JPS60204832A - Production of grain-oriented silicon steel sheet having excellent repeated bending characteristic - Google Patents

Production of grain-oriented silicon steel sheet having excellent repeated bending characteristic

Info

Publication number
JPS60204832A
JPS60204832A JP6040084A JP6040084A JPS60204832A JP S60204832 A JPS60204832 A JP S60204832A JP 6040084 A JP6040084 A JP 6040084A JP 6040084 A JP6040084 A JP 6040084A JP S60204832 A JPS60204832 A JP S60204832A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
repeated bending
steel sheet
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6040084A
Other languages
Japanese (ja)
Inventor
Katsuo Iwamoto
岩本 勝生
Yoshiaki Iida
飯田 嘉明
Yasuo Yokoyama
横山 靖雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6040084A priority Critical patent/JPS60204832A/en
Publication of JPS60204832A publication Critical patent/JPS60204832A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve the repeated bending characteristic and magnetic characteristic of the titled steel by specifying the surface roughness of the rolling rolls in the final cold rolling pass of a silicon steel slab as well as the oxygen weight of the surface oxide formed in the stage of decarburization annealing within a prescribed range. CONSTITUTION:A silicon steel slab contg. 2.5-4wt% Si is subjected to hot rolling and further to one pass or >=2 passes of cold rolling stages including intermediate annealing. The surface roughness Ra (measured in terms of center line average height Ra and the unit is mum) of the rolling rolls in the final cold rolling pass in said cold rolling stages is controlled to <=-[Si%]X0.27+1.18. The oxygen weight of the oxide layer formed on the surface of the steel sheet in the decarburization annealing following said rolling is adjusted to 1-2.2g/m<2>. A separating agent for annealing consisting essentially of MgO is then coated thereon and the steel sheet is subjected to final finish annealing.

Description

【発明の詳細な説明】 この発明は、一方向性珪素鋼板の製造方法に関するもの
であシ、特に繰返し曲げ特性の優れた一方向性珪素鋼板
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a unidirectional silicon steel sheet, and particularly to a method for manufacturing a unidirectional silicon steel sheet with excellent repeated bending properties.

一般に一方向性珪素鋼板は、Si4.Os(重量%、以
下同じ)以下を含有する珪素鋼スラブを熱間圧延し、必
要に応じて熱延板焼鈍を施した後、1回の冷間圧延、あ
るいは中間焼鈍を挾む2回以上の冷間圧延からなる冷延
工程により最終製品板厚とし、次いで脱炭を兼ねた1次
再結晶焼鈍を施し、さらに最終仕上焼鈍を施して(+1
0)[001)方位の2次再結晶粒を発達させるととも
にフォルステライト質の絶縁被膜を形成し、次いでリン
酸塩系絶縁被膜を塗布形成して焼付けるとともにコイル
セットを除去するために平坦化焼鈍を行なう、一連の工
程によって製造される。
Generally, unidirectional silicon steel sheets are Si4. After hot rolling a silicon steel slab containing Os (wt%, same hereinafter) or less and subjecting it to hot-rolled plate annealing as necessary, one cold rolling or two or more times with intermediate annealing in between. The final product thickness is achieved through a cold rolling process consisting of cold rolling, followed by primary recrystallization annealing that also serves as decarburization, and final finish annealing (+1
0) Develop secondary recrystallized grains with the [001) orientation and form a forsterite insulating film, then apply and bake a phosphate-based insulating film and flatten to remove the coil set. Manufactured through a series of annealing steps.

このようにして製造される一方向性珪素鋼板をトランス
やモータ等の鉄芯材料として用いる際には、スリット加
工あるいは打抜加工を施すのが通常であシ、また巻鉄芯
に加工する場合には小径曲げ等の変形を受ける。このよ
うな加工に際して鋼板に折損やクシツクが生じれば、鉄
芯を製作することができなくなる。そこで方向性珪素鋼
帯については、脆性による加工時の折損やクシツクの発
生を未然に防止するため、JIS C2553において
繰返し曲げ試験を行なうことが定められておシ、またそ
の繰返し曲げ試験の方法についてはJIS C2550
に規定されている。このような繰返し曲げ試験を行なっ
た結果、繰返し曲げ特性が劣っていることが判明すれば
、たとえ鉄損特性等の磁気特性が優れていても廃却せざ
るを得ない。したがって方向性珪素鋼帯についてL1単
に鉄損特性等の磁気特性が優れているばかりでなく、繰
返し曲げ特性も良好であることもめられる。
When using the unidirectional silicon steel sheet produced in this way as a core material for transformers, motors, etc., it is usually subjected to slitting or punching, and when it is processed into a wound core. is subjected to deformation such as small diameter bending. If the steel plate is broken or cracked during such processing, it becomes impossible to manufacture the iron core. Therefore, JIS C2553 stipulates that grain-oriented silicon steel strips be subjected to repeated bending tests in order to prevent breakage and cracking during processing due to brittleness, and also describes the method of repeated bending tests. is JIS C2550
stipulated in If, as a result of such repeated bending tests, it is found that the repeated bending properties are poor, the product must be discarded even if the magnetic properties such as iron loss properties are excellent. Therefore, it can be seen that the grain-oriented silicon steel strip L1 not only has excellent magnetic properties such as core loss properties but also good repeated bending properties.

