JPS60205205A - Apparatus for measuring three-dimensional shape - Google Patents

Apparatus for measuring three-dimensional shape

Info

Publication number
JPS60205205A
JPS60205205A JP6115384A JP6115384A JPS60205205A JP S60205205 A JPS60205205 A JP S60205205A JP 6115384 A JP6115384 A JP 6115384A JP 6115384 A JP6115384 A JP 6115384A JP S60205205 A JPS60205205 A JP S60205205A
Authority
JP
Japan
Prior art keywords
axis
measured
data
rotary
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6115384A
Other languages
Japanese (ja)
Inventor
Akihiko Fujiwara
彰彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6115384A priority Critical patent/JPS60205205A/en
Publication of JPS60205205A publication Critical patent/JPS60205205A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PURPOSE:To simplify measurement, by respectively providing movable members and position detection apparatuses on three axes constituting two-dimensional orthogonal coordinates and calculating three-dimensional data on the basis of the rotary angle of a rotary table and the position data of each movable member. CONSTITUTION:Detection rotary encoders 23, 26, 28 are respectively attached to members moving on three axes, that is, an X-axis slide table 22, a Y-axis column 24 and a Z-axis slide box 25, and a measuring probe 29 is provided to the leading end of a Z-axis slide bar 27 in a freely rotatable manner. Further, an article 11 to be measured is vertically grasped on a rotary table 30 equipped with an encoder 32 for detecting a rotary angle alpha and the probe 29 is contacted with two points on the straight line part of the pipe 11 (the article to be measured) and an order button 34 is pushed every time to input positional data of axes X, Y, Z and alpha to a calculator 33 while the vector calculation and crossing point calculation of the straight line part of the pipe are performed by the calculator 33 to obtain three-dimensional data.

Description

【発明の詳細な説明】 本発明は曲ったパイプなどの三次元形状を測定する装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring three-dimensional shapes such as curved pipes.

工作機械や産業機械の油圧系用あるいは潤滑油用、切削
油用の各種配管は従来、手向げによシ或いは油圧ペング
ーを用いて加工していた。
Conventionally, various types of piping for hydraulic systems, lubricating oil, and cutting oil for machine tools and industrial machinery have been processed using hand-held tools or hydraulic pens.

更に近年では数値制御によるパイプベンダー即ちN C
ノ4’イブベンダーが普及し、生産性が大幅に向上して
きた。
Furthermore, in recent years, pipe benders using numerical control, that is, N C
4' Eve bender has become popular and productivity has improved significantly.

ところが、N C/4’イブベンダーを効率良く活用す
るには、FR*のNCデータを、如何に迅速且つ正確に
作成するかが問題となっている。そのため、曲げられた
モデルゲージのパイプ諸形状を再現するための曲げデー
タ測定、あるいはそのパイプ諸形状自体の精度や均一性
を保証するための曲げデータ測定が必要である。即ち、
曲げられ次パイプの三次元形状を測定することができ樋
装置が不uJ欠である。
However, in order to utilize the NC/4' Eve bender efficiently, the problem is how to quickly and accurately create FR* NC data. Therefore, it is necessary to measure bending data to reproduce the shape of the pipes of the bent model gauge, or to ensure the accuracy and uniformity of the pipe shapes themselves. That is,
A gutter device that can measure the three-dimensional shape of bent pipes is essential.

現在この独の三次元・ぐイブ測定装置としては、第1図
に示すもの、並びに@2図に示すものが知られでbるが
、それぞれ欠点がある。
At present, as this German three-dimensional measurement device, the one shown in Fig. 1 and the one shown in Fig. 2 are known, but each has its drawbacks.

まず第1図のものを概説すると、これは5軸の多関節型
三次元パイプ測定装置であり、ペース6と、これに立設
した自転可能な支軸5と、この支軸5先端に取付けた第
11o1転アーム1と、この回転アーム1先端に取付け
た第21g1転アーム2と、この回転アーム2先端に取
付けた第3回転アーム3と、この回転アーム3先端に取
付けた回転把持部4と、ペース6上に設置した2つの・
ぞイブ固定治具7,8と、座標演算器9と刀)らなる。
First, to give an overview of what is shown in Figure 1, this is a 5-axis multi-joint three-dimensional pipe measuring device, consisting of a pace 6, a rotatable support shaft 5 installed upright on the pace 6, and a rotatable support shaft 5 attached to the tip of the support shaft 5. a 11th o1 rotation arm 1, a 21g1 rotation arm 2 attached to the tip of this rotation arm 1, a third rotation arm 3 attached to the tip of this rotation arm 2, and a rotation grip part 4 attached to the tip of this rotation arm 3. and the two ・
It consists of zobe fixing jigs 7 and 8, a coordinate calculator 9, and a sword.

