JPS60205360A - Method for measuring trace component contained in liquid to be measured - Google Patents

Method for measuring trace component contained in liquid to be measured

Info

Publication number
JPS60205360A
JPS60205360A JP59064184A JP6418484A JPS60205360A JP S60205360 A JPS60205360 A JP S60205360A JP 59064184 A JP59064184 A JP 59064184A JP 6418484 A JP6418484 A JP 6418484A JP S60205360 A JPS60205360 A JP S60205360A
Authority
JP
Japan
Prior art keywords
eluate
liquid
peak
trace
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59064184A
Other languages
Japanese (ja)
Inventor
Yuzuru Hanaoka
花岡 譲
Hisao Kajiwara
梶原 久雄
Akiko Yoshikawa
吉川 章子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP59064184A priority Critical patent/JPS60205360A/en
Publication of JPS60205360A publication Critical patent/JPS60205360A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/44Flow patterns using recycling of the fraction to be distributed

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sustainable Development (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To measure exactly ion species of trace concn. as well by dispensing an eluate corresponding to the peripheral part of the peak of a trace component and analyzing again the eluate by ion chromatography using a concentrating column. CONSTITUTION:The elutate corresponding to the peripheral part of the peak of an ion species of trac concn. is dispensed and the eluate is again analyzed by ion chromatography. The ion species of trace concn. having a small peak eluting near the ion species of high concn. giving a large peak can be thereby measured exactly. The easy and exact quantitative determination of the oxalate ion, etc. contained in human urine is thus made possible without disturbance by the peak of the main componet. Useful information for the purpose of qualitative determination and identification is also obtainable if the dispensed liquid is analyzed by using another separating column having a different separating mode.

Description

【発明の詳細な説明】 本発明は、イオンクロマトグラフィを用いて被測定液中
の微量成分を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring trace components in a liquid to be measured using ion chromatography.

第1図は、このような方法の従来例を説明するための図
である。第1図において、送液ポンプ2aKより、槽1
a内のi1F離液は、ポンプ2a→サンプルパルプ5の
第1および第2の接続口3a、 3b→分離カラム4→
サプレッサ5内の内室5b→検出器6→廃液槽1cの流
路で流れる。また、送液ポンプ2bによシ、槽1b内の
除去液は、ポンプ2b→サブレ、す5内の外室5c→廃
液槽1dの流路で流れる。一方、マイクロシリンジで被
測定液を所定量(例えば5゜1Jt)採取し、サンプル
パルプ5の第4接続口3dから注入すると、該被測定液
は、第4接続ロ3d→第5接続ロ3c→濃縮カラム3g
→第6接続ロ3f→第5接続口3eの流路で流れ、濃縮
カラム3g内に被測定液中のイオン種が捕捉される。こ
の状態で、サンプルパルプ5をオンにすると、第1〜第
6の接続口3a〜3fの接続状態が、第1図の実線接続
状態から破線接続状態に切換えられる。このため、濃縮
カラム3g内の上記イオン種は溶離液によって分離カラ
ム4へ搬送され、ここで所定の分離をうける。
FIG. 1 is a diagram for explaining a conventional example of such a method. In FIG. 1, tank 1 is
The i1F syneresis in a is pump 2a → first and second connection ports 3a, 3b of sample pulp 5 → separation column 4 →
It flows through the flow path of the inner chamber 5b in the suppressor 5 → the detector 6 → the waste liquid tank 1c. In addition, due to the liquid sending pump 2b, the removed liquid in the tank 1b flows through a flow path from the pump 2b to the outer chamber 5c in the sublet tank 5 to the waste liquid tank 1d. On the other hand, when a predetermined amount (for example, 5° 1 Jt) of the liquid to be measured is taken with a microsyringe and injected from the fourth connection port 3d of the sample pulp 5, the liquid to be measured is transferred from the fourth connecting hole 3d to the fifth connecting hole 3c. →Concentration column 3g
It flows through the flow path of →6th connecting hole 3f →5th connecting port 3e, and the ionic species in the liquid to be measured are captured in the concentration column 3g. In this state, when the sample pulp 5 is turned on, the connection states of the first to sixth connection ports 3a to 3f are switched from the solid line connection state in FIG. 1 to the broken line connection state. Therefore, the ion species in the concentration column 3g are transported by the eluent to the separation column 4, where they are subjected to a predetermined separation.