ところで、近年は省エネルギー、省資源の要請が益々強
まり、変圧器に対しても低鉄損化が強く要求されるよう
になっており、そのため変圧器に使用される方向性珪素
鋼帯に対してもよシ低い鉄損の製品がめられるようにな
っており、特に最近では磁束密度をある程度犠牲にして
も低鉄損化を図る傾向さえ見られるようになった。この
ように方向性珪素銅帯の鉄損を低減するだめの方法とし
ては、鋼中の5illを増量させて地鉄の電気抵抗を増
加させ、渦電流損を減少させる方法が良く知られている
。しかしながらSi量が過剰となれば鋼板が脆化するこ
とも知られており、本発明者等の調査でもSi量が特に
3.4%を越えれば繰返し曲げ特性が著しく低下するこ
とが判明している。
By the way, in recent years there has been an increasing demand for energy and resource conservation, and there has been a strong demand for low iron loss in transformers. Products with even lower iron loss have become popular, and recently there has even been a trend to achieve lower iron loss even at the expense of some degree of magnetic flux density. As described above, a well-known method for reducing iron loss in a oriented silicon-copper strip is to increase the amount of 5ill in the steel to increase the electrical resistance of the base steel and reduce eddy current loss. . However, it is known that steel sheets become brittle if the amount of Si is excessive, and research conducted by the present inventors has revealed that if the amount of Si exceeds 3.4%, the cyclic bending properties will be significantly reduced. There is.

すなわち、通常の一方向性珪素鋼板の5iItは3%前
後であるが、本発明者等はSi iiを2.5〜4.0
%の範囲で変化させて、Si量が製品の繰返し曲げ特性
に及ぼす影響を調べたところ、第1図に示すような結果
が得られた。第1図から明らかなように、SI量が増加
するに伴なって繰返し曲げ特性が低下する傾向が顕著に
認められ、特に5illが34%を越えれば繰返し曲げ
回数が5回以下と著しく少なくなり、中には繰返し曲げ
回数が0回となった製品板もみられた。なおこの場合の
一方向性珪素鋼板製造過程における最終冷延バスの圧延
ロール表面粗度(中心線平均粗さ; Ra )は通常実
施している程度の025〜0.30μm1脱炭焼鈍後の
表面酸化層の酸素目付量は1.5〜2.0バの範囲であ
った。
That is, the 5iIt of a normal grain-oriented silicon steel sheet is around 3%, but the inventors have determined that the Si ii is 2.5 to 4.0.
When the influence of the amount of Si on the repeated bending characteristics of the product was investigated by changing the amount of Si within a range of 1.5%, the results shown in FIG. 1 were obtained. As is clear from Figure 1, there is a marked tendency for the repeated bending characteristics to decrease as the SI amount increases, and in particular, when 5ill exceeds 34%, the number of repeated bends decreases significantly to 5 times or less. Some product boards were also found to have been bent repeatedly 0 times. In this case, the rolling roll surface roughness (center line average roughness; Ra) of the final cold rolling bath in the process of producing unidirectional silicon steel sheets is 0.25 to 0.30 μm, which is the level normally carried out.1 The surface after decarburization annealing The oxygen basis weight of the oxidized layer was in the range of 1.5 to 2.0 bar.

ところで、一方向性珪素鋼板の繰返し曲げ特性を改善す
る方法としては、特公昭58−32216号公報記載の
方法が既に提案されている。この提案によれば、一方向
性珪素鋼板の製造工程において、最終仕上焼鈍の条件を
規制して製品板中のNをl Oppm以下、Sを0.0
01チ以下に低減することによって、製品の繰返し曲げ
特性が改善されるとしている。しかしながらこの提案の
方法を採用しても、SL量が3.4チ以上となれば、目
的とする充分な繰返し曲げ特性が得られない。すなわち
、本発明者等の実験による第1図のデータは、上述の提
案の製造工程を採用したものであって、この場合Si量
が3.4−以上となればSi量増加による鉄損値の向上
は認められるものの、繰返し曲げ特性が急激に悪化する
ことは前述の通りである。
By the way, as a method for improving the repeated bending characteristics of a unidirectional silicon steel sheet, a method described in Japanese Patent Publication No. 58-32216 has already been proposed. According to this proposal, in the manufacturing process of grain-oriented silicon steel sheets, the final finish annealing conditions are regulated so that the N in the product sheet is 1 Oppm or less and the S is 0.0.
It is said that the repeated bending characteristics of the product will be improved by reducing it to 0.01 inch or less. However, even if this proposed method is adopted, if the SL amount is 3.4 inches or more, the desired repeated bending characteristics cannot be obtained. In other words, the data shown in FIG. 1 based on the experiments conducted by the present inventors is based on the manufacturing process proposed above. As mentioned above, although an improvement in the characteristics is observed, the repeated bending characteristics deteriorate rapidly.