10は第1回転アーム1基端に取付けたパランサである
1、動作としては、曲げられたノ平イデ11を治Jil
−7,8に工り2個所でペース6上に固定しておき、こ
のパイプ11を回転把持部4で把持して回転把持部4金
ノやイア″111C沿って移動させる。この移動に伴っ
て多関節全構成する1〜5の各部材が回転するので、そ
れらの回転角01〜θsを検出して演算器9に入力する
ことに工り、・やイブ11各点の座標が計算に工って得
られ、三次元形状がまる。
Reference numeral 10 denotes a parancer attached to the base end of the first rotary arm 1, and its operation is to correct the bent flat ide 11.
The pipe 11 is fixed on the pace 6 by machining two places at -7 and 8, and the pipe 11 is gripped by the rotary grip part 4 and moved along the rotary grip part 4 and the ear 111C. Since the members 1 to 5 that make up all the joints rotate, we decided to detect their rotation angles 01 to θs and input them to the calculator 9, and the coordinates of each point of Eve 11 can be calculated. It can be obtained by engineering, and the three-dimensional shape is perfect.

しかし第1図のものでは、演算器9に全て(ロ)転角デ
ータが入力されるので、これらから一般には直交座標の
NC7’−夕を作成するにはFMtlA変換が複雑であ
り、計算に長時間を要する欠点がある。また、パイプ1
1の固定に2つの治具7.8を用いているので、固定作
業に時間がかかる欠点がある。
However, in the case of Fig. 1, since all (b) rotation angle data are input to the calculator 9, the FMtlA conversion is generally complicated to create the orthogonal coordinate NC7'-angle from these data, and the calculation is difficult. It has the disadvantage of requiring a long time. Also, pipe 1
Since two jigs 7 and 8 are used for fixing 1, there is a drawback that the fixing work takes time.

第2図に示すものはクランプ型三欠元パイプ測定装置で
あ夛、ノやイブ11の各面線部全会て治具12.〜12
nでクランプし、各治具のペース6上の座標(x、y)
と、治具上の各クランデエ3の高さくz)と、同クラン
プのX−Y平面に対する傾き角(α)と、同クランプ1
30X−Y平面上の方位角(β)とを読取り、これらの
データを演算器9に入力することに工り、ノやイブ11
各点の座標全計算してNC7′−夕としている、。
The one shown in FIG. 2 is a clamp-type three-pronged pipe measuring device, and a jig 12. ~12
Clamp at n, coordinates (x, y) on pace 6 of each jig
, the height z of each clamp 3 on the jig, the inclination angle (α) of the clamp with respect to the X-Y plane, and the clamp 1
30 read the azimuth angle (β) on the X-Y plane and input these data to the calculator 9.
The coordinates of each point are all calculated and set as NC7'-Y.

第2図のものでは、計算のための入力データを得るには
各itc#i1部全クランプせねばならず、測定時間が
かかりすぎ実用性に欠けるという欠点がある。。
In the method shown in FIG. 2, it is necessary to clamp the entire part of each itc#i to obtain input data for calculation, which has the disadvantage that it takes too much measurement time and is impractical. .

本発明り上記従来技術の諸欠点に鑑み、被測定物の固定
に時間がかからず、計算に必要なデータ採りに時間がか
からず、更K、計算の所要時間もさtlどかからない三
次元形状測定装置金提供することを目的とする。。
In view of the drawbacks of the above-mentioned prior art, the present invention provides a three-dimensional structure that does not take much time to fix the object to be measured, does not take time to collect data necessary for calculation, and does not require much time for calculation. The purpose is to provide original shape measuring equipment gold. .