該カラム4の溶出液はサブレ、す5の内室5bに導びか
れ、ここでイオン交換膜5aを介して外室5C内の除去
液と接することによって例えば陽イオン交換し、導電率
等のパックグランドが低下させられる。こうしてパック
グランドが低下した上記溶出液は、検出器6に導びかれ
て例えばその導電率が検出され、その後、廃液槽1cへ
排出される。第2図は、このようKして検出器6で検出
された信号を、図示しない記録計に導いて描かせたクロ
マトを示している。このピークの高さや面積を測定する
(実際には、第2図で振り切れているピークが全てクロ
マトグラム上に頭が現われるようにレンジを切換えなが
ら測定する)ことにより、各イ第2− 2− ン種(S04 や0204 等)の濃度が測定される。
The eluate from the column 4 is led to the inner chamber 5b of the sublet chamber 5, where it comes into contact with the removal solution in the outer chamber 5C via the ion exchange membrane 5a, and undergoes, for example, cation exchange and changes in conductivity, etc. Pack ground is lowered. The eluate whose pack ground has been lowered in this way is led to the detector 6, where its conductivity is detected, for example, and then discharged to the waste liquid tank 1c. FIG. 2 shows a chromatograph in which the signals detected by the detector 6 in this manner are guided to a recorder (not shown) and drawn. By measuring the height and area of this peak (actually, measuring while changing the range so that all the peaks that are overlapping in Fig. 2 appear at the top on the chromatogram), each The concentration of species (S04, 0204, etc.) is measured.

然し乍ら、上記従来例においては、第2図の502−ピ
ークのような大きなピークの近くに現われるC20.”
−のような小さなピークを正確に測定することか困難で
あり、大きなピークを与える高濃度イオン種の近くに溶
出する小さなピークを与える微量濃度のイオン種を正確
に定量できないという大きな欠点があった。
However, in the above conventional example, the C20. ”
- It is difficult to accurately measure small peaks such as -, and there is a major drawback that it is impossible to accurately quantify ionic species at trace concentrations that elute near high concentration ionic species that give large peaks. .

本発明は、かかる欠点に鑑みてなされたものであり、そ
の目的は、大きなピークを与える高濃度イオン種の近く
に溶出する小さなピークの微量濃度イオン種をも正確に
測定できるような微量成分測定方法を提供することKあ
る。
The present invention has been made in view of these drawbacks, and its purpose is to provide trace component measurement that can accurately measure trace concentration ion species with small peaks that elute near high concentration ion species that give large peaks. K is to provide a method.

本発明の特徴は、イオンクロマトグラフィを用いて被測
定液中の微量成分を測定する方法において、該微量成分
のピークの周辺部分に相当する溶出液を分取し、この溶
出液を濃縮カラムを用いるイオンクロマトグラフィによ
り再度分析するようにしたことにある。
A feature of the present invention is that in a method for measuring trace components in a sample liquid using ion chromatography, an eluate corresponding to the area around the peak of the trace component is fractionated, and this eluate is used in a concentration column. The reason is that it was re-analyzed using ion chromatography.

以下、本発明の実施例について図を用いて詳細に説明す
る。第1図に示した装置を用い第2図に示すようなりロ
マトグラムを作成するところまでは、前記従来例の場合
と全く同一であるため、ここでの重複説明は省略する。
Hereinafter, embodiments of the present invention will be described in detail using the drawings. The steps up to the point where a romatogram as shown in FIG. 2 is created using the apparatus shown in FIG. 1 are completely the same as in the conventional example, and therefore, redundant explanation will be omitted here.