一方、一方向性珪素鋼板の表面状態を改善することによ
シ、一段と低い鉄損値が得られることが知られておシ、
例えば文献(Journal of AppliedP
hysics; Vol、 41.47. June 
1970: 2981〜2984頁)には、珪素鋼製品
板表面のグラスフィルムを除去し、化学研磨して表面粗
度を向上させることによって、著しく低い鉄損値が得ら
れることが記載されている。したがってこの方法によれ
ば、SIJ!増加による繰返し曲げ特性の劣化を招くこ
となく、鉄損値の向上が可能となると考えられる。しか
しながらこの文献の方法の場合、製品板のグラスフィル
ム膜を除去して化学研磨するため、化学研磨後にいずれ
かの方法により別工程でグラスフィルムを付着させなけ
ればならないが、そのような方法を実際に量産的規模で
実用化することは極めて困難であシ、また仮に実用化し
たとしても工程が複雑化して著しいコストの上昇を招き
、したがってこの方法は非現実的であった。
On the other hand, it is known that by improving the surface condition of unidirectional silicon steel sheets, even lower iron loss values can be obtained.
For example, literature (Journal of AppliedP
hysics; Vol, 41.47. June
1970: pp. 2981-2984) describes that an extremely low core loss value can be obtained by removing the glass film on the surface of a silicon steel product plate and chemically polishing it to improve the surface roughness. Therefore, according to this method, SIJ! It is considered that it is possible to improve the iron loss value without causing deterioration of the repeated bending characteristics due to the increase. However, in the case of the method described in this document, the glass film film on the product board is removed and chemically polished, so the glass film must be attached in a separate process using one of the methods after chemical polishing. It is extremely difficult to put this method into practical use on a mass production scale, and even if it were put into practical use, the process would become complicated and the cost would rise significantly, making this method impractical.

この発明は以上の事情を背景としてなされたものであり
、優れた繰返し曲げ特性と、優れた磁気特性(特に低鉄
損)とを同時に満足する一方向注珪素鋼板を実際に製造
し得る方法を提供することを目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and it is an object of the present invention to develop a method for actually producing a unidirectional silicon steel sheet that simultaneously satisfies excellent repeated bending properties and excellent magnetic properties (particularly low core loss). The purpose is to provide

本発明者等は、上述の目的を達成するべく、一方向性珪
素鋼板の繰返し曲げ特性に影響を及ぼす要因について種
々実験・検討を重ねた結果、繰返し曲げ特性が、最終冷
延板の表面粗度、および脱炭焼鈍時に鋼板表面に生成さ
れる表面酸化物層の酸素目付量に大きく左右されること
を見出した。
In order to achieve the above object, the present inventors conducted various experiments and studies on the factors that affect the cyclic bending characteristics of unidirectional silicon steel sheets, and found that the cyclic bending characteristics It has been found that the decarburization is greatly affected by the degree of decarburization and the oxygen basis weight of the surface oxide layer formed on the surface of the steel sheet during decarburization annealing.

そしてさらに検討を進めた結果、最終冷延パスでの圧延
ロールの表面粗度を、Si量に応じたある値以下とし、
同時に脱炭焼鈍時に生成される表面酸化物層の酸素目付
量をある範囲内に調整することによって、優れた繰返し
曲げ特性が得られ、またその条件下でSi量を増量する
ことにより繰返し曲げ特性を劣化掻せることなく低い鉄
損値を達成し得ることを見出し、この発明をなすに至っ
たのである。
As a result of further investigation, the surface roughness of the rolling roll in the final cold rolling pass was set to be below a certain value depending on the amount of Si.
At the same time, by adjusting the oxygen weight of the surface oxide layer generated during decarburization annealing within a certain range, excellent repeated bending properties can be obtained, and by increasing the amount of Si under these conditions, repeated bending properties can be obtained. They discovered that it is possible to achieve a low iron loss value without causing any deterioration of the iron, leading to the creation of this invention.

すなわちこの発明の方法は、Si 2.5〜4.0%を
含有する珪素鋼スラブを熱間圧延し、さらに1回または
中間焼鈍を挾む2回以上の冷延工程を経て最終製品板厚
とし、次−で脱炭を兼ねた1次再結晶焼鈍を施した後、
最終仕上げ焼鈍を施す一連の工程よシなる一方向性珪素
鋼板の製造方法において、前記冷延工程の最終冷延パス
における圧延ロールの表面粗度を、SI量に応じて中心
線平均粗さくRa)で Ra (ttm )≦−(Si量) X O,27+ 
1.18を満足する範囲内に制御し、かつそれに続く脱
炭焼鈍により鋼板表面に生成される表面酸化物層の酸素
目付量を、1.0〜2.2 f/rrlの範囲内に調整
することを特徴とするものである。
That is, the method of the present invention hot-rolls a silicon steel slab containing 2.5 to 4.0% Si, and further cold-rolls it once or twice or more with intermediate annealing in between to reduce the thickness of the final product. Then, after performing primary recrystallization annealing that also serves as decarburization,
In a method for manufacturing a unidirectional silicon steel sheet that includes a series of steps of final finish annealing, the surface roughness of the rolling roll in the final cold rolling pass of the cold rolling step is adjusted to a center line average roughness Ra according to the SI amount. ) and Ra (ttm)≦−(Si amount) X O,27+
1.18, and the oxygen basis weight of the surface oxide layer generated on the steel plate surface by subsequent decarburization annealing is adjusted within the range of 1.0 to 2.2 f/rrl. It is characterized by:

以下この発明の一方向性珪素鋼板製造方法についてさら
に詳細に説明する。
The method for producing a unidirectional silicon steel sheet according to the present invention will be explained in more detail below.