上述した目的を達成した本発明の三次元形状測定装置は
、回転可能に支持され被測定物の一端を把持する把持具
と、との把持具の1転角を検出する回転角検出器と、三
次元直交座標全構成する第1、第2.第3の3軸のうち
第1軸に沿って移動可能な第1軸移動部材と、この第1
軸移動部劇の第1軸上の位置を検出する第1軸位置検出
器と、第1軸移動部材に第2軸に沿って移動可能に取イ
τjけられた第2軸移動部材と、この#4c2軸移動部
拐の第2軸上の位置全検出する第2軸位置検出器と、第
2軸移動部相に第3軸に沿って移動1す能に取付けられ
た第3軸移勢部材と、この第3軸移動部材の第3晰上の
位置全検出する第3軸位置検出器と、第3軸移初部材に
取付けられ被測定物に当接させられるプローブと、この
グローブが被測定物に当接された状態における上記把持
具の回転角データ並びに上記第1@ないし第3斡各移動
部拐の位置r−タ會入力して被測定物の三次元データを
計算する演算器とを有する。
The three-dimensional shape measuring device of the present invention, which achieves the above-mentioned object, includes: a gripping tool that is rotatably supported and grips one end of the object to be measured; a rotation angle detector that detects one rotation angle of the gripping tool; The first, second . a first axis moving member movable along the first axis of the third three axes;
a first axis position detector for detecting the position of the axis moving part on the first axis; a second axis moving member disposed on the first axis moving member so as to be movable along the second axis; A second axis position detector that detects the entire position on the second axis of this #4c two-axis moving part, and a third axis moving part that is attached to the second axis moving part so as to be able to move along the third axis. a third axis position detector that detects the entire position of the third axis moving member on the third axis, a probe attached to the third axis moving member and brought into contact with the object to be measured, and the glove. The three-dimensional data of the object to be measured is calculated by inputting the rotation angle data of the gripping tool in a state in which the gripper is in contact with the object to be measured and the position data of each of the moving parts in the first to third boxes. It has a computing unit.

上述した本発明の構成において、ノ?イグ等の被測定物
をその一端で把持することができるので、被測定物の固
定に時間がかからない。プロー21に被測定物に当接す
ることに工りその部位の位置データが知れるので、計算
に必要なデータ採りに時間がかからない。プローブが三
次元直交座標上を移動するので、演N、器への入力r−
夕が三次元座標を基礎におくことになり、演算が簡単化
する。グローブの支持構造が直交座標型なので、構造が
簡単であり且つ剛性の向上が容易である。更に、被測定
物の把持具に回転検出器を取付けたので、プローブの支
!4g造が一層間単化する。。
In the configuration of the present invention described above, no? Since the object to be measured, such as an igu, can be held at one end, it does not take much time to fix the object to be measured. Since the position data of the part to be measured can be known by making the plow 21 come into contact with the object to be measured, it does not take much time to collect the data necessary for calculation. Since the probe moves on three-dimensional orthogonal coordinates, the input to the device is
The calculation is now based on three-dimensional coordinates, which simplifies calculations. Since the support structure of the glove is of the orthogonal coordinate type, the structure is simple and the rigidity can be easily improved. Furthermore, a rotation detector is attached to the gripper of the object to be measured, so it can be used as a support for the probe! 4g construction will become more and more monotonous. .

以下、第3図〜第6図に↓り本発明の詳細な説明する。The present invention will be explained in detail below with reference to FIGS. 3 to 6.

第3図は本発明装置の一英層側を示す構成図、第4図は
他の実施例を示す部分的構成図、第5図はデータ処理の
フロー図、第6図は剛性の低い被測定物に対する補助サ
ポートの説明図である。
Fig. 3 is a block diagram showing the first layer side of the device of the present invention, Fig. 4 is a partial block diagram showing another embodiment, Fig. 5 is a flow diagram of data processing, and Fig. 6 is a cover with low rigidity. FIG. 3 is an explanatory diagram of an auxiliary support for a measurement object.