また、第2図のクロマトグラムをみながら次のようにし
て、第1図の(3) 廃液槽ICを図示しない分取液槽と取シ換えるようにす
る。即ち、縞2図のクロマトグラムにおけるスタート点
Sから微量濃度イオン種であるC2O4”−のピークが
現われる時間Aの直前まで第1図の状態圧しておき、時
間人のときに廃液槽1cを上記分2− ・ 取液槽と交換する。また、時間Aから0204 のヒし
、再び第1図の状態に)す。このような槽の交換により
、上記時間AからBに至るまでの間、検出器6から排出
される液体を上記分取液槽内に収容する。この分取液は
、再びマイクロシリンジを用いる等して、インジェクタ
3の第4接続口3dから濃縮カラム3g内に注入される
。ところで、この分取液は、第1図のサプレッサ5を経
由し溶離液が極めて弱い電解質溶液になる等して、導電
率等のパックグランドが大きく低下している。このため
、溶離液をそのまま含む被測定液を濃縮カラム3gに注
入した場合と異なり、溶離液の溶離力により濃縮カラム
3g内でイオン種が分離されて溶出す(4) るイオン種が溶離液によって分離カラム4へ搬送され、
ここで所定の分離を受けるようになる。また、該カラム
4の溶出液はサプレッサ5の内室5bに導びかれ、ここ
でイオン交換膜5aを介して外室5C内の除去液と接し
例えば陽イオン交換を行なう。
Also, while looking at the chromatogram in FIG. 2, replace the waste liquid tank IC (3) in FIG. 1 with a preparative liquid tank (not shown) as follows. That is, the state pressure in Figure 1 is maintained from the starting point S in the chromatogram in Stripe 2 until just before time A when the peak of C2O4''-, which is a trace concentration ion species, appears, and at the same time, the waste liquid tank 1c is Minute 2- - Replace with the liquid collection tank. Also, from time A to 0204, the state shown in Figure 1 is restored). By replacing the tank in this way, from time A to B, The liquid discharged from the detector 6 is stored in the fractionated liquid tank.This fractionated liquid is injected into the concentration column 3g from the fourth connection port 3d of the injector 3 by using a microsyringe again. By the way, this fractionated liquid passes through the suppressor 5 shown in Fig. 1, and the eluent becomes an extremely weak electrolyte solution, resulting in a large drop in pack grounds such as electrical conductivity. Unlike the case where the sample solution containing the analyte is directly injected into the concentration column 3g, the ionic species are separated and eluted within the concentration column 3g due to the elution power of the eluent (4). transported,
At this point, a predetermined separation occurs. Further, the eluate from the column 4 is led to the inner chamber 5b of the suppressor 5, where it comes into contact with the removal liquid in the outer chamber 5C via the ion exchange membrane 5a to perform, for example, cation exchange.

このため、上記溶出液中の溶離液は極めて弱い電解質溶
液に変換されるなどして導電率等のパックグランドが大
金く低下する。このようにしてパックグランドが低下し
た上記溶離液は、検出器6に導ひかれて例えばその導電
率が検出され、その後、廃液槽1cへ排出される。第5
図は、このようにして検出器6で検出された信号を、図
示しない記録計に導いて描かせたクロマトグラムであJ
) % 802−ピークとco−ピークはほぼ完全に分
離している。
For this reason, the eluent in the eluate is converted into an extremely weak electrolyte solution, resulting in a significant drop in pack grounds such as electrical conductivity. The eluent whose pack ground has been lowered in this way is led to the detector 6, where its conductivity is detected, for example, and then discharged to the waste liquid tank 1c. Fifth
The figure shows a chromatogram drawn by guiding the signal detected by the detector 6 in this way to a recorder (not shown).
)% 802-peak and co-peak are almost completely separated.