先ず一方向性珪素鋼板の通常の製造工程中における冷延
工程の最終冷延パスでの圧延ロール表面粗度との関係に
ついて説明すると、本発明者等が種々のSi量の一方向
性珪素鋼板を製造するにあたって、最終冷延パスでの圧
延ロール表面粗度(但し中心線平均粗さRaで測定した
もの)を変化させ、製品の繰返し曲げ回数をJIS C
2550で規定される繰返し曲げ試験によシ調べたとこ
ろ、第2図に示すような関係があることを見出した。な
おこのときの脱炭焼鈍後の表面酸化物層の酸素目付量線
1.5〜1.9 Y/mjであった。第2図に示すよう
に、鋼板のSi量が増大しても、そのSi量の増大に伴
なって圧延ロール表面粗度(Ra)を減少させて鋼板表
面の平滑度を増すことによシ、良好な繰返し曲は特性を
維持できることがわかる。そして通常良好な繰返し曲げ
特性を有すると評価できる繰返し曲げ回数5回以上を得
るためには、圧延ロール表面粗度Raを5iillに応
じて第2図の線Aの下側の領域内となるように制御する
必要があることが判明した。すなわち第2図の線Aの下
側の領域は、Ra (ttm )≦−[Si’%)Xo
、27+1.18で表わせるから、圧延ロール表面粗度
Raが上式を満たすようにSi量に応じて制御すること
により良好な繰返し曲げ特性を得ることができる。
First, to explain the relationship between the rolling roll surface roughness in the final cold rolling pass of the cold rolling process in the normal manufacturing process of unidirectional silicon steel sheets, the present inventors have developed unidirectional silicon steel sheets with various Si contents. In manufacturing the product, the surface roughness of the rolling roll in the final cold rolling pass (measured by centerline average roughness Ra) is changed, and the number of repeated bending of the product is determined according to JIS C
As a result of the repeated bending test specified in 2550, it was found that there was a relationship as shown in FIG. At this time, the oxygen basis weight line of the surface oxide layer after decarburization annealing was 1.5 to 1.9 Y/mj. As shown in Figure 2, even if the Si content of the steel plate increases, the rolling roll surface roughness (Ra) can be reduced to increase the smoothness of the steel plate surface. , it can be seen that a good repeated song can maintain its characteristics. In order to obtain 5 or more repeated bending times, which can be evaluated as having good repeated bending characteristics, the rolling roll surface roughness Ra should be adjusted to fall within the area below line A in Figure 2 according to 5iill. It turned out that it was necessary to control the That is, the area below line A in FIG. 2 is Ra (ttm)≦-[Si'%)Xo
, 27+1.18. Therefore, good repeated bending characteristics can be obtained by controlling the rolling roll surface roughness Ra according to the amount of Si so that it satisfies the above formula.

またこのように冷延工程の最終圧延ロール表面粗度Ra
をSi量に応じて減少させて、鋼板表面の平滑度を増す
ことにより磁気特性も改善され、特にSi増量による鉄
損値の向上と、充分な繰返し曲げ特性の確保が同時に可
能となるのである。
In addition, the final rolling roll surface roughness Ra in the cold rolling process is
Magnetic properties are also improved by reducing the amount of Si in proportion to the amount of Si and increasing the smoothness of the surface of the steel sheet.In particular, increasing the amount of Si makes it possible to simultaneously improve the iron loss value and ensure sufficient repeated bending characteristics. .

上述の如く最終冷延パスの圧延ロール表面粗度を減少さ
せることは、その圧延ロールの仕上研磨時の砥粒度を細
かくすることによって達成できる。
As described above, reducing the surface roughness of the mill roll in the final cold rolling pass can be achieved by making the abrasive grain finer during final polishing of the mill roll.

すなわち、従来の一般的な冷延ロールの仕上研磨におけ
る砥粒度は「す120J程度であって、この場合のロー
ル表面粗度Raは0.25〜0.3011mとなシ、シ
たがって第2図の直線A上のSi量は3.44〜3..
26%となるから、5ilj13.4%以上の鋼板の繰
返し曲げ回数を確実に5回以上確保することは困難であ
り、特にSi量が3.45%以上の鋼板では著しく繰返
し曲げ特性が低下してしまう。
That is, the abrasive grain size in conventional general final polishing of cold rolling rolls is about 120 J, and the roll surface roughness Ra in this case is 0.25 to 0.3011 m. The amount of Si on straight line A in the figure is 3.44 to 3.
26%, it is difficult to ensure that the number of repeated bending of a steel plate with 5ilj13.4% or more is 5 times or more, and in particular, with a steel plate with a Si content of 3.45% or more, the repeated bending characteristics are significantly reduced. I end up.