第3図の実施例装置は検出軸が4軸のものであり、21
はX軸方向のスライドテーブル、22はこのスライドガ
イド上を移動するX軸スライドテーブル、231−を上
d己スライド゛テーブルのX軸位1腹検出用のロータリ
・エンコーダ、24は上記x+nbスライドテーブル2
2に直立しycY軸コテコラム 5 Viこのコラム上
を移動するY軸スライドボックス、26はこのスライド
〆ツクスのY軸位置検出用ロータリ・エンコーダ、27
は上記Y軸スライドボックス25に取付けられX−Y両
軸に直焚して移動する2軸スライドバー、28はこのス
ライドパーの2軸位置検出用ロータリ・エンコーダ、2
9は上記2軸スライドバーの先端に回転自在(β軸まゎ
り)に取付けた測定用プローブ、30は回転テーブル、
31はこの(ロ)転テーブルに固定した被測定物(ノン
イブ11)把持用のチャック、、32は回転テーブルの
回転角α検出用ロータリ・エンコーダ、33は演算器、
34はデータ読込み全指令するためのボタンである。X
軸スライドガイド21及び回転テーブル30は図示しな
いペースに取付けられている。チャック31は簡単の1
こめ、その軸(α釉)がY方向に沿う工うになっている
The embodiment device shown in FIG. 3 has four detection axes, 21
22 is a slide table in the X-axis direction, 22 is an X-axis slide table that moves on this slide guide, 231- is a rotary encoder for detecting the one anode of the X-axis position of the self-sliding table, and 24 is the x+nb slide table mentioned above. 2
2 is a Y-axis slide box that stands upright and moves on this column, 26 is a rotary encoder for detecting the Y-axis position of this slide terminal, 27
2 is a two-axis slide bar that is attached to the Y-axis slide box 25 and moves by direct firing on both the X and Y axes, 28 is a rotary encoder for detecting the two-axis position of this slider, 2
9 is a measurement probe rotatably attached to the tip of the two-axis slide bar (around the β axis); 30 is a rotary table;
31 is a chuck for gripping the object to be measured (non-event 11) fixed to this rotary table; 32 is a rotary encoder for detecting the rotation angle α of the rotary table; 33 is a computing unit;
34 is a button for instructing all data reading. X
The shaft slide guide 21 and the rotary table 30 are attached to a pace (not shown). Chuck 31 is an easy one
In addition, the axis (α glaze) is oriented along the Y direction.

演算器33にはα軸のロータリ・エンコーダ32と共に
x、y、z各軸のロータリ・エンコーダ23.26.2
8の各信号線が接続されており、また指令ピタン34の
信号線が接続されている。
The arithmetic unit 33 includes an α-axis rotary encoder 32 and rotary encoders 23.26.2 for each of the x, y, and z axes.
8 signal lines are connected, and the signal line of the command pin 34 is also connected.

なお、α、X、Y、Z各軸の基準点は任意に予め定めら
れている。
Note that the reference points for each of the α, X, Y, and Z axes are arbitrarily determined in advance.

第4図の実施例装置は検出軸が5軸のものであり、第3
図の装置に対し、2軸スライドパー27の先端に回転ア
ーム35を取付け、この回転アーム35の先端にプロー
ブ29t−回転自在(β11111まわり)に敗付ける
と共に、回転アーム35の回転角r検出用ロータリ・エ
ンコーダ36を設けた点が異なる。もちろんこのロータ
リ・エンコーダ36の信号線は演算器33に接続されて
いる。
The embodiment device shown in FIG. 4 has five detection axes, and the third
In the device shown in the figure, a rotary arm 35 is attached to the tip of the two-axis slider 27, and the probe 29t is rotatably mounted (around β11111) on the tip of the rotary arm 35, and the rotation angle r of the rotary arm 35 is detected. The difference is that a rotary encoder 36 is provided. Of course, the signal line of this rotary encoder 36 is connected to the arithmetic unit 33.

第3図の実施例装置の各部の作用を説明する。The operation of each part of the embodiment device shown in FIG. 3 will be explained.

被測定物であるノヤイデ11の下端全チャック31に装
置することにより、パイプ11が縦置きに把持される。
By attaching the device to the entire lower end chuck 31 of the object to be measured, the pipe 11 is held vertically.