4 また、この第3図を用いると、第2図の場合と同様各ピ
ークの高さや面積から各イオン種の濃度を知ることがで
きるものである。第3図とM2図を比較すれば明らかな
ように、被測定液中の微量濃度イオン種であるC2O4
′−の測定は、本発明実施例をを用いた第5図の方がよ
り正確にできることが分るる。
4. Also, by using this FIG. 3, the concentration of each ion species can be determined from the height and area of each peak, as in the case of FIG. 2. As is clear from a comparison between Figure 3 and Figure M2, C2O4, which is a trace concentration ion species in the liquid to be measured,
It can be seen that the measurement of '- can be made more accurately in FIG. 5 using the embodiment of the present invention.

以上詳しく説明したような本発明の実施例によれば、微
量濃度イオン種のピークの周辺部分に相当する溶出液を
分取して再度イオンクロマトグラフィで分析するような
構成であるため、大き々ビークを与える高濃度イオン種
の近くに溶出する小さなピークの微量濃度イオン種をも
正確に測定できるようになる。このため、人尿中に含ま
れているシ為つ酸イオン(C204−)なども、主成分
(例えば502−イオン)のピークに妨害されることな
く、容易且つ正確に定量で睡る利点がある。また、上述
のようにして分取した液を、分離モードの異なる別の分
離カラムを用いて分析することKより、定性や同定のた
めの更なる有益な情報が得られる利点もある。
According to the embodiment of the present invention as described in detail above, the eluate corresponding to the area around the peak of trace concentration ion species is fractionated and analyzed again by ion chromatography. It becomes possible to accurately measure trace concentration ion species with small peaks that elute near the high concentration ion species that give . Therefore, it has the advantage of easily and accurately quantifying citric acid ions (C204-) contained in human urine without being interfered with by the peak of the main component (e.g. 502- ions). be. Furthermore, there is also the advantage that more useful information for qualitative and identification purposes can be obtained than by analyzing the liquid fractionated as described above using another separation column with a different separation mode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は微量成分測定方法を説明するための図、第2図
は従来例を用いて作成したクロマトグラム、第5図は本
発明実施例を用いて作成したクロマトグラムである。 1a〜1d・・・槽、2a、 2b・・・送液ポンプ、
6・・・インジェクタ、3g・・・濃縮カラム、4 ・
・・分離カラム、5・・・サプレッサ、5a・・・イオ
ン交換膜、6・・・検出器。 第2図 第3図 5θ42− czθ42− 0 4 6 8 (mini
FIG. 1 is a diagram for explaining the trace component measuring method, FIG. 2 is a chromatogram created using the conventional example, and FIG. 5 is a chromatogram created using the embodiment of the present invention. 1a to 1d...tank, 2a, 2b... liquid pump,
6...Injector, 3g...Concentration column, 4.
... Separation column, 5... Suppressor, 5a... Ion exchange membrane, 6... Detector. Figure 2 Figure 3 5θ42-czθ42- 0 4 6 8 (mini

Claims (2)

【特許請求の範囲】[Claims] (1) 被測定液を所定量採取し溶離液で分離カラムに
搬送して前記被測定液中のイオン種を分離し、該カラム
の溶出液をバックグランド除去器に専断イオン交換によ
って溶出液のパックグランドを除去し、その後、該溶出
液を検出器に導いて物理量を測定することにより、前記
被測定液中の微量成分を測定する方法において、前記分
離カラムで分離された前記微量成分周辺部の溶出液を検
出器の下流で分取し、この分取液を濃縮カラムに注入し
て前記微量成分を濃縮し、その後、前記溶離液で前記分
離カラムに再度搬送することを特徴とする微量成分測定
方法。
(1) A predetermined amount of the liquid to be measured is collected and transported to a separation column using an eluent to separate the ion species in the liquid to be measured, and the eluate from the column is transferred to a background remover by exclusive ion exchange. In the method of measuring a trace component in the liquid to be measured by removing a pack gland and then guiding the eluate to a detector to measure a physical quantity, the peripheral part of the trace component separated by the separation column. The eluate is fractionated downstream of the detector, the fractionated solution is injected into a concentration column to concentrate the trace components, and the trace component is then conveyed again to the separation column using the eluent. Component measurement method.
(2) 前記物理量は導電率で°なる特許請求範囲第(
1)項記載の微量成分測定方法。
(2) The physical quantity is electrical conductivity.
1) The trace component measurement method described in section 1).
JP59064184A 1984-03-30 1984-03-30 Method for measuring trace component contained in liquid to be measured Pending JPS60205360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59064184A JPS60205360A (en) 1984-03-30 1984-03-30 Method for measuring trace component contained in liquid to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59064184A JPS60205360A (en) 1984-03-30 1984-03-30 Method for measuring trace component contained in liquid to be measured