これに対し仕上研磨時の砥粒度を例えば「す600Jと
して最終冷延パスの圧延ロールを研若すれば、その表面
粗度f′i0.05〜0.1 μm Km減すt’L、
sl量3,45%以上でも確実に5回以上の繰返し曲げ
回数を確保して、優れた繰返し曲げ特性を維持すること
ができる。さらに表面粗度を0.05μm以下とするた
めには、砥粒度を÷600以上に細かくすれば良い。こ
のように最終冷延バスの圧延ロールの仕上研磨時の砥粒
度を細かくするだけで、ロール表面粗度を小さくして高
Si量でも繰返し曲げ特性を改善することができ、した
がってコスト上昇を招くことなく量産的規模での実施が
可能である。
On the other hand, if the abrasive grain size during final polishing is set to 600J, for example, and the roll is polished for the final cold rolling pass, the surface roughness f'i will be reduced by 0.05 to 0.1 μm Km,
Even when the sl amount is 3.45% or more, it is possible to reliably ensure repeated bending times of 5 or more times and maintain excellent repeated bending characteristics. Furthermore, in order to make the surface roughness 0.05 μm or less, the abrasive grain size may be made finer than ÷600. In this way, by simply increasing the abrasive grain size during final polishing of the rolling rolls in the final cold rolling bath, it is possible to reduce the roll surface roughness and improve the cyclic bending characteristics even with a high Si content, which leads to an increase in costs. It is possible to implement it on a mass production scale without any problems.

次に最終冷延後の脱炭焼鈍時に生成される鋼板表面の酸
化物層の鋼板単位面積当りの酸素数、すなわち酸素目付
量と製品板の繰返し曲げ特性との関係について説明する
Next, the relationship between the number of oxygen per unit area of the steel sheet in the oxide layer on the surface of the steel sheet generated during decarburization annealing after the final cold rolling, that is, the oxygen basis weight, and the repeated bending characteristics of the product sheet will be explained.

一般に一方向性珪素鋼板の製造工程においては、冷延工
程によって最終製品板厚とした後、1次再結晶焼鈍を兼
ねて脱炭焼鈍を行なうが、この脱炭焼鈍では鋼板表面に
SiO□および鉄酸化物を主体とする酸化物層が生成さ
れる。この後、MgOを主成分とする焼鈍分離剤を前記
酸化物層の上に塗布しこれに水素雰囲気中で1000〜
1200℃の仕上焼鈍を施すことによって、鋼板表面に
フォルステライト系絶縁被膜を形成させるとともに優れ
た磁気特性を得る。したがって脱炭焼鈍における表面酸
化物層の生成は、最終的にフォルステライト質絶縁被膜
を形成して優れた磁気特性を得るために不可欠であるが
、この脱炭焼鈍による表面酸化物層の酸素目付量は、最
終的な製品の磁気特性のみならず、繰返し曲げ特性にも
大きな影響を及ぼすことを本発明者等は新規に見出した
Generally, in the manufacturing process of unidirectional silicon steel sheets, after the final product thickness is achieved through a cold rolling process, decarburization annealing is performed which also serves as primary recrystallization annealing. In this decarburization annealing, SiO□ and An oxide layer mainly composed of iron oxide is generated. After that, an annealing separator mainly composed of MgO is applied onto the oxide layer, and the annealing separation agent is applied to the oxide layer in a hydrogen atmosphere.
By performing final annealing at 1200° C., a forsterite-based insulating film is formed on the surface of the steel sheet, and excellent magnetic properties are obtained. Therefore, the generation of a surface oxide layer during decarburization annealing is essential for ultimately forming a forsterite insulating film and obtaining excellent magnetic properties. The present inventors have newly discovered that the amount has a large effect not only on the magnetic properties of the final product but also on the repeated bending properties.

すなわち、Si3.50%を含有する珪素鋼熱延材を冷
間圧延して最終製品板厚とするに際してその冷延工程の
最終冷延バスの圧延ロール表面粗度Raを、0.0!5
/jm、(1,2μm、0.5μmの3水準に制御し、
次いで脱炭焼鈍を行なうにあたりその雰囲気を変化させ
てその脱炭焼鈍で生成される表面酸化物層の酸素目付量
を03〜3.5肩の範囲に調整した。そしてその後常法
に従ってMgO(i−主成分とする焼鈍分離剤を塗布し
て最終仕上焼鈍を施し、得られた各製品板の繰返し曲げ
特性をJIS C2550で規定される繰返し曲げ試験
により調べたところ、脱炭焼鈍による表面酸化物層の酸
素目付量、最終冷延バスのロール表面粗度と繰返し曲げ
特性との間には第3図に示すような関係があることが判
明した。
That is, when hot rolled silicon steel material containing 3.50% Si is cold rolled to obtain the final product thickness, the surface roughness Ra of the roll roll of the final cold rolling bath in the cold rolling process is set to 0.0!5.
/jm, (controlled at 3 levels of 1, 2 μm, 0.5 μm,
Next, when performing decarburization annealing, the atmosphere was changed to adjust the oxygen basis weight of the surface oxide layer produced by the decarburization annealing to a range of 0.3 to 3.5. After that, an annealing separator mainly composed of MgO (i-) was applied in accordance with a conventional method and final annealing was performed, and the repeated bending characteristics of each product sheet obtained were examined by a repeated bending test specified in JIS C2550. It has been found that there is a relationship as shown in FIG. 3 between the oxygen basis weight of the surface oxide layer by decarburization annealing, the roll surface roughness of the final cold rolling bath, and the repeated bending characteristics.

第3図から明らかなように酸素目付量が2.2バを越え
れば、最終冷延バスでのロール表面粗度が著しく小さい
場合でも、製品板の繰返し曲げ特性は著しく劣化する。
As is clear from FIG. 3, if the oxygen basis weight exceeds 2.2 bar, the repeated bending characteristics of the product sheet will deteriorate significantly even if the roll surface roughness in the final cold rolling bath is extremely small.