把持された状態でのパイプ11の姿勢は回転テーブル3
0を回すことにより選定でき、その姿勢はα軸ロータリ
・エンコーダ32で検出される。プローブ29t−X、
Y、Z方向に移動させると、スライドガイド21上をス
ライドテーブル22が移動することにニジプローブ29
のX軸位置がロータリ・エンコーダ23で検出され、ス
ライドテーブル22に固定したコラム24上全スライド
ゴツクス25が移動することによりプローブ29のY軸
位置がロータリ・エンコーダ26で検出され、スライド
〆ツクス25の中をスライドパー27が出入シすること
に工りプローブ29のZ軸位置がロークリ・エンコーダ
28で検出される。プローブ29は2軸スライドパー2
7の先端に回転自在に取付けられているが、これはプロ
ーブ29 f ieイデ11に正しく当接させるため前
面にV溝を形成しであるので、パイプ11の傾斜にプロ
ーブ29のV溝を合わせる必要があるからである。よっ
てプローブ290回転角βは検出する必要がない。
The posture of the pipe 11 in the gripped state is determined by the rotary table 3.
The orientation can be selected by turning 0, and the orientation is detected by the α-axis rotary encoder 32. Probe 29t-X,
When moved in the Y and Z directions, the slide table 22 moves on the slide guide 21, causing the rainbow probe 29 to move.
The X-axis position of the probe 29 is detected by the rotary encoder 23, and the Y-axis position of the probe 29 is detected by the rotary encoder 26 by moving the entire slide block 25 on the column 24 fixed to the slide table 22. As the slider 27 moves in and out of the slider 25, the Z-axis position of the machining probe 29 is detected by a rotary encoder 28. Probe 29 is a 2-axis slide par 2
The probe 29 is rotatably attached to the tip of the pipe 11, but in order to properly contact the probe 29 with the pipe 11, a V-groove is formed on the front surface, so align the V-groove of the probe 29 with the slope of the pipe 11. This is because it is necessary. Therefore, there is no need to detect the rotation angle β of the probe 290.

次に第3図の実施例装置における測定手順を第5図全参
照しながら説明する。まずパイプ11をチャック31で
縦に把持し、パイプ11の各直線部分の2点にプローブ
29を当接し、その都度指令ボタン34を押すことによ
り、X、Y。
Next, the measurement procedure in the embodiment apparatus shown in FIG. 3 will be explained with full reference to FIG. 5. First, the pipe 11 is held vertically with the chuck 31, the probe 29 is brought into contact with two points on each straight line part of the pipe 11, and the command button 34 is pressed each time to move X and Y.

2、α各軸の位置データをロータリ・エンコー〆23,
26,28.32で読取シ、これを演算器33ヘオンラ
インで入力する。この場合。
2. Rotary encoder position data for each α axis 23.
26, 28, and 32 are read and input to the arithmetic unit 33 online. in this case.

パイプ11の測定すべき直線部分がX−Y平面と平行に
なるLうに回転テーブル30i回しておくことにり、6
.2軸位置が測定の都度一定となるので都合が良い。こ
の時の回転テーブル300回転角αはパイプ11の直線
部分間のねじれに相当し、演算533での演算に供され
る。ノクイデ11の各m1部分に対するx、y、z、α
の各軸データの入力(第5図100)が終った時点で、
演算器33はパイプ11の各直線部分のベクトル計算(
第5図101)を行い、次いで各ベクトルの交点算出(
第5図J、 03 ) f行5oこの場合、ベクトルh
[算101に際しては6+lI定パイプ11の外径を考
慮する必要があるので、yI算器33にはパイ!外径を
予め人力しておく(第5図102)。またベクトルの交
点計:)$103に際しては、測定には誤差が伴うので
場合に工っではベクトル交点がまらないことがちる7こ
め、交点を近似的にめる補正計算が行われる(第5図1
04)。以上に↓す演算器33はパイプ11の三次元形
状を計算することができる。但し、ここでまったデータ
そのままを用いてN Cz?イデペンダー會動作させる
と、パイプのスプリングバックや伸びのため正しく曲っ
たパイプが得られない。そこで、演算器33には予め曲
げR,ノやイブ肉厚及びスプリングバック係数等全入力
(第5図106)l、ておき、スプリングバック補正及
び伸び率補正(第5図107)’ii施して曲げr−夕
の計算(第5図105)i行う。ここで得られた曲げデ
ータ105はオンラインでN Cノ4’イグペンダ−1
08に入力される。また必要に応じてアイスプレイ等1
09に出力表示される。。
By turning the rotary table 30i so that the straight line part of the pipe 11 to be measured is parallel to the X-Y plane,
.. This is convenient because the positions of the two axes remain constant each time the measurement is made. The rotation angle α of the rotary table 300 at this time corresponds to the twist between the straight portions of the pipe 11, and is subjected to the calculation in calculation 533. x, y, z, α for each m1 part of Nokuide 11
When the input of each axis data (100 in Fig. 5) is completed,
The arithmetic unit 33 calculates vectors for each straight line portion of the pipe 11 (
101) in Figure 5, and then calculate the intersection of each vector (
Figure 5 J, 03) f row 5o In this case, vector h
[When calculating calculation 101, it is necessary to take into account the outer diameter of the pipe 11, which is constant at 6+lI, so the yI calculator 33 has pi! The outer diameter is manually measured in advance (Fig. 5, 102). In addition, when using the vector intersection meter: ) $103, since there is an error in the measurement, it is likely that the vector intersection will not fit properly in some cases, so a correction calculation is performed to approximately approximate the intersection. 5 Figure 1
04). The arithmetic unit 33 described above can calculate the three-dimensional shape of the pipe 11. However, using the data collected here as is, N Cz? If you operate the bender, you will not be able to get a properly bent pipe due to the springback and elongation of the pipe. Therefore, all inputs such as the bending radius, wall thickness, and springback coefficient (Fig. 5, 106) are input to the calculator 33 in advance, and the springback correction and elongation rate correction (Fig. 5, 107) are applied. Calculate the bending angle (FIG. 5, 105). The bending data 105 obtained here is available online at
08 is input. In addition, if necessary, ice play etc. 1
The output is displayed on 09. .

