該第2レンズ群を
該第1、第3レンズ群に対して相対的に移動させること
により収差の変動を補正し得ることを特徴とする顕微鏡
対物レンズ。
[Claims] In order from the object side, there is a first lens group that has a positive refractive power and converts the light beam from the object into a convergent light beam, and a second lens group that is movable along the optical axis in the convergent light beam and has a negative refractive power. It has two lens groups and a third lens group with negative refractive power, and the focal length of the entire system is f,
When the focal length of the second lens group is f2, the condition of -5Of<f2<-1Of is satisfied, and according to the change in the thickness of the parallel plane plate disposed between the object and the second lens group. A microscope objective lens, wherein fluctuations in aberrations can be corrected by moving the second lens group relative to the first and third lens groups.
JP6293484A 1982-11-30 1984-03-30 Microscope objective lens Granted JPS60205521A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6293484A JPS60205521A (en) 1984-03-30 1984-03-30 Microscope objective lens
US06/717,798 US4666256A (en) 1982-11-30 1985-03-29 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6293484A JPS60205521A (en) 1984-03-30 1984-03-30 Microscope objective lens

Publications (2)

Publication Number Publication Date
JPS60205521A true JPS60205521A (en) 1985-10-17
JPH0426445B2 JPH0426445B2 (en) 1992-05-07

Family

ID=13214613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6293484A Granted JPS60205521A (en) 1982-11-30 1984-03-30 Microscope objective lens

Country Status (1)

Country Link
JP (1) JPS60205521A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076676A (en) * 1990-11-27 1991-12-31 Olympus Optical Co., Ltd. Objective lens system for microscopes
US5757552A (en) * 1995-03-07 1998-05-26 Nikon Corporation Microscope objective lens and a microscope incorporating same
JP2018205373A (en) * 2017-05-31 2018-12-27 オリンパス株式会社 microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261654A (en) * 1979-11-21 1981-04-14 American Optical Corporation Air gap type microscope objective
JPS56142508A (en) * 1980-04-05 1981-11-06 Nippon Kogaku Kk <Nikon> Objective lens of microscope
JPS57148717A (en) * 1981-03-12 1982-09-14 Nippon Kogaku Kk <Nikon> Objective lens of microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261654A (en) * 1979-11-21 1981-04-14 American Optical Corporation Air gap type microscope objective
JPS56142508A (en) * 1980-04-05 1981-11-06 Nippon Kogaku Kk <Nikon> Objective lens of microscope
JPS57148717A (en) * 1981-03-12 1982-09-14 Nippon Kogaku Kk <Nikon> Objective lens of microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076676A (en) * 1990-11-27 1991-12-31 Olympus Optical Co., Ltd. Objective lens system for microscopes
US5757552A (en) * 1995-03-07 1998-05-26 Nikon Corporation Microscope objective lens and a microscope incorporating same
JP2018205373A (en) * 2017-05-31 2018-12-27 オリンパス株式会社 microscope

Also Published As

Publication number Publication date
JPH0426445B2 (en) 1992-05-07

Similar Documents

Publication Publication Date Title
US10527839B2 (en) Eyepiece optical system, optical apparatus and method for manufacturing eyepiece optical system
US9753246B2 (en) Eyepiece optical system, optical apparatus and method for manufacturing the eyepiece optical system
US6545824B2 (en) Wide-angle lens system
JP5277324B2 (en) Microscope objective lens
GB2266973A (en) Two-group zoom lens system for use with a compact camera
JPH08122632A (en) Objective for endoscope
US4666256A (en) Microscope objective lens
JP2991524B2 (en) Wide-angle lens
JPH06324264A (en) Wide angle lens
US5625497A (en) Retrofocus type standard lens and wide angle lens
JP2650253B2 (en) Zoom lens
JPS6132653B2 (en)
US4537476A (en) Retro-focus type wide angle lens
JPH0358492B2 (en)
JPS60205521A (en) Microscope objective lens
JPH07104183A (en) Bright triplet lens
JP2002098889A (en) Imaging lens
JPH07253535A (en) Endoscopic objective lens
JPS61275810A (en) Microscope objective
JPH11160631A (en) Wide visual field eyepiece
JPS63294506A (en) High variable power zoom lens including wide angle range
JPH0574806B2 (en)
JPH02167515A (en) Retrofocus type wide-angle lens
JPS6046520A (en) Microscope objective lens
JP2003131127A (en) Zoom lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term