その理由は、酸素目付量が多−場合には、最終冷延バス
でのロール表面粗度の大小にかかわらず、地鉄界面の凹
凸が著しく大きくなって繰返し曲げ特性を劣化させるも
のと考えられる。一方、酸素目付量が1.0 f/m未
満の場合には製品板の繰返し曲げ特性は劣化せず、むし
ろ良好であるが、磁気特性が著しく劣化し、また被膜外
観を著しく損なう結果となシ、シたがって磁気特性と繰
返し曲げ特性との両者を満足させるためには、酸素目付
量を1.0〜2.277mの範囲内とする必要があるこ
とが判明した。したがってこの発明の方法では、最終冷
延バスのロール表面粗度Raを前述のようにSi量に応
じて制御するとともに、脱炭焼鈍工程を、それによシ生
成される表面酸化物層の酸素目付量が10〜22崎”の
範囲内となるように調整することとしたのである。
The reason for this is thought to be that when the amount of oxygen per unit area is large, the unevenness at the interface between the base metal becomes significantly large and deteriorates the repeated bending characteristics, regardless of the roll surface roughness in the final cold rolling bath. . On the other hand, when the oxygen basis weight is less than 1.0 f/m, the repeated bending properties of the product plate do not deteriorate and are actually good, but the magnetic properties deteriorate significantly and the appearance of the coating is significantly impaired. Therefore, it has been found that in order to satisfy both magnetic properties and repeated bending properties, the oxygen basis weight needs to be within the range of 1.0 to 2.277 m. Therefore, in the method of the present invention, the roll surface roughness Ra of the final cold rolling bath is controlled according to the amount of Si as described above, and the decarburization annealing step is performed with the oxygen basis weight of the surface oxide layer produced thereby. The amount was adjusted so that it was within the range of 10 to 22".

なおこのように酸素目付量を調整するためには、暖炭焼
鈍の雰囲気を調整すれば良いが、焼鈍時間、焼鈍温度に
よっても影響を受けることは勿論である。
In order to adjust the oxygen basis weight in this way, it is sufficient to adjust the atmosphere of warm coal annealing, but it goes without saying that it is also affected by the annealing time and annealing temperature.

以上のようにこの発明の方法では最終冷延〕くスのロー
ル表面粗度の制御と脱炭焼鈍における酸素目付量の調整
が基本的にi要な要件であり、それ以外の工程、条件に
ついては従来公知の方法と同様であれば良い。すなわち
、珪素鋼スラブを熱間圧延した後、必要に応じて熱延板
焼鈍および酸洗を施し、1回の冷間圧延、または中間焼
鈍を挾む2回以上の冷間圧延からなる冷延工程を経て最
終製品板厚とし、脱炭・1次再結晶焼鈍後、MgOを主
成分とする焼鈍分離剤を塗布して最終仕上げ焼鈍を施せ
ば良い。
As described above, in the method of the present invention, control of the roll surface roughness of the final cold rolling waste and adjustment of the oxygen basis weight in decarburization annealing are basically essential requirements, and other steps and conditions are not considered. may be the same as a conventionally known method. That is, after hot rolling a silicon steel slab, hot-rolled plate annealing and pickling are performed as necessary, and cold rolling consists of one cold rolling or two or more cold rolling with intermediate annealing in between. The thickness of the final product is obtained through the process, and after decarburization and primary recrystallization annealing, an annealing separator containing MgO as a main component is applied and final annealing is performed.

以下にこの発明の実施例を比較例とともに記す。Examples of the present invention will be described below along with comparative examples.

実施例1 Si含有量が3.05チ、3.35チ、3.55チの3
水準よりなシ、いずれもインヒビターとしてMn0.0
70%、SeO,025%、SbO,028%を含有す
る200日厚0珪素鋼連鋳スラブ各6本を用意し、各ス
ラブをいずれも1380℃に1時間加熱後、常法にした
がって2.5■厚に熱延し、コイルに巻取った。次いで
各コイルを980℃に30秒保持後、0.75tll厚
に冷延し、引続き950℃×2分の中間焼鈍を行なった
。次いで最終冷延して0.30111厚に仕上げるに際
して、その最終・くスの圧延ロール表面粗度(Ra)を
0.13μm10.38μm、0.55μmの3条件に
変更して仕上げた。その後800℃の湿水素中で脱炭を
兼ねた1次再結晶焼鈍を施すにあたり、雰囲気をg#1
整して表面酸化物層の酸素目付量を1.7 t/m 、
 2.5 P/m’の2水準とし、次いでMgOを主体
とする焼鈍分離剤を塗布して、箱焼鈍により最終焼鈍を
施し、絶縁コーティングを塗布して一方向性珪素鋼板製
品とした。なお最終焼鈍は、昇温過程の860℃で30
時間保定し、引続き1200℃で10時間の焼鈍を行な
った。このようにして得られた製品の繰返し曲げ特性お
よび磁気特性を調べた結果を第1表に示す。
Example 1 Three samples with Si contents of 3.05, 3.35, and 3.55
Above the standard, both Mn0.0 as an inhibitor.
Six 200-day thick continuously cast silicon steel slabs containing 70%, SeO, 025%, and SbO, 028% were prepared, and after heating each slab to 1380°C for 1 hour, 2. It was hot rolled to a thickness of 5 cm and wound into a coil. Next, each coil was held at 980° C. for 30 seconds, cold rolled to a thickness of 0.75 tll, and then intermediate annealed at 950° C. for 2 minutes. Then, when final cold rolling was carried out to finish to a thickness of 0.30111, the surface roughness (Ra) of the rolling roll of the final scrap was changed to three conditions: 0.13 μm, 10.38 μm, and 0.55 μm. After that, when performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 800°C, the atmosphere was changed to g#1
The oxygen basis weight of the surface oxide layer was adjusted to 1.7 t/m.
Two levels of 2.5 P/m' were applied, and then an annealing separator mainly containing MgO was applied, final annealing was performed by box annealing, and an insulating coating was applied to obtain a unidirectional silicon steel sheet product. The final annealing was performed at 860°C during the heating process for 30°C.
After holding for a certain time, annealing was subsequently performed at 1200° C. for 10 hours. Table 1 shows the results of examining the repeated bending properties and magnetic properties of the product thus obtained.