一方、第4図の5軸の実施例装置においては、プローブ
29は2軸スライドパー27の先端に回転アーム35を
介して取付けられているので、測定の都度パイプ11の
各直線部分をX−Y平面と平行にする必要が全くない。
On the other hand, in the 5-axis embodiment shown in FIG. 4, the probe 29 is attached to the tip of the 2-axis slider 27 via the rotary arm 35, so each straight section of the pipe 11 is There is no need to make it parallel to the Y plane.

つまり、チャック310回転角αを任意に固定しておい
ても、回転アーム35を回転することにょクツやイゾ各
厘am%分2点にプローブ29を簡単に当接させること
ができる。この場合、回転アーム35の回転角rがベク
トル計算に必要となるので、ロータリ・エンコーダ36
の出力データがX、Y。
In other words, even if the rotation angle α of the chuck 310 is fixed arbitrarily, the probe 29 can be easily brought into contact with two points corresponding to each angle of rotation of the rotary arm 35 by rotating the rotary arm 35. In this case, since the rotation angle r of the rotary arm 35 is required for vector calculation, the rotary encoder 36
The output data of is X, Y.

2、α各軸データと共に指令ボタン34の操作VC↓つ
て演31器33ヘオンラインで入力される。
2. α is input online to the controller 33 by operating the command button 34 along with the data of each axis.

演M、器33での処理はr軸データが入力に追加されて
これがベクトル計算に使用される以外、第3図の場合と
同じである。
The processing in the processor 33 is the same as in FIG. 3, except that r-axis data is added to the input and used for vector calculations.

第6図はφ4やφ6といった小径/IPイブの測定に有
利なAイブ11の支持例を示す52本発明でtまノfイ
デの一端をチャック31などで把持するので被測定物の
着脱が極めて簡単であり、測定工数が低減するのである
が、小径パイプの場合−ま剛性が低いので撓む恐れがあ
る。この工うな場合は、第6図に示す工うに補助すd?
〜ト37で・Pイブ11の途中を支えてやる。補助すy
g −ト37はパイプ11の途中?必ずしも固定する必
要tよなく、単に下から支える程度の構造でも十分であ
る11図示の補助サポート37は2関節のものである。
Fig. 6 shows an example of supporting the A tube 11, which is advantageous for measuring small diameter/IP tubes such as φ4 and φ6.52 In the present invention, one end of the t-shaped tube is gripped with a chuck 31, making it easy to attach and detach the object to be measured. Although this method is extremely simple and reduces the number of measurement steps, small-diameter pipes have low rigidity and may bend. If you do not use this method, please use the method shown in Figure 6 to assist you.
- I'll support you in the middle of P-Eve 11 at 37. Assistance
g - Is G-37 in the middle of pipe 11? The auxiliary support 37 shown in FIG. 11 has two joints, and does not necessarily need to be fixed, and a structure that simply supports it from below is sufficient.