Publications (1)

Publication Number Publication Date
JPS60205360A true JPS60205360A (en) 1985-10-16

Family

ID=13250715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59064184A Pending JPS60205360A (en) 1984-03-30 1984-03-30 Method for measuring trace component contained in liquid to be measured

Country Status (1)

Country Link
JP (1) JPS60205360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235849A (en) * 1988-03-15 1989-09-20 Shimadzu Corp Fractional liquid chromatograph
CN104101679A (en) * 2014-07-24 2014-10-15 天津市第一中心医院 Measuring method for oxalic acid concentration in human body blood and urine with antiphase-high performance liquid chromatography (HPLC)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235849A (en) * 1988-03-15 1989-09-20 Shimadzu Corp Fractional liquid chromatograph
CN104101679A (en) * 2014-07-24 2014-10-15 天津市第一中心医院 Measuring method for oxalic acid concentration in human body blood and urine with antiphase-high performance liquid chromatography (HPLC)

Similar Documents

Publication Publication Date Title
Dick et al. Ion chromatographic determination of sulfate and nitrate in soils
Bi et al. Analytical methodologies for aluminium speciation in environmental and biological samples–a review
CN102128885A (en) Method for quickly and simultaneously detecting 16 inorganic anions and organic acids in tobacco
JPS60219554A (en) Method and apparatus for measuring minor component in major component
US5674388A (en) Apparatus for fractionating components in liquid chromatography
CN203324233U (en) Two-dimensional chromatographic device suitable for determining volatile components
Lancaster et al. Trace metal atomic absorption spectrometric analysis utilizing sorbent extraction on polymeric-based supports and renewable reagents
JPS60205360A (en) Method for measuring trace component contained in liquid to be measured
US20160061787A1 (en) Automated analysis systems
Yu et al. Ion chromatographic determination of calcium and magnesium cations in human saliva and urine with a piezoelectric detector
JP2518256B2 (en) Method and apparatus for simultaneous analysis of vanillyl mandelic acid, homovanillic acid and creatinine
JPH06109721A (en) Rain water automatic analyzer
JPH0329747Y2 (en)
JPS61223555A (en) Analysis of ion species and apparatus using the same
JPS59133459A (en) Ion chromatograph
JPS6066161A (en) Method and device for simultaneous measurement of different species of ions
Rodriguez et al. Application of capillary ion chromatography and capillary ion chromatography coupled with mass spectrometry to determine methanesulfonate and inorganic anions in microliter sample volumes of Antarctic snow and ice
JPS61194355A (en) Method and apparatus for measuring minute amount of anion
Giné et al. Determination of trace elements in serum samples by isotope dilution inductively coupled plasma mass spectrometry using on-line dialysis
JPS6153565A (en) Method and apparatus for analyzing anion and cation species
JP3003310B2 (en) Analysis method for trace ion species
JPS60190859A (en) Method and apparatus for analyzing ion seed
JPS59151049A (en) Method and apparatus for measuring trace of ion seed
JPS6156969A (en) Analysis method and apparatus for organic acid and inorganic anion
Keevil et al. A rapid anion exchange high-performance liquid chromatography method for the measurement of HbA2 in whole blood