第1表から、この発明の最終冷延バスロール表面粗度条
件および脱炭焼鈍酸素目付量条件を満たして製造された
本発明例の製品板は、それらの2条件のうち一方または
双方の条件を外れて製造された比較例の製品板と比較し
て繰返し曲げ特性が9ずれも極めて優れており、しかも
磁気特性も良好であることが明らかである。
From Table 1, it can be seen that the product sheet of the present invention example that was manufactured satisfying the final cold-rolled bath roll surface roughness conditions and the decarburization annealing oxygen basis weight conditions of the present invention satisfies one or both of these two conditions. It is clear that the repeated bending characteristics are extremely superior by 9 points compared to the product sheet of the comparative example which was manufactured with a deviation from the standard, and the magnetic characteristics are also good.

実施例2 S1含有量が3.00%、3.35%、3.55係の3
水準よりなり、かついずれもインヒビターとしてMn 
0.067 Z 、 S O,023%を含有する22
0W厚の珪素鋼連鋳スラブを各6本用意し、各スラブを
いずれも1360℃に1時間加熱後、常法により2.5
11011厚に熱延し、コイルに巻取った。次いでこれ
らの熱延コイルを酸洗後9.75m5庫に冷延し、引続
き900℃×5分間の中間焼鈍を施し、次いで最終冷延
して0.30日0に仕上げるに際して最終冷延バスの圧
延ロール表面粗度を0.13μm。
Example 2 3 with S1 content of 3.00%, 3.35%, and 3.55%
levels, and both contain Mn as an inhibitor.
0.067 Z, SO, 22 containing 0.023%
Prepare 6 continuous cast silicon steel slabs each with a thickness of 0W, heat each slab to 1360℃ for 1 hour, and then heat the slab to 2.5℃ using a conventional method.
It was hot rolled to a thickness of 11011 mm and wound into a coil. These hot-rolled coils were then pickled and cold-rolled into a 9.75m5 warehouse, followed by intermediate annealing at 900°C for 5 minutes, and then final cold-rolled to a temperature of 0.30 days. The rolling roll surface roughness is 0.13 μm.

0.38μm、0.55μmの3条件に変更して仕上げ
た。その後800℃において湿水素中で脱炭・1次再結
晶焼鈍を行なうにあたシ、雰囲気を調整して酸素目付量
を1.7 f/rrl 、 2.5μの2水準とし、次
いでMgOを主成分とする焼鈍分離剤を塗布した後、箱
焼鈍にて直ちに1170℃に昇温してIQ時間保定する
最終焼鈍を施して一方向性珪素鋼板の製品を得た。この
ようにして得られた製品板について、繰返し曲げ特性′
および磁気特性を調べた結果を第2表に示す。
Finishing was carried out under three conditions: 0.38 μm and 0.55 μm. Thereafter, for decarburization and primary recrystallization annealing in wet hydrogen at 800°C, the atmosphere was adjusted to give two levels of oxygen basis weight: 1.7 f/rrl and 2.5μ, and then MgO was added. After applying the annealing separator as the main component, a final annealing was performed in which the temperature was immediately raised to 1170° C. and held for an IQ time using box annealing to obtain a unidirectional silicon steel sheet product. Regarding the product sheet obtained in this way, the repeated bending characteristics
Table 2 shows the results of examining the magnetic properties.

第2表から、この発明にしたがってll!遺された本発
明例の製品板は、比較例のそれと比較して繰返し曲げ特
性が著しく優れるとともに、磁気特性も優れていること
が明らかである。
From Table 2, according to this invention, ll! It is clear that the remaining product plates of the inventive examples have significantly superior repeated bending properties and magnetic properties compared to those of the comparative examples.