。 以]二睨明し1こ工うに、本発明の三次元形状TJll
1足装置では、被測定物の一端を把持するので后明の三
次元形状測定装置は百聞座標型であるから第1図の多関
節型のものに比べ構造が簡単であり且つ剛性が高いと共
に、演算器への入力データが基本的K[交座標系である
からデータの演算が容易である。更に、プローブを被測
定物に当接させることにエリ人力データが得られるので
、第2図のクランプ型のものに比ベデータ採りが極めて
簡単である。本発明の被測定物はパイプに限らず同様な
ものの三次元形状を測定することができる。
. From here on] The three-dimensional shape TJll of the present invention
Since the one-legged device grasps one end of the object to be measured, Houming's three-dimensional shape measuring device is of the 100-dimensional coordinate type, so it has a simpler structure and higher rigidity than the multi-joint type shown in Figure 1. , the input data to the arithmetic unit is in the basic K [orthogonal coordinate system, so data calculation is easy. Furthermore, since human power data can be obtained by bringing the probe into contact with the object to be measured, data collection is extremely simple compared to the clamp type shown in FIG. The object to be measured according to the present invention is not limited to pipes, and can measure the three-dimensional shape of similar objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多関節型三次元/4’イデ6111定装
置の概略構成図、第2図は従来のクランf型三次元パイ
プ測定装置の概略構成図、第3図り本発明の三次元形状
測定装置の一実層側の構成図、第4図は他の実施例装置
の部分的構成図、第5図はr〜夕処理のフロー図、第6
図は剛性の低い被測定物に対する補助サポートの説明画
である。 図面中。 11i、i被6111 k物()if)、21はX軸ス
ライドガイド 22はX軸スライドテーブル、 23はX軸位置検出用ロータリ・エンコーダ、24はY
軸コラム、 25はY軸スライドがツクス、 26はY軸位置検出用ロータリ・エンコーダ、27ハz
IItlIスライドパー、 28は2軸位置検出用ロータリ・エンコーダ、29はプ
ローブ、 30は回転テーブル、 31は把持具(チャック)、 32は把持具の回転角検出用ロータリ・エンコーダ、 33は演n器、 35は回転アーム、 36は回転アームの回転角検出用ロータリ・エンコーダ
である.、 第1図 第3図 24 第4図 5 第6図 30
Fig. 1 is a schematic diagram of a conventional articulated three-dimensional/4'ide 6111 measuring device, Fig. 2 is a schematic diagram of a conventional Clan f-type three-dimensional pipe measuring device, and Fig. 3 is a schematic diagram of a conventional three-dimensional pipe measuring device of the present invention. FIG. 4 is a partial configuration diagram of another embodiment of the device; FIG.
The figure is an explanatory drawing of auxiliary support for a measured object with low rigidity. In the drawing. 11i, i target 6111 k object ()if), 21 is the X-axis slide guide 22 is the X-axis slide table, 23 is the rotary encoder for detecting the X-axis position, 24 is the Y
Axis column, 25 is the Y-axis slide, 26 is the rotary encoder for Y-axis position detection, 27Hz
IItlI slider, 28 is a rotary encoder for detecting two-axis position, 29 is a probe, 30 is a rotary table, 31 is a gripper (chuck), 32 is a rotary encoder for detecting the rotation angle of the gripper, 33 is an encoder , 35 is a rotating arm, and 36 is a rotary encoder for detecting the rotation angle of the rotating arm. , Figure 1, Figure 3, Figure 24, Figure 4, Figure 6, Figure 6, 30.

Claims (1)

【特許請求の範囲】 回転可能に支持され被測定物の一端を把持する把持具と
、との把持具の回転角を検出する回転角検出器と、三次
元@変座標を構成する第1+第2.第3の3軸のうち第
1軸に沿って移動可能な第1軸移動部材と、この第1軸
移動部材の第1軸上の位置を検出する第1軸位置検出器
と。 第1軸移動部劇に第2軸に沿って移動可能に取付けられ
た第2軸移動部材と、この第2軸移動部劇の第2軸上の
位置を検出する第2軸位置検出器と、第2軸移動部材に
第3軸に沿って移動可能に取付けられた第3軸移動部材
と、この第3軸移動部劇の第3軸上の位置を検出する第
3軸位置検出器と、第3軸移動部材に取付けられ被測定
物に当接させられるグローブと、このグローブが被測定
物に当接された状態における上記把持具の回転角データ
並びに上記第1軸りいし第3軸^各移動部材の位置デー
タを入力して被測定物の三次元データを計算する演算器
とを有する三次元形状測定装置。
[Scope of Claims] A gripper that is rotatably supported and grips one end of the object to be measured; a rotation angle detector that detects the rotation angle of the gripper; 2. A first axis moving member movable along the first axis of the third three axes, and a first axis position detector that detects the position of the first axis moving member on the first axis. a second axis moving member attached to the first axis moving part so as to be movable along the second axis; and a second axis position detector for detecting the position of the second axis moving part on the second axis. , a third axis moving member attached to the second axis moving member so as to be movable along a third axis, and a third axis position detector for detecting a position on the third axis of the third axis moving member. , a glove attached to the third axis moving member and brought into contact with the object to be measured, rotation angle data of the gripping tool in a state where the glove is in contact with the object to be measured, and the first axis to the third axis. ^ A three-dimensional shape measuring device that includes a calculator that inputs position data of each moving member and calculates three-dimensional data of the object to be measured.
JP6115384A 1984-03-30 1984-03-30 Apparatus for measuring three-dimensional shape Pending JPS60205205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6115384A JPS60205205A (en) 1984-03-30 1984-03-30 Apparatus for measuring three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6115384A JPS60205205A (en) 1984-03-30 1984-03-30 Apparatus for measuring three-dimensional shape

Publications (1)

Publication Number Publication Date
JPS60205205A true JPS60205205A (en) 1985-10-16

Family

ID=13162892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6115384A Pending JPS60205205A (en) 1984-03-30 1984-03-30 Apparatus for measuring three-dimensional shape

Country Status (1)

Country Link
JP (1) JPS60205205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088886A (en) * 2003-10-29 2003-11-20 학교법인 제주교육학원 The measuring apparatus and method for a propeller
KR100758802B1 (en) * 2002-10-07 2007-09-13 현대중공업 주식회사 Automated Propeller Pitch Measuring method
KR200451792Y1 (en) 2010-08-19 2011-01-12 대우조선해양 주식회사 Propeller Shape Measuring Device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758802B1 (en) * 2002-10-07 2007-09-13 현대중공업 주식회사 Automated Propeller Pitch Measuring method
KR20030088886A (en) * 2003-10-29 2003-11-20 학교법인 제주교육학원 The measuring apparatus and method for a propeller
KR200451792Y1 (en) 2010-08-19 2011-01-12 대우조선해양 주식회사 Propeller Shape Measuring Device

Similar Documents

Publication Publication Date Title
JPS61281305A (en) Articulated robot control device
JP2015203567A (en) Metrology system
CN111409067B (en) Automatic calibration system and calibration method for robot user coordinate system
KR940003948B1 (en) Industrial robot control method and apparatus
CN113799130B (en) Robot pose calibration method in man-machine cooperation assembly
JP2667153B2 (en) Direct teaching method for multiple arm device
JPS6346844B2 (en)
JPS60205205A (en) Apparatus for measuring three-dimensional shape
JP3880030B2 (en) V-groove shape measuring method and apparatus
JPH068730B2 (en) Fixed error correction method for robot
JPH05111897A (en) Finding method of relative position relationship between plurality of robots
JP3671694B2 (en) Robot teaching method and apparatus
JPH07171779A (en) Centering method of industrial robot with travel device
JP4170530B2 (en) Robot teaching method and apparatus
JPS60177997A (en) Restoring device for templating pipe
JPS60127987A (en) Method and device for controlling profiling
JPS6249405A (en) Teaching method for robot
JP2538287B2 (en) Origin adjustment method for horizontal joint robot
JP3078884B2 (en) Copying control device
JPH0691566A (en) Method and apparatus for calibrating origin attitude position of articulated arm robot
JP2507298B2 (en) Method for melting angle steel using industrial robot
JP3110073B2 (en) Measurement jig and robot arm length detection method using measurement jig
JPS62195513A (en) Shape detecting method for material body
JPS5814006A (en) Apparatus for measuring position of assembled piping
JPH0417351Y2 (en)