以上の説明で明らかなように、この発明の方法によれば
、優れた繰返し曲げ特性と優れた磁気特性とを同時に兼
ね備えた一方向性珪素鋼板を実際KIR造することが可
能となる効果が得られ、特に鉄損特性を改善するべ(S
i量を増加させた場合でも優れた繰返し曲げ特性を確保
することができるから、その場合でも繰返し曲げ試験に
おける不合格率を著しく低減させて、歩留り向上、ひい
ては生産コストの低減に貢献することができる。またこ
の発明の方法は、量産的規模での実施にあたっても特に
支障はなく、また特に製造コストの上昇を招くこともな
い等の長所を有する。
As is clear from the above explanation, the method of the present invention has the effect of making it possible to actually KIR-manufacture a unidirectional silicon steel sheet that has excellent repeated bending properties and excellent magnetic properties at the same time. In particular, iron loss characteristics should be improved (S
Excellent cyclic bending properties can be ensured even when the amount of i is increased, so even in that case, the failure rate in cyclic bending tests can be significantly reduced, contributing to improved yields and, ultimately, to lower production costs. can. Further, the method of the present invention has the advantage that there is no particular problem in implementing it on a mass production scale, and it does not particularly cause an increase in manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一般的な方法、・工程条件で製造した一
方向性珪素鋼板の鋼中5iilと製品の繰返し曲げ回数
との関係を示す相関図、第2図は一方向性珪素鋼板製品
の繰返し曲げ回数に及ぼす最終冷延パスロール表面粗度
(Ra)と鋼中Si量の影響を示す相関図、第3図は最
終冷延パスロール表面粗度(Ra)と脱炭焼鈍による酸
素目付量が一方向性珪素鋼板製品の繰返し曲げ回数に及
はす影響を示す相関図である。 出願人 川崎製鉄株式会社 代理人 弁理士豊田武人 (ほか1名)
Figure 1 is a correlation diagram showing the relationship between 5iil in steel and the number of repeated bending of a unidirectional silicon steel plate manufactured under conventional general method and process conditions. Figure 2 is a unidirectional silicon steel plate product. A correlation diagram showing the effect of the final cold rolling pass roll surface roughness (Ra) and the amount of Si in the steel on the number of repeated bending. FIG. 2 is a correlation diagram showing the influence of unidirectional silicon steel sheet products on the number of repeated bendings. Applicant: Kawasaki Steel Co., Ltd. Agent: Taketo Toyota, patent attorney (and one other person)

Claims (1)

【特許請求の範囲】 Si2.5〜4. Owt %を含有する珪素鋼スラブ
を熱間圧延し、さらに1回もしくは中間焼鈍を挾む2回
以上の冷延工程を経て最終成品厚とし、次いで脱炭を兼
ねた1次再結晶焼鈍を施した後、MgOを主成分とする
焼鈍分離剤を塗布して最終仕上焼鈍を施す一連の工程よ
りなる一方向性珪素鋼板の製造方法において、 前記冷延工程の最終冷延パスにおける圧延ロールの表面
粗度を中心線平均粗さくRa)にてSi量に応じて na (pm )≦−(84%:] X O,27+ 
1.18を満足する範囲内に制御し、かつそれに続く脱
炭焼鈍において鋼板表面に生成される表面酸化物層の酸
素目付量を、1.0〜2.2 ff7mの範囲内に調整
することを特徴とする繰返し曲げ特性の優れた一方向性
珪素鋼板の製造方法。
[Claims] Si2.5 to 4. A silicon steel slab containing Owt % is hot-rolled, and then subjected to one or more cold-rolling steps with intermediate annealing to achieve the final product thickness, and then subjected to primary recrystallization annealing that also serves as decarburization. A method for manufacturing a grain-oriented silicon steel sheet comprising a series of steps of applying an annealing separator containing MgO as a main component and subjecting it to final finish annealing. Roughness is expressed as center line average roughness (Ra) depending on the amount of Si: na (pm)≦-(84%:] X O, 27+
1.18, and adjust the oxygen basis weight of the surface oxide layer generated on the steel plate surface in the subsequent decarburization annealing to be within the range of 1.0 to 2.2 ff7m. A method for producing a unidirectional silicon steel sheet with excellent repeated bending properties.
JP6040084A 1984-03-28 1984-03-28 Production of grain-oriented silicon steel sheet having excellent repeated bending characteristic Pending JPS60204832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6040084A JPS60204832A (en) 1984-03-28 1984-03-28 Production of grain-oriented silicon steel sheet having excellent repeated bending characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6040084A JPS60204832A (en) 1984-03-28 1984-03-28 Production of grain-oriented silicon steel sheet having excellent repeated bending characteristic

Publications (1)

Publication Number Publication Date
JPS60204832A true JPS60204832A (en) 1985-10-16

Family

ID=13141074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6040084A Pending JPS60204832A (en) 1984-03-28 1984-03-28 Production of grain-oriented silicon steel sheet having excellent repeated bending characteristic

Country Status (1)

Country Link
JP (1) JPS60204832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130320A (en) * 1987-07-21 1991-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in surface characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130320A (en) * 1987-07-21 1991-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in surface characteristic

Similar Documents

Publication Publication Date Title
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
JP6769587B1 (en) Electrical steel sheet and its manufacturing method
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JPS60204832A (en) Production of grain-oriented silicon steel sheet having excellent repeated bending characteristic
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP2020169366A (en) Method for manufacturing grain oriented electrical steel sheet
JP3197791B2 (en) Method for producing grain-oriented electrical steel sheet with excellent punchability and magnetic properties
JP2020169367A (en) Method for manufacturing grain oriented electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP4377477B2 (en) Method for producing high magnetic flux density unidirectional electrical steel sheet
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH02301571A (en) Production of grain-oriented electrical steel sheet having uniform glassy coating film
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JPS62151521A (en) Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPS6332850B2 (en)
JP3937491B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet